Search results for: data mapping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25727

Search results for: data mapping

24977 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 94
24976 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 188
24975 Coherent All-Fiber and Polarization Maintaining Source for CO2 Range-Resolved Differential Absorption Lidar

Authors: Erwan Negre, Ewan J. O'Connor, Juha Toivonen

Abstract:

The need for CO2 monitoring technologies grows simultaneously with the worldwide concerns regarding environmental challenges. To that purpose, we developed a compact coherent all-fiber ranged-resolved Differential Absorption Lidar (RR-DIAL). It has been designed along a tunable 2x1fiber optic switch set to a frequency of 1 Hz between two Distributed FeedBack (DFB) lasers emitting in the continuous-wave mode at 1571.41 nm (absorption line of CO2) and 1571.25 nm (CO2 absorption-free line), with linewidth and tuning range of respectively 1 MHz and 3 nm over operating wavelength. A three stages amplification through Erbium and Erbium-Ytterbium doped fibers coupled to a Radio Frequency (RF) driven Acousto-Optic Modulator (AOM) generates 100 ns pulses at a repetition rate from 10 to 30 kHz with a peak power up to 2.5 kW and a spatial resolution of 15 m, allowing fast and highly resolved CO2 profiles. The same afocal collection system is used for the output of the laser source and the backscattered light which is then directed to a circulator before being mixed with the local oscillator for heterodyne detection. Packaged in an easily transportable box which also includes a server and a Field Programmable Gate Array (FPGA) card for on-line data processing and storing, our setup allows an effective and quick deployment for versatile in-situ analysis, whether it be vertical atmospheric monitoring, large field mapping or sequestration site continuous oversight. Setup operation and results from initial field measurements will be discussed.

Keywords: CO2 profiles, coherent DIAL, in-situ atmospheric sensing, near infrared fiber source

Procedia PDF Downloads 128
24974 The Implementation of Level of Service for Development of Kuala Lumpur Transit Information System using GIS

Authors: Mokhtar Azizi

Abstract:

Due to heavy traffic and congested roads, it is crucial that the most popular main public transport services in Kuala Lumpur i.e. Putra LRT, Star LRT, KTM Commuter, KL Monorail and Rapid Bus must be continuously monitored and improved to fulfill the rider’s requirement and kept updated by the transit agencies. Evaluation on the current status of the services has been determined out by calculating the transit supportive area (TSA) and level of service (LOS) for each transit station. This research study has carried out the TSA and LOS mapping based on GIS techniques. The detailed census data of the region along the line of services has been collected from the Department of Statistics Malaysia for this purpose. The service coverage has been decided by 400 meters buffer zone for bus stations and 800 meters for rails station and railways in measurement the Quality of Service along the line of services. All the required information has been calculated by using the customized GIS software called Kuala Lumpur Transit Information System (KLTIS). The transit supportive area was calculated with the employment density at least 10 job/hectare or household density at 7.5 unit/hectare and total area covered by transit supportive area is 22516 hectare and the total area that is not supported by transit is 1718 hectare in Kuala Lumpur. The level of service is calculated with the percentage of transit supportive area served by transit for each station. In overall the percentage transit supportive areas served by transit for all the stations were less than 50% which falls in a very low level of service category. This research has proven its benefit by providing the current transit services operators with vital information for improvement of existing public transport services.

Keywords: service coverage, transit supportive area, level of service, transit system

Procedia PDF Downloads 376
24973 Quantification of NDVI Variation within the Major Plant Formations in Nunavik

Authors: Anna Gaspard, Stéphane Boudreau, Martin Simard

Abstract:

Altered temperature and precipitation regimes associated with climate change generally result in improved conditions for plant growth. For Arctic and sub-Arctic ecosystems, this new climatic context favours an increase in primary productivity, a phenomenon often referred to as "greening". The development of an erect shrub cover has been identified as the main driver of Arctic greening. Although this phenomenon has been widely documented at the circumpolar scale, little information is available at the scale of plant communities, the basic unit of the Arctic, and sub-Arctic landscape mosaic. The objective of this study is to quantify the variation of NDVI within the different plant communities of Nunavik, which will allow us to identify the plant formations that contribute the most to the increase in productivity observed in this territory. To do so, the variation of NDVI extracted from Landsat images for the period 1984 to 2020 was quantified. From the Landsat scenes, annual summer NDVI mosaics with a resolution of 30 m were generated. The ecological mapping of Northern Quebec vegetation was then overlaid on the time series of NDVI maps to calculate the average NDVI per vegetation polygon for each year. Our results show that NDVI increases are more important for the bioclimatic domains of forest tundra and erect shrub tundra, and shrubby formations. Surface deposits, variations in mean annual temperature, and variations in winter precipitation are involved in NDVI variations. This study has thus allowed us to quantify changes in Nunavik's vegetation communities, using fine spatial resolution satellite imagery data.

Keywords: climate change, latitudinal gradient, plant communities, productivity

Procedia PDF Downloads 183
24972 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 284
24971 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures

Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui

Abstract:

The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.

Keywords: multi-cores DSP, scheduling, SMT solver, workflow

Procedia PDF Downloads 286
24970 Distribution of Gamma-Radiation Levels in Core Sediment Samples in Gulf of İzmir, Eastern Aegean Sea, Turkey

Authors: D. Kurt, İ. F. Barut, Z. Ü. Yümün, E. Kam

Abstract:

After development of the industrial revolution, industrial plants and settlements have spread widely on the sea coasts. This concentration also brings environmental pollution in the sea. This study focuses on the Gulf of İzmir where is located in West of Turkey and it is a fascinating natural gulf of the Eastern Aegean Sea. Investigating marine current sediment is extremely important to detect pollution. Natural radionuclides’ pollution of the marine environment which is also known as a significant environmental anxiety. Ground drilling cores (the depth of each sediment is variant) were collected from the Gulf of İzmir’s four different locations which were Karşıyaka, İnciraltı, Çeşmealtı and Bayraklı. These sediment cores were put in preserving bags with weight around 1 kg, and they were dried at room temperature in a week for moisture removal. Then, they were sieved with 1 mm sieve holes, and finally these powdered samples were relocation to polyethylene Marinelli beakers of 100 ml versions. Each prepared sediment was waited to reach radioactive equilibrium between uranium and thorium for 40 days. Gamma spectrometry measurements were settled using a HPG (High- Purity Germanium) semiconductor detector. Semiconductor detectors are very good at separating power of the energy, they are easily able to differentiate peaks that are pretty close to each other. That is why, gamma spectroscopy’s usage is common for the determination of the activities of U - 238, Th - 232, Ra - 226, Cr - 137 and K - 40 in Bq kg⁻¹. In this study, the results display that the average concentrations of activities’ values are in respectively; 2.2 ± 1.5 Bq/ kg⁻¹, 0.98 ± 0.02 Bq/ kg⁻¹, 8 ± 0.96 Bq/ kg⁻¹, 0.93 ± 0.14 Bq/ kg⁻¹, and 76.05 ± 0.93 Bq/ kg⁻¹. The outcomes of the study are able to be used as a criterion for forthcoming research and the obtained data would be pragmatic for radiological mapping of the precise areas.

Keywords: gamma, Gulf of İzmir (Eastern Aegean Sea-Turkey), natural radionuclides, pollution

Procedia PDF Downloads 258
24969 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation

Authors: Sikander Nawaz Khan

Abstract:

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.

Keywords: disaster mitigation, GIS, GPS, remote sensing

Procedia PDF Downloads 481
24968 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
24967 Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation

Authors: Ankur Mundhra, Shubhadeep Chakraborty, Y. R. Singh, Vishal Das

Abstract:

Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s).

Keywords: clipping, compression, resolution, seismic scaling

Procedia PDF Downloads 469
24966 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.

Keywords: spectral index, shadow detection, remote sensing images, World-View 2

Procedia PDF Downloads 538
24965 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions

Authors: Yacine Arioua

Abstract:

In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.

Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness

Procedia PDF Downloads 264
24964 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya

Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson

Abstract:

The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.

Keywords: coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill

Procedia PDF Downloads 362
24963 Association of Social Data as a Tool to Support Government Decision Making

Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias

Abstract:

Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.

Keywords: social data, government decision making, association of social data, data mining

Procedia PDF Downloads 369
24962 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 13
24961 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
24960 Wind Power Mapping and NPV of Embedded Generation Systems in Nigeria

Authors: Oluseyi O. Ajayi, Ohiose D. Ohijeagbon, Mercy Ogbonnaya, Ameh Attabo

Abstract:

The study assessed the potential and economic viability of stand-alone wind systems for embedded generation, taking into account its benefits to small off-grid rural communities at 40 meteorological sites in Nigeria. A specific electric load profile was developed to accommodate communities consisting of 200 homes, a school and a community health centre. This load profile was incorporated within the distributed generation analysis producing energy in the MW range, while optimally meeting daily load demand for the rural communities. Twenty-four years (1987 to 2010) of wind speed data at a height of 10m utilized for the study were sourced from the Nigeria Meteorological Department, Oshodi. The HOMER® software optimizing tool was engaged for the feasibility study and design. Each site was suited to 3MW wind turbines in sets of five, thus 15MW was designed for each site. This design configuration was adopted in order to easily compare the distributed generation system amongst the sites to determine their relative economic viability in terms of life cycle cost, as well as levelised cost of producing energy. A net present value was estimated in terms of life cycle cost for 25 of the 40 meteorological sites. On the other hand, the remaining sites yielded a net present cost; meaning the installations at these locations were not economically viable when utilizing the present tariff regime for embedded generation in Nigeria.

Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, Nigeria

Procedia PDF Downloads 397
24959 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 294
24958 Task Scheduling on Parallel System Using Genetic Algorithm

Authors: Jasbir Singh Gill, Baljit Singh

Abstract:

Scheduling and mapping the application task graph on multiprocessor parallel systems is considered as the most crucial and critical NP-complete problem. Many genetic algorithms have been proposed to solve such problems. In this paper, two genetic approach based algorithms have been designed and developed with or without task duplication. The proposed algorithms work on two fitness functions. The first fitness i.e. task fitness is used to minimize the total finish time of the schedule (schedule length) while the second fitness function i.e. process fitness is concerned with allocating the tasks to the available highly efficient processor from the list of available processors (load balance). Proposed genetic-based algorithms have been experimentally implemented and evaluated with other state-of-art popular and widely used algorithms.

Keywords: parallel computing, task scheduling, task duplication, genetic algorithm

Procedia PDF Downloads 349
24957 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.

Keywords: IoT, fog, cloud, data analysis, data privacy

Procedia PDF Downloads 99
24956 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 414
24955 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol

Authors: Inkyu Kim, SangMan Moon

Abstract:

This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.

Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application

Procedia PDF Downloads 392
24954 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 550
24953 Router 1X3 - RTL Design and Verification

Authors: Nidhi Gopal

Abstract:

Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.

Keywords: data packets, networking, router, routing

Procedia PDF Downloads 814
24952 Evaluation and Possibilities of Valorization of Ecotourism Potentials in the Mbam and Djerem National Park

Authors: Rinyu Shei Mercy

Abstract:

Protected areas are the potential areas for the development of ecotourism because of their biodiversity, landscapes, waterfalls, lakes, caves, salt lick and cultural heritage of local or indigenous people. These potentials have not yet been valorized, so this study will enable to investigate the evaluation and possibilities of valorization of ecotourism potentials in the Mbam and Djerem National Park. Hence, this was done by employing a combination of field observations, examination, data collection and evaluation, using a SWOT analysis. The SWOT provides an analysis to determine the strengths, weaknesses, opportunities and threats, and strategic suggestions for ecological planning. The study helps to determine an ecotouristic inventory and mapping of ecotourism potentials of the park, evaluate the degree of valorization of these potentials and the possibilities of valorization. Finally, the study has proven that the park has much natural potentials such as rivers, salt licks, waterfall and rapids, lakes, caves and rocks, etc. Also, from the study, it was realized that as concerns the degree of valorization of these ecotourism potentials, 50% of the population visit the salt lick of Pkayere because it’s a biodiversity hotspot and rich in mineral salt attracting a lot of animals and the least is the lake Miyere with 1% due to the fact that it is sacred. Moreover, from the results, there are possibilities that these potentials can be valorized and put into use because of their attractive nature such as creating good roads and bridges, good infrastructural facilities, good communication network etc. So, the study recommends that, in this process, MINTOUR, WCS, tour operators must interact sufficiently in order to develop the potential interest to ecotourism, ecocultural tourism and scientific tourism.

Keywords: ecotourism, national park Mbam and Djerem, valorization of biodiversity, protected areas of Cameroon

Procedia PDF Downloads 137
24951 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: web log data, web user profile, user interest, noise web data learning, machine learning

Procedia PDF Downloads 265
24950 From User's Requirements to UML Class Diagram

Authors: Zeineb Ben Azzouz, Wahiba Ben Abdessalem Karaa

Abstract:

The automated extraction of UML class diagram from natural language requirements is a highly challenging task. Many approaches, frameworks and tools have been presented in this field. Nonetheless, the experiments of these tools have shown that there is no approach that can work best all the time. In this context, we propose a new accurate approach to facilitate the automatic mapping from textual requirements to UML class diagram. Our new approach integrates the best properties of statistical Natural Language Processing (NLP) techniques to reduce ambiguity when analysing natural language requirements text. In addition, our approach follows the best practices defined by conceptual modelling experts to determine some patterns indispensable for the extraction of basic elements and concepts of the class diagram. Once the relevant information of class diagram is captured, a XMI document is generated and imported with a CASE tool to build the corresponding UML class diagram.

Keywords: class diagram, user’s requirements, XMI, software engineering

Procedia PDF Downloads 471
24949 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study

Authors: Zeba Mahmood

Abstract:

The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.

Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining

Procedia PDF Downloads 538
24948 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 350