Search results for: teaching and learning empathy
1033 Assessing Conceptions of Climate Change: An Exploratory Study among Japanese Early-Adolescents
Authors: Kelvin Tang
Abstract:
As the world is approaching global warming of 1.5°C above pre-industrial levels, more atrocious consequences of climate change are projected to occur in the future. Consequently, it is today’s adolescents who will encounter the grand consequences of climate change. Therefore, nurturing adolescents that are well-informed, emotionally engaged, and motivated to take actions for combating climate change may be pivotal. Climate change education has a role in not only raising awareness, but also promoting behaviour change for climate change mitigation and adaptation. However, what kind of climate change education is suitable for whom? Requiring a learner-centred approach, tailoring climate change education requires a comprehensive understanding of the audience and their preconditions. In Japan, where climate change education has yet to be recognised as a field of environmental education, understanding climate change conceptions possessed by early adolescents is critical for a better design and more impactful implementation of climate change education. This exploratory study aims to investigate climate change conceptions among Japanese early adolescents from the perspective of cognition, affective, and conative dimensions. Questionnaire surveys were conducted targeting 423 students aged 12–14 in three public junior high schools located in Kashiwa City and Oita City. Findings suggest that the majority of Japanese early adolescents belong to groups that exhibit lower levels of cognition, affect, and conation in relation to climate change. The relationships among those dimensions were found to be positive and bidirectional. Moreover, several misconceptions about climate change and the effectiveness of its solutions were identified among the sample.Keywords: climate change conceptions, climate change education, environmental education, adolescents, three learning dimensions, Japan
Procedia PDF Downloads 671032 Exam Stress and Emotional Eating Among Lebanese University Students: A Correlational Study
Authors: Marielle Mansour
Abstract:
Background: Integrating university students into an academic environment can be intense, with significant intellectual and emotional challenges. Stress, particularly during exam periods, plays a crucial role in students' eating habits, often influencing their food choices through mechanisms such as emotional eating. Objective: This study aims to understand the impact of exam stress on emotional eating among university students in Lebanon, Methodology: A cross-sectional study was conducted among 700 students aged 18 to 25 years in Lebanon, using online questionnaires to assess perceived stress using the Perceived Stress Scale (PSS) and emotional eating behaviors with the Dutch Eating Behavior Questionnaire (DEBQ). Data was analyzed to identify correlations between stress and emotional eating. Results: A significant positive correlation was observed between levels of perceived stress and increased emotional eating, with marked differences depending on participants' gender and field of study. This trend highlights the concerning impact of academic stress on students' food choices, including an increased prevalence of emotional eating among women and those studying in demanding disciplines like health sciences and engineering. Conclusion: This research contributes to the understanding of the complex links between academic stress and emotional eating behaviors among university students in Lebanon. To improve the mental and physical health of students, it is essential to implement tailored educational and support initiatives aimed at reducing stress and promoting balanced dietary choices in learning environments.Keywords: exam stress, emotional eating, university students, stress management, Lebanon
Procedia PDF Downloads 221031 Fibrin Glue Reinforcement of Choledochotomy Closure Suture Line for Prevention of Bile Leak in Patients Undergoing Laparoscopic Common Bile Duct Exploration with Primary Closure: A Pilot Study
Authors: Rahul Jain, Jagdish Chander, Anish Gupta
Abstract:
Introduction: Laparoscopic common bile duct exploration (LCBDE) allows cholecystectomy and the removal of common bile duct (CBD) stones to be performed during the same sitting, thereby decreasing hospital stay. CBD exploration through choledochotomy can be closed primarily with an absorbable suture material, but can lead to biliary leakage postoperatively. In this study we tried to find a solution to further lower the incidence of bile leakage by using fibrin glue to reinforce the sutures put on choledochotomy suture line. It has haemostatic and sealing action, through strengthening the last step of the physiological coagulation and biostimulation, which favours the formation of new tissue matrix. Methodology: This study was conducted at a tertiary care teaching hospital in New Delhi, India, from 2011 to 2013. 20 patients with CBD stones documented on MRCP with CBD diameter of 9 mm or more were included in this study. Patients were randomized into two groups namely Group A in which choledochotomy was closed with polyglactin 4-0 suture and suture line reinforced with fibrin glue, and Group ‘B’ in which choledochotomy was closed with polyglactin 4-0 suture alone. Both the groups were evaluated and compared on clinical parameters such as operative time, drain content, drain output, no. of days drain was required, blood loss & transfusion requirements, length of postoperative hospital stay and conversion to open surgery. Results: The operative time for Group A ranged from 60 to 210 min (mean 131.50 min) and Group B 65 to 300 min (mean 140 minutes). The blood loss in group A ranged from 10 to 120 ml (mean 51.50 ml), in group B it ranged from 10 to 200 ml (mean 53.50 ml). In Group A, there was no case of bile leak but there was bile leak in 2 cases in Group B, minimum 0 and maximum 900 ml with a mean of 97 ml and p value of 0.147 with no statistically significant difference in bile leak in test and control groups. The minimum and maximum serous drainage in Group A was nil & 80 ml (mean 11 ml) and in Group B was nil & 270 ml (mean 72.50 ml). The p value came as 0.028 which is statistically significant. Thus serous leakage in Group A was significantly less than in Group B. The drains in Group A were removed from 2 to 4 days (mean: 3 days) while in Group B from 2 to 9 days (mean: 3.9 days). The patients in Group A stayed in hospital post operatively from 3 to 8 days (mean: 5.30) while in Group B it ranged from 3 to 10 days with a mean of 5 days. Conclusion: Fibrin glue application on CBD decreases bile leakage but in statistically insignificant manner. Fibrin glue application on CBD can significantly decrease post operative serous drainage after LCBDE. Fibrin glue application on CBD is safe and easy technique without any significant adverse effects and can help less experienced surgeons performing LCBDE.Keywords: bile leak, fibrin glue, LCBDE, serous leak
Procedia PDF Downloads 2151030 Possible Impact of Shunt Surgeries on the Spatial Learning of Congenitally-Blind Children
Authors: Waleed Jarjoura
Abstract:
In various cases of visual impairments, the individuals are referred to expert Ophthalmologists in order to establish a correct diagnosis. Children with visual-impairments confront various challenging experiences in life since early childhood throughout lifespan. In some cases, blind infants, especially due to congenital hydrocephalus, suffer from high intra-cranial pressure and, consequently, go through a ventriculo-peritoneal shunt surgery in order to limit the neurological symptoms or decrease the cognitive impairments. In this article, a detailed description of numerous crucial implications of the V/P shunt surgery, through the right posterior-inferior parieto-temporal cortex, on the observed preliminary capabilities that are pre-requisites for the acquisition of literacy skills in braille, basic Math competencies, braille printing which suggest Gerstmann syndrome in the blind. In addition, significant difficultiesorientation and mobility skills using the Cane, in general, organizational skills, and social interactions were observed. The primary conclusion of this report focuses on raising awareness among neuro-surgeons towards the need for alternative intracranial routes for V/P shunt implantation in blind infants that preserve the right posterior-inferior parieto-temporal cortex that is hypothesized to modulate the tactual-spatial cues in braille discrimination. A second conclusion targets educators and therapists that address the acquired dysfunctionsin blind individuals due to V/P shunt surgeries.Keywords: congenital blindness, hydrocephalus, shunt surgery, spatial orientation
Procedia PDF Downloads 901029 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 971028 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis
Procedia PDF Downloads 901027 Using Systems Theory and Collective Impact Approaches to Increase the Retention and Success of University Student Stem Majors
Authors: Araceli Martínez Ortiz
Abstract:
An educational research effort is analyzed using systems theory to document the power of collective impact when addressing multiple factors contributing towards the retention of students majoring in science, technology, engineering and mathematics (STEM) academic programs. This research promotes understanding on how networked communities may work effectively toward a shared vision and mutually aligned activities that result in sustained, large scale change. The actions of a team of researchers in their third year of collaboration are presented to describe a model that positively aligns work efforts resulting in greater total gains. The goals of the multiple programs managed by the funded program team are to: 1) expand the number of students who choose to study a STEM field of study; 2) promote student collaborative learning; 3) support faculty understanding of the funds of knowledge of diverse students and 4) establish innovative and robust STEM education research that will lead to the development of nationally replicable, scalable models for broadening participation in STEM. The impacts of this research effort are measured through quantitative statistical analysis of the changes in second-year STEM undergraduate student retention rates and representation rates of women, Hispanics and African American STEM majors.Keywords: collaborative impact, diversity, student retention, systems theory, STEM education
Procedia PDF Downloads 2671026 Measuring Greenhouse Gas Exchange from Paddy Field Using Eddy Covariance Method in Mekong Delta, Vietnam
Authors: Vu H. N. Khue, Marian Pavelka, Georg Jocher, Jiří Dušek, Le T. Son, Bui T. An, Ho Q. Bang, Pham Q. Huong
Abstract:
Agriculture is an important economic sector of Vietnam, the most popular of which is wet rice cultivation. These activities are also known as the main contributor to the national greenhouse gas. In order to understand more about greenhouse gas exchange in these activities and to investigate the factors influencing carbon cycling and sequestration in these types of ecosystems, since 2019, the first eddy covariance station has been installed in a paddy field in Long An province, Mekong Delta. The station was equipped with state-of-the-art equipment for CO₂ and CH₄ gas exchange and micrometeorology measurements. In this study, data from the station was processed following the ICOS recommendations (Integrated Carbon Observation System) standards for CO₂, while CH₄ was manually processed and gap-filled using a random forest model from methane-gapfill-ml, a machine learning package, as there is no standard method for CH₄ flux gap-filling yet. Finally, the carbon equivalent (Ce) balance based on CO₂ and CH₄ fluxes was estimated. The results show that in 2020, even though a new water management practice - alternate wetting and drying - was applied to reduce methane emissions, the paddy field released 928 g Cₑ.m⁻².yr⁻¹, and in 2021, it was reduced to 707 g Cₑ.m⁻².yr⁻¹. On a provincial level, rice cultivation activities in Long An, with a total area of 498,293 ha, released 4.6 million tons of Cₑ in 2020 and 3.5 million tons of Cₑ in 2021.Keywords: eddy covariance, greenhouse gas, methane, rice cultivation, Mekong Delta
Procedia PDF Downloads 1421025 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble
Procedia PDF Downloads 1381024 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 5191023 The Role of Knowledge Sharing in Market Response: The Case of Saman Bank of Iran
Authors: Fatemeh Torabi, Jamal El-Den, Narumon Sriratanviriyakul
Abstract:
Perpetual changes in the workplace and daily business activities bring a need for imbedding organizational knowledge sharing within the organizations’ culture, routines and processes. Organizations should adapt to the changing in the environment in order to survive. Accordingly, the management should promote a knowledge sharing culture which might result in knowledge accumulation, hence better response to these changing environmental conditions. Researchers in the field of strategy and marketing stressed that employees’, as well as the overall performance of the organization, would improve as a result of implementing a knowledge-oriented culture. The research investigated the significant impact of knowledge sharing on market response and the competitiveness of organizations. A knowledge sharing framework was developed based on current literary frameworks with additional constructs such as employees’ learning commitments, experiences and prior knowledge. Linear regression was used to analyze the relationships among dependent and independent variables. The research’s results indicated strong positive correlation between the dependent and independent variables, especially in organizational market sharing. We anticipate that this correlation would improve organizational knowledge sharing related practices and the associated knowledge entities. The research posits the introduced framework could be a solid ground for further investigations on how some organizational factors would influence the organization’s response to the market as well as on competitiveness. Final results support all hypotheses. Finding of this research show that knowledge sharing intention had the significant and positive effect on market response and competitiveness of organizations.Keywords: knowledge management, knowledge sharing, market response, organizational competitiveness
Procedia PDF Downloads 2061022 Experiment-Based Teaching Method for the Varying Frictional Coefficient
Authors: Mihaly Homostrei, Tamas Simon, Dorottya Schnider
Abstract:
The topic of oscillation in physics is one of the key ideas which is usually taught based on the concept of harmonic oscillation. It can be an interesting activity to deal with a frictional oscillator in advanced high school classes or in university courses. Its mechanics are investigated in this research, which shows that the motion of the frictional oscillator is more complicated than a simple harmonic oscillator. The physics of the applied model in this study seems to be interesting and useful for undergraduate students. The study presents a well-known physical system, which is mostly discussed theoretically in high school and at the university. The ideal frictional oscillator is normally used as an example of harmonic oscillatory motion, as its theory relies on the constant coefficient of sliding friction. The structure of the system is simple: a rod with a homogeneous mass distribution is placed on two rotating identical cylinders placed at the same height so that they are horizontally aligned, and they rotate at the same angular velocity, however in opposite directions. Based on this setup, one could easily show that the equation of motion describes a harmonic oscillation considering the magnitudes of the normal forces in the system as the function of the position and the frictional forces with a constant coefficient of frictions are related to them. Therefore, the whole description of the model relies on simple Newtonian mechanics, which is available for students even in high school. On the other hand, the phenomenon of the described frictional oscillator does not seem to be so straightforward after all; experiments show that the simple harmonic oscillation cannot be observed in all cases, and the system performs a much more complex movement, whereby the rod adjusts itself to a non-harmonic oscillation with a nonzero stable amplitude after an unconventional damping effect. The stable amplitude, in this case, means that the position function of the rod converges to a harmonic oscillation with a constant amplitude. This leads to the idea of a more complex model which can describe the motion of the rod in a more accurate way. The main difference to the original equation of motion is the concept that the frictional coefficient varies with the relative velocity. This dependence on the velocity was investigated in many different research articles as well; however, this specific problem could demonstrate the key concept of the varying friction coefficient and its importance in an interesting and demonstrative way. The position function of the rod is described by a more complicated and non-trivial, yet more precise equation than the usual harmonic oscillation description of the movement. The study discusses the structure of the measurements related to the frictional oscillator, the qualitative and quantitative derivation of the theory, and the comparison of the final theoretical function as well as the measured position-function in time. The project provides useful materials and knowledge for undergraduate students and a new perspective in university physics education.Keywords: friction, frictional coefficient, non-harmonic oscillator, physics education
Procedia PDF Downloads 1931021 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking
Authors: Jonas Colin
Abstract:
Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.Keywords: chatbot, GPT 3.5, metacognition, symbiose
Procedia PDF Downloads 721020 Development of Fault Diagnosis Technology for Power System Based on Smart Meter
Authors: Chih-Chieh Yang, Chung-Neng Huang
Abstract:
In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.Keywords: ANFIS, fault diagnosis, power system, smart meter
Procedia PDF Downloads 1401019 Smart Online Library Catalog System with Query Expansion for the University of the Cordilleras
Authors: Vincent Ballola, Raymund Dilan, Thelma Palaoag
Abstract:
The Smart Online Library Catalog System with Query Expansion seeks to address the low usage of the library because of the emergence of the Internet. Library users are not accustomed to catalog systems that need a query to have the exact words without any mistakes for decent results to appear. The graphical user interface of the current system has a rather skewed learning curve for users to adapt with. With a simple graphical user interface inspired by Google, users can search quickly just by inputting their query and hitting the search button. Because of the query expansion techniques incorporated into the new system such as stemming, thesaurus search, and weighted search, users can have more efficient results from their query. The system will be adding the root words of the user's query to the query itself which will then be cross-referenced to a thesaurus database to search for any synonyms that will be added to the query. The results will then be arranged by the number of times the word has been searched. Online queries will also be added to the results for additional references. Users showed notable increases in efficiency and usability due to the familiar interface and query expansion techniques incorporated in the system. The simple yet familiar design led to a better user experience. Users also said that they would be more inclined in using the library because of the new system. The incorporation of query expansion techniques gives a notable increase of results to users that in turn gives them a wider range of resources found in the library. Used books mean more knowledge imparted to the users.Keywords: query expansion, catalog system, stemming, weighted search, usability, thesaurus search
Procedia PDF Downloads 3881018 Analysis of Basic Science Curriculum as Correlates of Secondary School Students' Achievement in Science Test in Oyo State
Authors: Olubiyi Johnson Ezekiel
Abstract:
Basic science curriculum is an on-going effort towards developing the potential of manner to produce individuals in a holistic and integrated person, who are intellectually, spiritually, emotionally and physically balanced and harmonious. The main focus of this study is to determine the relationship between students’ achievement in junior school certificate examination (JSCE) and senior school basic science achievement test (SSBSAT) on the basis of all the components of basic science. The study employed the descriptive research of the survey type and utilized junior school certificate examination and senior school basic science achievement test(r = .87) scores as instruments. The data collected were subjected to Pearson product moment correlation, Spearman rank correlation, regression analysis and analysis of variance. The result of the finding revealed that the mean effects of the achievement in all the components of basic science on SSBSAT are significantly different from zero. Based on the results of the findings, it was concluded that the relationship between students’ achievement in JSCE and SSBSAT was weak and to achieve a unit increase in the students’ achievement in the SSBSAT when other subjects are held constant, we have to increase the learning of: -physics by 0.081 units; -chemistry by 0.072 units; -biology by 0.025 units and general knowledge by 0.097 units. It was recommended among others, that general knowledge aspect of basic science should be included in either physics or chemistry aspect of basic science.Keywords: basic science curriculum, students’ achievement, science test, secondary school students
Procedia PDF Downloads 4511017 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations
Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger
Abstract:
Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java
Procedia PDF Downloads 3371016 Rumen Metabolites and Microbial Load in Fattening Yankasa Rams Fed Urea and Lime Treated Groundnut (Arachis Hypogeae) Shell in a Complete Diet
Authors: Bello Muhammad Dogon Kade
Abstract:
The study was conducted to determine the effect of a treated groundnut (Arachis hypogaea) shell in a complete diet on blood metabolites and microbial load in fattening Yankasa rams. The study was conducted at the Teaching and Research Farm (Small Ruminants Unit of Animal Science Department, Faculty of Agriculture, Ahmadu Bello University, Zaria. Each kilogram of groundnut shell was treated with 5% urea and 5% lime for treatments 2 (UTGNS) and 3 (LTGNS), respectively. For treatment 4 (ULTGNS), 1 kg of groundnut shell was treated with 2.5% urea and 2.5% lime, but the shell in treatment 1 was not treated (UNTGNS). Sixteen Yankasa rams were used and randomly assigned to the four treatment diets with four animals per treatment in a completely randomized design (CRD). The diet was formulated to have 14% crude protein (CP) content. Rumen fluid was collected from each ram at the end of the experiment at 0 and 4 hours post-feeding. The samples were then put in a 30 ml bottle and acidified with 5 drops of concentrated sulphuric (0.1N H₂SO4) acid to trap ammonia. The results of the blood metabolites showed that the mean values of NH₃-N differed significantly (P<0.05) among the treatment groups, with rams in the ULTGNS diet having the highest significant value (31.96 mg/L). TVFs were significantly (P<0.05) higher in rams fed UNTGNS diet and higher in total nitrogen; the effect of sampling periods revealed that NH3N, TVFs and TP were significantly (P<0.05) higher in rumen fluid collected 4hrs post feeding among the rams across the treatment groups, but rumen fluid pH was significantly (p<0.05) higher in 0-hour post-feeding in all the rams in the treatment diets. In the treatment and sampling period’s interaction effects, animals on the ULTGNS diet had the highest mean values of NH3N in both 0 and 4 hours post-feeding and were significantly (P<0.5) higher compared to rams on the other treatment diets. Rams on the UTGNS diet had the highest bacteria load of 4.96X105/ml, which was significantly (P<0.05) higher than a microbial load of animals fed UNTGNS, LTGNS and ULTGNS diets. However, protozoa counts were significantly (P<0.05) higher in rams fed the UTGNS diet than those followed by the ULTGNS diet. The results showed that there was no significant difference (P>0.05) in the bacteria count of the animals at both 0 and 4 hours post-feeding. But rumen fungi and protozoa load at 0 hours were significantly (P<0.05) higher than at 4 hours post-feeding. The use of untreated ground groundnut shells in the diet of fattening Yankasa ram is therefore recommended.Keywords: blood metabolites, microbial load, volatile fatty acid, ammonia, total protein
Procedia PDF Downloads 681015 Bullying with Neurodiverse Students and Education Policy Reform
Authors: Fharia Tilat Loba
Abstract:
Studies show that there is a certain group of students who are more vulnerable to bullying due to their physical appearance, disability, sexual preference, race, and lack of social and behavioral skills. Students with autism spectrum disorders (ASD) are one of the most vulnerable groups among these at-risk groups. Researchers suggest that focusing on vulnerable groups of students who can be the target of bullying helps to understand the causes and patterns of aggression, which ultimately helps in structuring intervention programs to reduce bullying. Since Australia ratified the United Nations Convention on the Rights of Persons with Disabilities in 2006, it has been committed to providing an inclusive, safe, and effective learning environment for all children. In addition, the 2005 Disability Standards for Education seeks to ensure that students with disabilities can access and participate in education on the same basis as other students, covering all aspects of education, including harassment and victimization. However, bullying hinders students’ ability to fully participate in schooling. The proposed study aims to synthesize the notions of traditional bullying and cyberbullying and attempts to understand the experiences of students with ASD who are experiencing bullying in their schools. The proposed study will primarily focus on identifying the gaps between policy and practice related to bullying, and it will also attempt to understand the experiences of parents of students with ASD and professionals who have experience dealing with bullying at the school level in Australia. This study is expected to contribute to the theoretical knowledge of the bullying phenomenon and provide a reference for advocacy at the school, organization, and government levels.Keywords: education policy, bullying, Australia, neurodiversity
Procedia PDF Downloads 581014 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 341013 Retrospective Insight on the Changing Status of the Romanian Language Spoken in the Republic of Moldova
Authors: Gina Aurora Necula
Abstract:
From its transformation into a taboo and its hiding under the so-called “Moldovan language” or under the euphemistic expression “state language” to its regained status recognition as an official language, the Romanian language spoken in the Republic of Moldova has undergone impressive reforms in the last 60 years. Meant to erase the awareness of citizens’ ethnic identity and turn a majority language into a minority one, all the laws and regulations issued on the field succeeded into setting numerous barriers for speakers of Romanian. Either manifested as social constraints or materialized into assumed rejection of mother tongue usage, all these laws have demonstrated their usefulness and major impact on the Romanian-speaking population. This article is the result of our research carried out over 10 years with the support of students, and Moldovan citizens, from the master's degree program "Romanian language - identity and cultural awareness." We present here a retrospective insight of the reforms, laws, and regulations that contributed to the shifted status of the Romanian language from the official language, seen as the language of common use both in the public and private spheres, in the minority language that surrendered its privileged place to the Russian language, firstly in the public sphere, and then, slowly but surely, in the private sphere. Our main goal here is to identify and make speakers understand what the barriers to learning Romanian language are nowadays when the social pressure on using Russian no longer exists.Keywords: linguistic barriers, lingua franca, private sphere, public sphere, reformation
Procedia PDF Downloads 1171012 Using the Technological, Pedagogical, and Content Knowledge (TPACK) Model to Address College Instructors Weaknesses in Integration of Technology in Their Current Area Curricula
Authors: Junior George Martin
Abstract:
The purpose of this study was to explore college instructors’ integration of technology in their content area curriculum. The instructors indicated that they were in need of additional training to successfully integrate technology in their subject areas. The findings point to the implementation of a proposed the Technological, Pedagogical, and Content Knowledge (TPACK) model professional development workshop to satisfactorily address the weaknesses of the instructors in technology integration. The professional development workshop is proposed as a rational solution to adequately address the instructors’ inability to the successful integration of technology in their subject area in an effort to improve their pedagogy. The intense workshop would last for 5 days and will be designed to provide instructors with training in areas such as a use of technology applications and tools, and using modern methodologies to improve technology integration. Exposing the instructors to the specific areas identified will address the weaknesses they demonstrated during the study. Professional development is deemed the most appropriate intervention based on the opportunities it provides the instructors to access hands-on training to overcome their weaknesses. The purpose of the TPACK professional development workshop will be to improve the competence of the instructors so that they are adequately prepared to integrate technology successfully in their curricula. At the end of the period training, the instructors are expected to adopt strategies that will have a positive impact on the learning experiences of the students.Keywords: higher education, modern technology tools, professional development, technology integration
Procedia PDF Downloads 3121011 A Simple Technique for Centralisation of Distal Femoral Nail to Avoid Anterior Femoral Impingement and Perforation
Authors: P. Panwalkar, K. Veravalli, M. Tofighi, A. Mofidi
Abstract:
Introduction: Anterior femoral perforation or distal anterior nail position is a known complication of femoral nailing specifically in pertrochantric fractures fixed with cephalomedullary nail. This has been attributed to wrong entry point for the femoral nail, nail with large radius of curvature or malreduced fracture. Left alone anterior perforation of femur or abutment of nail on anterior femur will result in pain and risk stress riser at distal femur and periprosthetic fracture. There have been multiple techniques described to avert or correct this problem ranging from using different nail, entry point change, poller screw to deflect the nail position, use of shorter nail or use of curved guidewire or change of nail to ensure a nail with large radius of curvature Methods: We present this technique which we have used in order to centralise the femoral nail either when the nail has been put anteriorly or when the guide wire has been inserted too anteriorly prior to the insertion of the nail. This technique requires the use of femoral reduction spool from the nailing set. This technique was used by eight trainees of different level of experience under supervision. Results: This technique was easily reproducible without any learning curve without a need for opening of fracture site or change in the entry point with three different femoral nailing sets in twenty-five cases. The process took less than 10 minutes even when revising a malpositioned femoral nail. Conclusion: Our technique of using femoral reduction spool is easily reproducible and repeatable technique for avoidance of non-centralised femoral nail insertion and distal anterior perforation of femoral nail.Keywords: femoral fracture, nailing, malposition, surgery
Procedia PDF Downloads 1421010 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 1121009 Digital Literacy, Assessment and Higher Education
Authors: James Moir
Abstract:
Recent evidence suggests that academic staff face difficulties in applying new technologies as a means of assessing higher order assessment outcomes such as critical thinking, problem solving and creativity. Although higher education institutional mission statements and course unit outlines purport the value of these higher order skills there is still some question about how well academics are equipped to design curricula and, in particular, assessment strategies accordingly. Despite a rhetoric avowing the benefits of these higher order skills, it has been suggested that academics set assessment tasks up in such a way as to inadvertently lead students on the path towards lower order outcomes. This is a controversial claim, and one that this papers seeks to explore and critique in terms of challenging the conceptual basis of assessing higher order skills through new technologies. It is argued that the use of digital media in higher education is leading to a focus on students’ ability to use and manipulate of these products as an index of their flexibility and adaptability to the demands of the knowledge economy. This focus mirrors market flexibility and encourages programmes and courses of study to be rhetorically packaged as such. Curricular content has become a means to procure more or less elaborate aggregates of attributes. Higher education is now charged with producing graduates who are entrepreneurial and creative in order to drive forward economic sustainability. It is argued that critical independent learning can take place through the democratisation afforded by cultural and knowledge digitization and that assessment needs to acknowledge the changing relations between audience and author, expert and amateur, creator and consumer.Keywords: higher education, curriculum, new technologies, assessment, higher order skills
Procedia PDF Downloads 3761008 Knowledge Transfer through Entrepreneurship: From Research at the University to the Consolidation of a Spin-off Company
Authors: Milica Lilic, Marina Rosales Martínez
Abstract:
Academic research cannot be oblivious to social problems and needs, so projects that have the capacity for transformation and impact should have the opportunity to go beyond the University circles and bring benefit to society. Apart from patents and R&D research contracts, this opportunity can be achieved through entrepreneurship as one of the most direct tools to turn knowledge into a tangible product. Thus, as an example of good practices, it is intended to analyze the case of an institutional entrepreneurship program carried out at the University of Seville, aimed at researchers interested in assessing the business opportunity of their research and expanding their knowledge on procedures for the commercialization of technologies used at academic projects. The program is based on three pillars: training, teamwork sessions and networking. The training includes aspects such as product-client fit, technical-scientific and economic-financial feasibility of a spin-off, institutional organization and decision making, public and private fundraising, and making the spin-off visible in the business world (social networks, key contacts, corporate image and ethical principles). On the other hand, the teamwork sessions are guided by a mentor and aimed at identifying research results with potential, clarifying financial needs and procedures to obtain the necessary resources for the consolidation of the spin-off. This part of the program is considered to be crucial in order for the participants to convert their academic findings into a business model. Finally, the networking part is oriented to workshops about the digital transformation of a project, the accurate communication of the product or service a spin-off offers to society and the development of transferable skills necessary for managing a business. This blended program results in the final stage where each team, through an elevator pitch format, presents their research turned into a business model to an experienced jury. The awarded teams get a starting capital for their enterprise and enjoy the opportunity of formally consolidating their spin-off company at the University. Studying the results of the program, it has been shown that many researchers have basic or no knowledge of entrepreneurship skills and different ways to turn their research results into a business model with a direct impact on society. Therefore, the described program has been used as an example to highlight the importance of knowledge transfer at the University and the role that this institution should have in providing the tools to promote entrepreneurship within it. Keeping in mind that the University is defined by three main activities (teaching, research and knowledge transfer), it is safe to conclude that the latter, and the entrepreneurship as an expression of it, is crucial in order for the other two to comply with their purpose.Keywords: good practice, knowledge transfer, a spin-off company, university
Procedia PDF Downloads 1481007 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1021006 Business Education and Passion: The Place of Amore, Consciousness, Discipline, and Commitment as Holonomic Constructs in Pedagogy, A Conceptual Exploration
Authors: Jennifer K. Bowerman, Rhonda L. Reich
Abstract:
The purpose of this paper is to explore the concepts ACDC (Amore, Consciousness, Discipline, and Commitment) which the authors first discovered as a philosophy and framework for recruitment and organizational development in a successful start-up tech company in Brazil. This paper represents an exploration of these concepts as a potential pedagogical foundation for undergraduate business education in the classroom. It explores whether their application has potential to build emotional and practical resilience in the face of constant organizational and societal change. Derived from Holonomy this paper explains the concepts and develops a narrative around how change influences the operation of organizations. Using examples from leading edge organizational theorists, it explains why a different educational approach grounded in ACDC concepts may not only have relevance for the working world, but also for undergraduates about to enter that world. The authors propose that in the global context of constant change, it makes sense to develop an approach to education, particularly business education, beyond cognitive knowledge, models and tools, in such a way that emotional and practical resilience and creative thinking may be developed. Using the classroom as an opportunity to explore these concepts, and aligning personal passion with the necessary discipline and commitment, may provide students with a greater sense of their own worth and potential as they venture into their ever-changing futures.Keywords: ACDC, holonomic thinking, organizational learning, organizational change, business pedagogy
Procedia PDF Downloads 2401005 The Role of the Tehran Conservatory Program in Providing a Supportive, Adaptable Music Learning Environment for Children with Autism Spectrum Disorder and Their Families
Authors: Ailin Agaahi, Nafise Daneshvar Hoseini, Shahnaz Tamizi, Mehrdad Sabet
Abstract:
Music education has been recognized as a valuable therapeutic and educational intervention for children with Autism Spectrum Disorder (ASD). This study explores the experiences and perceptions of parents whose children with ASD have participated in music lessons at the Tehran Conservatory. The aim is to understand the impacts and barriers of this educational approach, providing insights into the real-world experiences of families integrating music into the lives of their children. Qualitative research was conducted through in-depth interviews with parents of children with ASD enrolled in the Tehran Conservatory's music program. The interviews examined parental motivations, observations of their child's progress, and evaluations of the program's effectiveness. Preliminary findings suggest that the music program positively impacts social interaction, emotional regulation, and communication. Parents highlighted the program's adaptability to meet the unique needs of children with ASD and the supportive environment fostered by specialized instructors. However, several barriers were identified, including the need for greater awareness and acceptance of music education for children with ASD and the limited availability of similar programs in the region. This research contributes valuable insights from parents and caregivers, emphasizing the importance of inclusive and effective music programs to support the needs of children with ASD and their families.Keywords: autism spectrum disorder, music education, therapeutic intervention, parental perspectives
Procedia PDF Downloads 231004 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: big data analysis, document classification, multi-category, text mining, topic analysis
Procedia PDF Downloads 273