Search results for: serial manufacturing process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16441

Search results for: serial manufacturing process

15721 The Use of Industrial Ecology Principles in the Production of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of SiNx coating production step. This work was performed in the frame of Eco-Solar project, where Soli Tek R&D is collaborating together with the partners from ISC-Konstanz institute. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: solar cells and solar modules, manufacturing, waste prevention, recycling

Procedia PDF Downloads 211
15720 Adaption to Climate Change as a Challenge for the Manufacturing Industry: Finding Business Strategies by Game-Based Learning

Authors: Jan Schmitt, Sophie Fischer

Abstract:

After the Corona pandemic, climate change is a further, long-lasting challenge the society must deal with. An ongoing climate change need to be prevented. Nevertheless, the adoption tothe already changed climate conditionshas to be focused in many sectors. Recently, the decisive role of the economic sector with high value added can be seen in the Corona crisis. Hence, manufacturing industry as such a sector, needs to be prepared for climate change and adaption. Several examples from the manufacturing industry show the importance of a strategic effort in this field: The outsourcing of a major parts of the value chain to suppliers in other countries and optimizing procurement logistics in a time-, storage- and cost-efficient manner within a network of global value creation, can lead vulnerable impacts due to climate-related disruptions. E.g. the total damage costs after the 2011 flood disaster in Thailand, including costs for delivery failures, were estimated at 45 billion US dollars worldwide. German car manufacturers were also affected by supply bottlenecks andhave close its plant in Thailand for a short time. Another OEM must reduce the production output. In this contribution, a game-based learning approach is presented, which should enable manufacturing companies to derive their own strategies for climate adaption out of a mix of different actions. Based on data from a regional study of small, medium and large manufacturing companies in Mainfranken, a strongly industrialized region of northern Bavaria (Germany) the game-based learning approach is designed. Out of this, the actual state of efforts due to climate adaption is evaluated. First, the results are used to collect single actions for manufacturing companies and second, further actions can be identified. Then, a variety of climate adaption activities can be clustered according to the scope of activity of the company. The combination of different actions e.g. the renewal of the building envelope with regard to thermal insulation, its benefits and drawbacks leads to a specific strategy for climate adaption for each company. Within the game-based approach, the players take on different roles in a fictionalcompany and discuss the order and the characteristics of each action taken into their climate adaption strategy. Different indicators such as economic, ecologic and stakeholder satisfaction compare the success of the respective measures in a competitive format with other virtual companies deriving their own strategy. A "play through" climate change scenarios with targeted adaptation actions illustrate the impact of different actions and their combination onthefictional company.

Keywords: business strategy, climate change, climate adaption, game-based learning

Procedia PDF Downloads 206
15719 Empirical Investigation of Barriers to Industrial Energy Conservation Measures in the Manufacturing Small and Medium Enterprises (SME's) of Pakistan

Authors: Muhammad Tahir Hassan, Stas Burek, Muhammad Asif, Mohamed Emad

Abstract:

Industrial sector in Pakistan accounts for 25% of total energy consumption in the country. The performance of this sector has been severely affected due to the adverse effect of current energy crises in the country. Energy conservation potentials of Pakistan’s industrial sectors through energy management can save wasted energy which would ultimately leads to economic and environmental benefits. However due to lack of financial incentives of energy efficiency and absence of energy benchmarking within same industrial sectors are some of the main challenges in the implementation of energy management. In Pakistan, this area has not been adequately explored, and there is a lack of focus on the need for industrial energy efficiency and proper management. The main objective of this research is to evaluate the current energy management performance of Pakistani industrial sector and empirical investigation of the existence of various barriers to industrial energy efficiency. Data was collected from the respondents of 192 small and medium-sized enterprises (SME’s) of Pakistan i.e. foundries, textile, plastic industries, light engineering, auto and spare parts and ceramic manufacturers and analysed using Statistical Package for the Social Sciences (SPSS) software. Current energy management performance of manufacturing SME’s in Pakistan has been evaluated by employing two significant indicators, ‘Energy Management Matrix’ and ‘pay-off criteria’, with modified approach. Using the energy management matrix, energy management profiles of overall industry and the individual sectors have been drawn to assess the energy management performance and identify the weak and strong areas as well. Results reveal that, energy management practices in overall surveyed industries are at very low level. Energy management profiles drawn against each sector suggest that performance of textile sector is better among all the surveyed manufacturing SME’s. The empirical barriers to industrial energy efficiency have also been ranked according to the overall responses. The results further reveal that there is a significant relationship exists among the industrial size, sector type and nature of barriers to industrial energy efficiency for the manufacturing SME’s in Pakistan. The findings of this study may help the industries and policy makers in Pakistan to formulate a sustainable energy policy to support industrial energy efficiency keeping in view the actual existing energy efficiency scenario in the industrial sector.

Keywords: barriers, energy conservation, energy management profile, environment, manufacturing SME's of Pakistan

Procedia PDF Downloads 288
15718 Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process

Authors: Anis A. Ansari, M. Kamil

Abstract:

The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property.

Keywords: 3D printing, fused deposition modeling (FDM), polylactic acid (PLA), print speed, nozzle temperature, hardness property

Procedia PDF Downloads 94
15717 Knowledge Capital and Manufacturing Firms’ Innovation Management: Exploring the Impact of Transboundary Investment and Assimilative Capacity.

Authors: Suleman Bawa, Ayiku Emmanuel Lartey

Abstract:

Purpose - This paper aims to examine the association between knowledge capital and multinational firms’ innovation management. We again explored the impact of transboundary investment and assimilative capacity between knowledge capital and multinational firms’ innovation management. The vital position of knowledge capital and multinational firms’ innovation management in today’s increasingly volatile environment coupled with fierce competition has been extensively acknowledged by academics and industry investment capitals. Design/methodology/approach - The theoretical association model and an empirical correlation analysis were constructed based on relevant research using data collected from 19 multinational firms in Ghana as the subject, and path analysis was constructed using SPSS 22.0 and AMOS 24.0 to test the formulated hypotheses. Findings - Varied conclusions are drawn consequential from theoretical inferences and empirical tests. For multinational firms, knowledge capital relics positively significant to multinational firms’ innovation management. Multinational firms with advanced knowledge capital likely spawn greater corporations’ innovation management. Second, transboundary investment efficiently intermediates the association between knowledge physical capital, knowledge interactive capital, and corporations’ innovation management. At the same time, this impact is insignificant between knowledge of empirical capital and corporations’ innovation management. Lastly, the impact of transboundary investment and assimilative capacity on the association between knowledge capital and corporations’ innovation management is established. We summarized the implications for managers based on our outcomes. Research limitations/implications - Multinational firms must dynamically build knowledge capital to augment corporations’ innovation management. Conversely, knowledge capital motivates multinational firms to implement transboundary investment and cultivate assimilative capacity. Accordingly, multinational firms can efficiently exploit diverse information to augment their corporate innovation management. Practical implications – This paper presents a comprehensive justification of knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry, its sequential progress, and its associated challenges. Originality/value – This paper is amongst the first to find empirical results to back knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry. Additionally, aligning knowledge as a coordinative instrument is a significant input to our discernment in this area.

Keywords: knowledge capital, transboundary investment, innovation management, assimilative capacity

Procedia PDF Downloads 76
15716 Total Productive Maintenance (TPM) as a Strategy for Competitiveness

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This research examines the effect of a human resource strategy and the overall equipment effectiveness as well as assessing how the combination of the two can increase a firm’s productivity. The human resource aspect is looked at in detail to assess motivation of operators through training to reduce wastage on the manufacturing shop floor. The waste was attributed to operators, maintenance personal, idle machines, idle manpower and break downs. This work seeks to investigate the concept of Total Productive Maintenance (TPM) in addressing these short comings in the manufacturing case study. The impact of TPM to increase production while, as well as increasing employee morale and job satisfaction is assessed. This can be resource material for practitioners who seek to improve overall equipment efficiency (OEE) to achieve higher level productivity and competitiveness.

Keywords: maintenance, TPM, efficiency, productivity, strategy

Procedia PDF Downloads 419
15715 The Impact of Innovation Efficiency on the Production of New Knowledge: A Manufacturing Firm Level Perspective

Authors: Vasilios Kanellopoulos

Abstract:

The present paper examines the effect of innovation efficiency on the production of new knowledge from a firm level perspective. It resorts to the Greek version of community innovation survey (CIS 2012-2014 microdata) and employs 1274 firms of the manufacturing, which constitutes the main sector of examination. It assumes a knowledge production function (KPF) and finds that R&D spillovers related to the expenditures on innovation activities, internal R&D, external R&D, skilled labor, and the expenditures in the acquisition of machinery have a positive and significant effect on the production of new knowledge when OLS techniques are applied. However, innovation efficiency comes from a Banker and Morey (1986) data envelopment analysis (DEA) with categorical variables has a statistically insignificant impact on the production of new knowledge measured by firm’s turnover.

Keywords: firms, innovation efficiency, production of new knowledge, R&D spillovers

Procedia PDF Downloads 135
15714 Organizational Culture and Its Internalization of Change in the Manufacturing and Service Sector Industries in India

Authors: Rashmi Uchil, A. H. Sequeira

Abstract:

Post-liberalization era in India has seen an unprecedented growth of mergers, both domestic as well as cross-border deals. Indian organizations have slowly begun appreciating this inorganic method of growth. However, all is not well as is evidenced in the lowering value creation of organizations after mergers. Several studies have identified that organizational culture is one of the key factors that affects the success of mergers. But very few studies have been attempted in this realm in India. The current study attempts to identify the factors in the organizational culture variable that may be unique to India. It also focuses on the difference in the impact of organizational culture on merger of organizations in the manufacturing and service sectors in India. The study uses a mixed research approach. An exploratory research approach is adopted to identify the variables that constitute organizational culture specifically in the Indian scenario. A few hypotheses were developed from the identified variables and tested to arrive at the Grounded Theory. The Grounded Theory approach used in the study, attempts to integrate the variables related to organizational culture. Descriptive approach is used to validate the developed grounded theory with a new empirical data set and thus test the relationship between the organizational culture variables and the success of mergers. Empirical data is captured from merged organizations situated in major cities of India. These organizations represent significant proportions of the total number of organizations which have adopted mergers. The mix of industries included software, banking, manufacturing, pharmaceutical and financial services. Mixed sampling approach was adopted for this study. The first phase of sampling was conducted using the probability method of stratified random sampling. The study further used the non-probability method of judgmental sampling. Adequate sample size was identified for the study which represents the top, middle and junior management levels of the organizations that had adopted mergers. Validity and reliability of the research instrument was ensured with appropriate tests. Statistical tools like regression analysis, correlation analysis and factor analysis were used for data analysis. The results of the study revealed a strong relationship between organizational culture and its impact on the success of mergers. The study also revealed that the results were unique to the extent that they highlighted a marked difference in the manner of internalization of change of organizational culture after merger by the organizations in the manufacturing sector. Further, the study reveals that the organizations in the service sector internalized the changes at a slower rate. The study also portrays the industries in the manufacturing sector as more proactive and can contribute to a change in the perception of the said organizations.

Keywords: manufacturing industries, mergers, organizational culture, service industries

Procedia PDF Downloads 296
15713 Performance Improvement of Piston Engine in Aeronautics by Means of Additive Manufacturing Technologies

Authors: G. Andreutti, G. Saccone, D. Lucariello, C. Pirozzi, S. Franchitti, R. Borrelli, C. Toscano, P. Caso, G. Ferraro, C. Pascarella

Abstract:

The reduction of greenhouse gases and pollution emissions is a worldwide environmental issue. The amount of CO₂ released by an aircraft is associated with the amount of fuel burned, so the improvement of engine thermo-mechanical efficiency and specific fuel consumption is a significant technological driver for aviation. Moreover, with the prospect that avgas will be phased out, an engine able to use more available and cheaper fuels is an evident advantage. An advanced aeronautical Diesel engine, because of its high efficiency and ability to use widely available and low-cost jet and diesel fuels, is a promising solution to achieve a more fuel-efficient aircraft. On the other hand, a Diesel engine has generally a higher overall weight, if compared with a gasoline one of same power performances. Fixing the MTOW, Max Take-Off Weight, and the operational payload, this extra-weight reduces the aircraft fuel fraction, partially vinifying the associated benefits. Therefore, an effort in weight saving manufacturing technologies is likely desirable. In this work, in order to achieve the mentioned goals, innovative Electron Beam Melting – EBM, Additive Manufacturing – AM technologies were applied to a two-stroke, common rail, GF56 Diesel engine, developed by the CMD Company for aeronautic applications. For this purpose, a consortium of academic, research and industrial partners, including CMD Company, Italian Aerospace Research Centre – CIRA, University of Naples Federico II and the University of Salerno carried out a technological project, funded by the Italian Minister of Education and Research – MIUR. The project aimed to optimize the baseline engine in order to improve its performance and increase its airworthiness features. This project was focused on the definition, design, development, and application of enabling technologies for performance improvement of GF56. Weight saving of this engine was pursued through the application of EBM-AM technologies and in particular using Arcam AB A2X machine, available at CIRA. The 3D printer processes titanium alloy micro-powders and it was employed to realize new connecting rods of the GF56 engine with an additive-oriented design approach. After a preliminary investigation of EBM process parameters and a thermo-mechanical characterization of titanium alloy samples, additive manufactured, innovative connecting rods were fabricated. These engine elements were structurally verified, topologically optimized, 3D printed and suitably post-processed. Finally, the overall performance improvement, on a typical General Aviation aircraft, was estimated, substituting the conventional engine with the optimized GF56 propulsion system.

Keywords: aeronautic propulsion, additive manufacturing, performance improvement, weight saving, piston engine

Procedia PDF Downloads 141
15712 Analysis of the Level of Production Failures by Implementing New Assembly Line

Authors: Joanna Kochanska, Dagmara Gornicka, Anna Burduk

Abstract:

The article examines the process of implementing a new assembly line in a manufacturing enterprise of the household appliances industry area. At the initial stages of the project, a decision was made that one of its foundations should be the concept of lean management. Because of that, eliminating as many errors as possible in the first phases of its functioning was emphasized. During the start-up of the line, there were identified and documented all production losses (from serious machine failures, through any unplanned downtime, to micro-stops and quality defects). During 6 weeks (line start-up period), all errors resulting from problems in various areas were analyzed. These areas were, among the others, production, logistics, quality, and organization. The aim of the work was to analyze the occurrence of production failures during the initial phase of starting up the line and to propose a method for determining their critical level during its full functionality. There was examined the repeatability of the production losses in various areas and at different levels at such an early stage of implementation, by using the methods of statistical process control. Based on the Pareto analysis, there were identified the weakest points in order to focus improvement actions on them. The next step was to examine the effectiveness of the actions undertaken to reduce the level of recorded losses. Based on the obtained results, there was proposed a method for determining the critical failures level in the studied areas. The developed coefficient can be used as an alarm in case of imbalance of the production, which is caused by the increased failures level in production and production support processes in the period of the standardized functioning of the line.

Keywords: production failures, level of production losses, new production line implementation, assembly line, statistical process control

Procedia PDF Downloads 128
15711 Application of Corporate Social Responsibility in Small Manufacturing Enterprises

Authors: Winai Rungrittidetch

Abstract:

This paper investigated the operational system, procedures, outcomes, and obstacles during the application of the Corporate Social Responsibility by the small enterprises and other involved groups in the anchor production business of the core firm, Jatura Charoen Chai Company Limited. The paper also aimed to discover ways to improve the stakeholders who participated in the CSR training and advisory programme. The paper utilized the qualitative methodology which included documentary review and semi- structured interview. The interviews were made with 8 respondents as the representative of different groups of the company’s stakeholder. The findings drew out the lessons learned from the participation of the selected small manufacturing enterprises in the CSR training and advisory programme. Some suggestions were also made, addressing the significance of the Philosophy of Sufficiency Economy.

Keywords: corporate, social, responsibility, enterprises

Procedia PDF Downloads 347
15710 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 48
15709 A Design System for Complex Profiles of Machine Members Using a Synthetic Curve

Authors: N. Sateesh, C. S. P. Rao, K. Satyanarayana, C. Rajashekar

Abstract:

This paper proposes a development of a CAD/CAM system for complex profiles of various machine members using a synthetic curve i.e. B-spline. Conventional methods in designing and manufacturing of complex profiles are tedious and time consuming. Even programming those on a computer numerical control (CNC) machine can be a difficult job because of the complexity of the profiles. The system developed provides graphical and numerical representation B-spline profile for any given input. In this paper, the system is applicable to represent a cam profile with B-spline and attempt is made to improve the follower motion.

Keywords: plate-cams, cam profile, b-spline, computer numerical control (CNC), computer aided design and computer aided manufacturing (CAD/CAM), R-D-R-D (rise-dwell-return-dwell)

Procedia PDF Downloads 610
15708 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 288
15707 Mixed Model Sequencing in Painting Production Line

Authors: Unchalee Inkampa, Tuanjai Somboonwiwat

Abstract:

Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit.

Keywords: sequencing, mixed model lines, painting process, electrode position paint

Procedia PDF Downloads 418
15706 Trace Logo: A Notation for Representing Control-Flow of Operational Process

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining research discipline bridges the gap between data mining and business process modeling and analysis, it offers the process-centric and end-to-end methods/techniques for analyzing information of real-world process detailed in operational event-logs. In this paper, we have proposed a notation called trace logo for graphically representing control-flow perspective (order of execution of activities) of process. A trace logo consists of a stack of activity names at each position, sizes of the activity name indicates their frequency in the traces and the total height of the activity depicts the information content of the position. A trace logo created from a set of aligned traces generated using Multiple Trace Alignment technique.

Keywords: consensus trace, process mining, multiple trace alignment, trace logo

Procedia PDF Downloads 345
15705 Critical Psychosocial Risk Treatment for Engineers and Technicians

Authors: R. Berglund, T. Backström, M. Bellgran

Abstract:

This study explores how management addresses psychosocial risks in seven teams of engineers and technicians in the midst of the fourth industrial revolution. The sample is from an ongoing quasi-experiment about psychosocial risk management in a manufacturing company in Sweden. Each of the seven teams belongs to one of two clusters: a positive cluster or a negative cluster. The positive cluster reports a significantly positive change in psychosocial risk levels between two time-points and the negative cluster reports a significantly negative change. The data are collected using semi-structured interviews. The results of the computer aided thematic analysis show that there are more differences than similarities when comparing the risk treatment actions taken between the two clusters. Findings show that the managers in the positive cluster use more enabling actions that foster and support formal and informal relationship building. In contrast, managers that use less enabling actions hinder the development of positive group processes and contribute negative changes in psychosocial risk levels. This exploratory study sheds some light on how management can influence significant positive and negative changes in psychosocial risk levels during a risk management process.

Keywords: group process model, risk treatment, risk management, psychosocial

Procedia PDF Downloads 160
15704 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics

Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar

Abstract:

Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.

Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic

Procedia PDF Downloads 47
15703 Effect of Springback Analysis on Influences of the Steel Demoulding Using FEM

Authors: Byeong-Sam Kim, Jongmin Park

Abstract:

The present work is motivated by the industrial challenge to produce complex composite shapes cost-effectively. The model used an anisotropical thermoviscoelastic is analyzed by an implemented finite element solver. The stress relaxation can be constructed by Prony series for the nonlinear thermoviscoelastic model. The calculation of process induced internal stresses relaxation during the cooling stage of the manufacturing cycle was carried out by the spring back phenomena observed from the part containing a cylindrical segment. The finite element results obtained from the present formulation are compared with experimental data, and the results show good correlations.

Keywords: thermoviscoelastic, springback phenomena, FEM analysis, thermoplastic composite structures

Procedia PDF Downloads 357
15702 Axiomatic Design of Laser Beam Machining Process

Authors: Nikhil Deshpande, Rahul Mahajan

Abstract:

Laser Beam Machining (LBM) is a non-traditional machining process that has inherent problems like dross, striation, and Heat Affected Zone (HAZ) which reduce the quality of machining. In the present day scenario, these problems are controlled only by iteratively adjusting a large number of process parameters. This paper applies Axiomatic Design principles to design LBM process so as to eliminate the problem of dross and striation and minimize the effect of HAZ. Process parameters and their ranges are proposed to set-up the LBM process, execute the cut and finish the workpiece so as to obtain the best quality cut.

Keywords: laser beam machining, dross, striation, heat affected zone, axiomatic design

Procedia PDF Downloads 368
15701 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness

Procedia PDF Downloads 410
15700 Use of Chemical Extractions to Estimate the Metals Availability in Bricks Made of Dredged Sediments

Authors: Fabienne Baraud, Lydia Leleyter, Sandra Poree, Melanie Lemoine

Abstract:

SEDIBRIC (valorization de SEDIments en BRIQues et tuiles) is a French project that aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks in order to propose an alternative solution for the management of harbor dredged sediments. The feasibility of such re-use is explored from a technical, economic, and environmental point of view. The present study focuses on the potential environmental impact of various chemical elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) that are initially present in the dredged sediments. The total content (after acid digestion) and the environmental availability (estimated by single extractions with various extractants) of these elements are determined in the raw sediments and in the obtained fired bricks. The possible influence of some steps of the manufacturing process (sediment pre-treatment, firing) is also explored. The first results show that the pre-treatment step, which uses tap water to desalinate the raw sediment, does not influence the environmental availability of the studied elements. However, the firing process, performed at 900°C, can affect the amount of some elements detected in the bricks, as well as their environmental availability. We note that for Cr, or Ni, the HCl or EDTA availability was increased in the brick (compared to the availability in the raw sediment). For Cd, Cu, Pb, and Zn, the HCl and EDTA availability was reduced in the bricks, meaning that these elements were stabilized within the bricks.

Keywords: bricks, chemical extraction, metals, sediment

Procedia PDF Downloads 149
15699 Programming Systems in Implementation of Process Safety at Chemical Process Industry

Authors: Maryam Shayan

Abstract:

Programming frameworks have been utilized as a part of chemical industry process safety operation and configuration to enhance its effectiveness. This paper gives a brief survey and investigation of the best in class and effects of programming frameworks in process security. A study was completed by talking staff accountable for procedure wellbeing practices in the Iranian chemical process industry and diving into writing of innovation for procedure security. This article investigates the useful and operational attributes of programming frameworks for security and endeavors to sort the product as indicated by its level of effect in the administration chain of importance. The study adds to better comprehension of the parts of Information Communication Technology in procedure security, the future patterns and conceivable gaps for innovative work.

Keywords: programming frameworks, chemical industry process, process security, administration chain, information communication technology

Procedia PDF Downloads 372
15698 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 145
15697 Improving Operational Excellence Adopting TPM Practices in an Indian Automobile Industry: A Case Study

Authors: Pardeep Gupta

Abstract:

The purpose of this paper is to present a case study on TPM implementation methodology and to highlight the benefits achieved after TPM in an engineering industry XYZ Ltd. (name changed) situated in Mohali, Punjab. The improvements in key performance indicators (PQCDSM) after implementing the TPM proved that its implementation helped the company significantly to achieve higher productivity, customer satisfaction, morale, and profits. The manufacturing cost reduced by 30%, overall equipment efficiency increased from 63% in 2010 to 84% after three years and productivity improved by 67%. The Company has won the TPM Excellence Award, Category-A in 2013 and after that continued implementing second phase of TPM. The findings of the study govern that the strategic TPM implementation can significantly contribute for the realization of operational excellence in almost all types of industry.

Keywords: total productive maintenance, overall equipment efficiency, continuous improvement, manufacturing excellence, availability, TPM initiatives, productivity

Procedia PDF Downloads 397
15696 Characteristics of Business Models of Industrial-Internet-of-Things Platforms

Authors: Peter Kress, Alexander Pflaum, Ulrich Loewen

Abstract:

The number of Internet-of-Things (IoT) platforms is steadily increasing across various industries, especially for smart factories, smart homes and smart mobility. Also in the manufacturing industry, the number of Industrial-IoT platforms is growing. Both IT players, start-ups and increasingly also established industry players and small-and-medium-enterprises introduce offerings for the connection of industrial equipment on platforms, enabled by advanced information and communication technology. Beside the offered functionalities, the established ecosystem of partners around a platform is one of the key differentiators to generate a competitive advantage. The key question is how platform operators design the business model around their platform to attract a high number of customers and partners to co-create value for the entire ecosystem. The present research tries to answer this question by determining the key characteristics of business models of successful platforms in the manufacturing industry. To achieve that, the authors selected an explorative qualitative research approach and created an inductive comparative case study. The authors generated valuable descriptive insights of the business model elements (e.g., value proposition, pricing model or partnering model) of various established platforms. Furthermore, patterns across the various cases were identified to derive propositions for the successful design of business models of platforms in the manufacturing industry.

Keywords: industrial-internet-of-things, business models, platforms, ecosystems, case study

Procedia PDF Downloads 242
15695 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting

Procedia PDF Downloads 329
15694 Using Lean-Six Sigma Philosophy to Enhance Revenues and Improve Customer Satisfaction: Case Studies from Leading Telecommunications Service Providers in India

Authors: Senthil Kumar Anantharaman

Abstract:

Providing telecommunications based network services in developing countries like India which has a population of 1.5 billion people, so that these services reach every individual, is one of the greatest challenges the country has been facing in its journey towards economic growth and development. With growing number of telecommunications service providers in the country, a constant challenge that has been faced by these providers is in providing not only quality but also delightful customer experience while simultaneously generating enhanced revenues and profits. Thus, the role played by process improvement methodologies like Six Sigma cannot be undermined and specifically in telecom service provider based operations, it has provided substantial benefits. Therefore, it advantages are quite comparable to its applications and advantages in other sectors like manufacturing, financial services, information technology-based services and Healthcare services. One of the key reasons that this methodology has been able to reap great benefits in telecommunications sector is that this methodology has been combined with many of its competing process improvement techniques like Theory of Constraints, Lean and Kaizen to give the maximum benefit to the service providers thereby creating a winning combination of organized process improvement methods for operational excellence thereby leading to business excellence. This paper discusses about some of the key projects and areas in the end to end ‘Quote to Cash’ process at big three Indian telecommunication companies that have been highly assisted by applying Six Sigma along with other process improvement techniques. While the telecommunication companies which we have considered, is primarily in India and run by both private operators and government based setups, the methodology can be applied equally well in any other part of developing countries around the world having similar context. This study also compares the enhanced revenues that can arise out of appropriate opportunities in emerging market scenarios, that Six Sigma as a philosophy and methodology can provide if applied with vigour and robustness. Finally, the paper also comes out with a winning framework in combining Six Sigma methodology with Kaizen, Lean and Theory of Constraints that will enhance both the top-line as well as the bottom-line while providing the customers a delightful experience.

Keywords: emerging markets, lean, process improvement, six sigma, telecommunications, theory of constraints

Procedia PDF Downloads 163
15693 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach

Authors: Joseph C. Chen

Abstract:

Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.

Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design

Procedia PDF Downloads 435
15692 Investigating Interlayer Bonding in 3D Printing Pressure Vessel Applications

Authors: Cam Minh Tri Tien, Richard Fenrich, Tristan Shelley, Nam Mai-Duy, Allan Malano, Xuesen Zeng

Abstract:

Since additive manufacturing is a layer-by-layer deposition approach, good bonding quality between adjacent layers is critically important to achieve optimal mechanical performance, including applications in pressure vessels. The need to enhance the strength of printed products, especially in the build direction where layup gaps and voids exist between the printed layers, has garnered significant attention. The proposed research will focus on improving the current Fused Deposition Modelling (FDM) process to produce polymers reinforced with chopped fibers, utilizing a controlled heat zone to enhance the adhesion between printed layers. Energy will be applied to both printed and printing layers to improve the bonding strength between adjacent layers. Through the enhanced FDM process, the mechanical performance of composite parts will experience a substantial improvement, particularly in the build direction, as compared to current FDM methods. A combination of experimental, numerical, and analytical methods will be employed to demonstrate the enhanced performance of heat-controlled 3D printed parts.

Keywords: 3D Printing, pressure vessels, interlayer bonding, controlled heat

Procedia PDF Downloads 49