Search results for: quickest change detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10224

Search results for: quickest change detection

9504 Robust and Real-Time Traffic Counting System

Authors: Hossam M. Moftah, Aboul Ella Hassanien

Abstract:

In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach.

Keywords: traffic counting, traffic management, image processing, object detection, computer vision

Procedia PDF Downloads 295
9503 Research on the Detection Method of Helmet Wearing in Construction Site Based on Deep Learning

Authors: Afaq Ahmad, Yifei Wang, Muhammad Kashif

Abstract:

This paper addresses the rising safety accidents in China's construction industry by focusing on detecting safety helmet usage among workers using deep learning techniques. It enhances existing datasets through the collection of construction site images and merges them with public datasets to create a diverse sample library. An improved Cascade R-CNN algorithm is developed, incorporating a Swin Transformer for better feature extraction, ROI Align for detecting small and occluded targets, and Gaussian weighted Soft-NMS to reduce redundant detections. The model, trained on the "My-SHWD" dataset, achieved a mean Average Precision of 92.66%, showcasing strong performance. Additionally, a helmet detection system was designed for testing images, videos, and live feeds, demonstrating reliability and stability in practical applications.

Keywords: deep learning, safety helmet-wearing detection, cascade R-CNN, swin transformer

Procedia PDF Downloads 7
9502 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
9501 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 368
9500 Detection of Micro-Unmanned Ariel Vehicles Using a Multiple-Input Multiple-Output Digital Array Radar

Authors: Tareq AlNuaim, Mubashir Alam, Abdulrazaq Aldowesh

Abstract:

The usage of micro-Unmanned Ariel Vehicles (UAVs) has witnessed an enormous increase recently. Detection of such drones became a necessity nowadays to prevent any harmful activities. Typically, such targets have low velocity and low Radar Cross Section (RCS), making them indistinguishable from clutter and phase noise. Multiple-Input Multiple-Output (MIMO) Radars have many potentials; it increases the degrees of freedom on both transmit and receive ends. Such architecture allows for flexibility in operation, through utilizing the direct access to every element in the transmit/ receive array. MIMO systems allow for several array processing techniques, permitting the system to stare at targets for longer times, which improves the Doppler resolution. In this paper, a 2×2 MIMO radar prototype is developed using Software Defined Radio (SDR) technology, and its performance is evaluated against a slow-moving low radar cross section micro-UAV used by hobbyists. Radar cross section simulations were carried out using FEKO simulator, achieving an average of -14.42 dBsm at S-band. The developed prototype was experimentally evaluated achieving more than 300 meters of detection range for a DJI Mavic pro-drone

Keywords: digital beamforming, drone detection, micro-UAV, MIMO, phased array

Procedia PDF Downloads 140
9499 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array

Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.

Keywords: acoustic sensing, direction of arrival, drone detection, microphone array

Procedia PDF Downloads 160
9498 The Impacts of Land Use Change and Extreme Precipitation Events on Ecosystem Services

Authors: Szu-Hua Wang

Abstract:

Urban areas contain abundant potential biochemical storages and renewable and non-renewable flows. Urban natural environments for breeding natural assets and urban economic development for maintaining urban functions can be analyzed form the concept of ecological economic system. Land use change and ecosystem services change are resulting from the interactions between human activities and environments factually. Land use change due to human activities is the major cause of climate change, leading to serious impacts on urban ecosystem services, including provisioning services, regulating services, cultural services and supporting services. However, it lacks discussion on the interactions among urban land use change, ecosystem services change, and extreme precipitation events. Energy synthesis can use the same measure standard unit, solar energy, for different energy resources (e.g. sunlight, water, fossil fuels, minerals, etc.) and analyze contributions of various natural environmental resources on human economic systems. Therefore, this research adopts the concept of ecological, economic systems and energy synthesis for analyzing dynamic spatial impacts of land use change on ecosystem services, using the Taipei area as a case study. The analysis results show that changes in land use in the Taipei area, especially the conversion of natural lands and agricultural lands to urban lands, affect the ecosystem services negatively. These negative effects become more significant during the extreme precipitation events.

Keywords: urban ecological economic system, extreme precipitation events, ecosystem services, energy

Procedia PDF Downloads 191
9497 Biosensor Technologies in Neurotransmitters Detection

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha

Abstract:

Catecholamines are vital neurotransmitters that mediate a variety of central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, optical techniques for the detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid-modified enzymatic sensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence as well as electrochemical sensing strategy for catecholamines detection.

Keywords: biosensors, catecholamines, fluorescence, enzymes

Procedia PDF Downloads 113
9496 Climate Change and Poverty Nexus

Authors: O. Babalola Oladapo, A. Igbatayo Samuel

Abstract:

Climate change and poverty are global issues which cannot be waved aside in welfare of the ever increasing population. The causes / consequences are far more elaborate in developing countries, including Nigeria, which poses threats to the existence of man and his environment. The dominant role of agriculture makes it obvious that even minor climate deteriorations can cause devastating socio-economic consequences. Policies to curb the climate change by reducing the consumption of fossil fuels like oil, gas or carbon compounds have significant economical impacts on the producers/suppliers of these fuels. Thus a unified political narrative that advances both agendas is needed, because their components of an environmental coin that needs to be addressed. The developed world should maintain a low-carbon growth & real commitment of 0.7% of gross national income, as aid to developing countries & renewable energy approach should be emphasized, hence global poverty combated.

Keywords: climate change, greenhouse gases, Nigeria, poverty

Procedia PDF Downloads 374
9495 Effectiveness of Electronic Learning for Continuing Interprofessional Education on Behavior Change of Healthcare Professionals: A Scoping Review

Authors: Kailin K. Zhang, Anne W. Thompson

Abstract:

Electronic learning for continuing professional education (CPE) and interprofessional education (IPE) in healthcare have been shown to improve learners’ satisfaction, attitudes, and performance. Yet, their impact on behavior change in healthcare professionals through continuing interprofessional education (CIPE) is less known. A scoping review of 32 articles from 2010 to 2020 was conducted using the Arksey and O’Malley framework across all healthcare settings. It focused on evaluating the effectiveness of CIPE on behavior change of healthcare professionals, as well as identifying course features of electronic CIPE programs facilitating behavior change. Eight different types of electronic learning methods, including online programs, tele-education, and social media, were identified as interventions. More than 35,542 healthcare professionals participated in the interventions. Electronic learning for CIPE led to positive behavior outcomes in 30 out of 32 studies, especially through a change in patient care practices. The most successful programs provided interactive and authentic learning experiences tailored to learners’ needs while promoting the direct application of what was learned in their clinical settings. Future research should include monitoring of sustained behavior changes and their resultant patient outcomes.

Keywords: behavior change, continuing interprofessional education, distance learning, electronic learning

Procedia PDF Downloads 144
9494 The Effect of Job Insecurity on Attitude towards Change and Organizational Citizenship Behavior: Moderating Role of Islamic Work Ethics

Authors: Khurram Shahzad, Muhammad Usman

Abstract:

The main aim of this study is to examine the direct and interactive effects of job insecurity and Islamic work ethics on employee’s attitude towards change and organizational citizenship behavior. Design/methodology/approach: The data was collected from 171 male and female university teachers of Pakistan. Self administered, close ended questionnaires were used to collect the data. Data was analyzed through correlation and regression analysis. Findings: Through the analysis of data, it was found that job insecurity has a strong negative effect on the attitude towards change of university teachers. On the contrary, job insecurity has no significant effect on organizational citizenship behavior of university teachers. Our results also show that Islamic work ethics does not moderate the relationship of job insecurity and attitude towards change, while a strong moderation effect of Islamic wok ethics is found on the relationship of job insecurity and organizational citizenship behavior. Originality/value: This study for the first time examines the relationship of job insecurity with employee’s attitude towards change and organizational citizenship behavior with the moderating effect of Islamic work ethics.

Keywords: job security, islamic work ethics, attitude towards change, organizational citizenship behavior

Procedia PDF Downloads 476
9493 Migration as a Climate Change Adaptation Strategy: A Conceptual Equation for Analysis

Authors: Elisha Kyirem

Abstract:

Undoubtedly, climate change is a major global challenge that could threaten the very foundation upon which life on earth is anchored, with its impacts on human mobility attracting the attention of policy makers and researchers. There is an increasing body of literature and case studies suggesting that migration could be a way through which the vulnerable move away from areas exposed to climate extreme events to improve their lives and that of their families. This presents migration as a way through which people voluntarily move to seek opportunities that could help reduce their exposure and avoid danger from climate events. Thus, migration is seen as a proactive adaptation strategy aimed at building resilience and improving livelihoods to enable people to adapt to future changing events. However, there has not been any mathematical equation linking migration and climate change adaptation. Drawing from literature in development studies, this paper develops an equation that seeks to link the relationship between migration and climate change adaptation. The mathematical equation establishes the linkages between migration, resilience, poverty reduction and vulnerability, and these the paper maintains, are the key variables for conceptualizing the migration-climate change adaptation nexus. The paper then tests the validity of the equation using the sustainable livelihood framework and publicly available data on migration and tourism in Ghana.

Keywords: migration, adaptation, climate change, adaptation, poverty reduction

Procedia PDF Downloads 397
9492 Application on Metastable Measurement with Wide Range High Resolution VDL Circuit

Authors: Po-Hui Yang, Jing-Min Chen, Po-Yu Kuo, Chia-Chun Wu

Abstract:

This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit.

Keywords: vernier delay line, D-type flip-flop, DFF, metastable phenomenon

Procedia PDF Downloads 597
9491 Assessment of Climate Change Impact on Meteorological Droughts

Authors: Alireza Nikbakht Shahbazi

Abstract:

There are various factors that affect climate changes; drought is one of those factors. Investigation of efficient methods for estimating climate change impacts on drought should be assumed. The aim of this paper is to investigate climate change impacts on drought in Karoon3 watershed located south-western Iran in the future periods. The atmospheric general circulation models (GCM) data under Intergovernmental Panel on Climate Change (IPCC) scenarios should be used for this purpose. In this study, watershed drought under climate change impacts will be simulated in future periods (2011 to 2099). Standard precipitation index (SPI) as a drought index was selected and calculated using mean monthly precipitation data in Karoon3 watershed. SPI was calculated in 6, 12 and 24 months periods. Statistical analysis on daily precipitation and minimum and maximum daily temperature was performed. LRAS-WG5 was used to determine the feasibility of future period's meteorological data production. Model calibration and verification was performed for the base year (1980-2007). Meteorological data simulation for future periods under General Circulation Models and climate change IPCC scenarios was performed and then the drought status using SPI under climate change effects analyzed. Results showed that differences between monthly maximum and minimum temperature will decrease under climate change and spring precipitation shall increase while summer and autumn rainfall shall decrease. The precipitation occurs mainly between January and May in future periods and summer or autumn precipitation decline and lead up to short term drought in the study region. Normal and wet SPI category is more frequent in B1 and A2 emissions scenarios than A1B.

Keywords: climate change impact, drought severity, drought frequency, Karoon3 watershed

Procedia PDF Downloads 243
9490 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 171
9489 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
9488 Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka

Authors: W. A. D. P. Wanigasundera, P. C. B. Alahakoon

Abstract:

Kandy district in Sri Lanka has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed. Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.

Keywords: adaptation of climate-smart technology, climate change, perception, rain-fed paddy

Procedia PDF Downloads 334
9487 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 238
9486 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 477
9485 A Case Study on the Impact of Technology Readiness in a Department of Clinical Nurses

Authors: Julie Delany

Abstract:

To thrive in today’s digital climate, it is vital that organisations adopt new technology and prepare for rising digital trends. This proves more difficult in government where, traditionally, people lack change readiness. While individuals may have a desire to work smarter, this does not necessarily mean embracing technology. This paper discusses the rollout of an application into a small department of highly experienced nurses. The goal was to both streamline the department's workflow and provide a platform for gathering essential business metrics. The biggest challenges were adoption and motivating the nurses to change their routines and learn new computer skills. Two-thirds struggled with the change, and as a result, some jeopardised the validity of the business metrics. In conclusion, there are lessons learned and recommendations for similar projects.

Keywords: change ready, information technology, end-user, iterative method, rollout plan, data analytics

Procedia PDF Downloads 145
9484 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 76
9483 Impact of Climate Change on Energy Consumption of the Residential Building Stock in Turkey

Authors: Sadik Yigit

Abstract:

The energy consumed in the buildings constitutes a large portion of the total energy consumption in the world. In this study, it was aimed to measure the impact of climate change on the energy consumption of residential building stock by analyzing a typical mid-rise residential building in four different climate regions of Turkey. An integrated system was developed using the "Distribution Evolutionary Algorithms in Python" tool and Energy Plus. By using the developed integrated system, the energy performance of the typical residential building was analyzed under the effect of different climate change scenarios. The results indicated that predicted overheating will be experienced in the future, which will significantly increase the cooling energy loads of the buildings. In addition, design solutions to improve the future energy performance of the buildings were proposed, considering budget constraints. The results of the study will guide researchers studying in this area of research and designers in the sector in finding climate change resilient design solutions.

Keywords: energy_efficient, residential buildings, climate change, energyplus

Procedia PDF Downloads 104
9482 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks

Authors: Raphael Tuor, Denis Lalanne

Abstract:

The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.

Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction

Procedia PDF Downloads 160
9481 Disperse Innovation in the Turning German Energy Market

Authors: J. Gochermann

Abstract:

German energy market is under historical change. Turning-off the nuclear power plants and intensive subsidization of the renewable energies causes a paradigm change from big central energy production and distribution to more local structures, bringing the energy production near to the consumption. The formerly big energy market with only a few big energy plants and grid operating companies is changing into a disperse market with growing numbers of small and medium size companies (SME) generating new value-added products and services. This change in then energy market, in Germany called the “Energiewende”, inverts also the previous innovation system. Big power plants and large grids required also big operating companies. Innovations in the energy market focused mainly on big projects and complex energy technologies. Innovation in the new energy market structure is much more dispersed. Increasing number of SME is now able to develop energy production and storage technologies, smart technologies to control the grids, and numerous new energy related services. Innovation is now regional distributed, which is a remarkable problem for the old big energy companies. The paper will explain the change in the German energy market and the paradigm change as well as the consequences for the innovation structure in the German energy market. It will show examples how SME participate from this change and how innovation systems, as well for the big companies and for SME, can be adapted.

Keywords: changing energy markets, disperse innovation, new value-added products and services, SME

Procedia PDF Downloads 349
9480 The Projections of Urban Climate Change Using Conformal Cubic Atmospheric Model in Bali, Indonesia

Authors: Laras Tursilowati, Bambang Siswanto

Abstract:

Urban climate change has short- and long-term implications for decision-makers in urban development. The problem for this important metropolitan regional of population and economic value is that there is very little usable information on climate change. Research about urban climate change has been carried out in Bali Indonesia by using Conformal Cubic Atmospheric Model (CCAM) that runs with Representative Concentration Pathway (RCP)4.5. The history data means average data from 1975 to 2005, climate projections with RCP4.5 scenario means average data from 2006 to 2099, and anomaly (urban climate change) is RCP4.5 minus history. The results are the history of temperature between 22.5-27.5 OC, and RCP4.5 between 25.5-29.5 OC. The temperature anomalies can be seen in most of northern Bali that increased by about 1.6 to 2.9 OC. There is a reduced humidity tendency (drier) in most parts of Bali, especially the northern part of Bali, while a small portion in the south increase moisture (wetter). The comfort index of Bali region in history is still relatively comfortable (20-26 OC), but on the condition RCP4.5 there is no comfortable area with index more than 26 OC (hot and dry). This research is expected to be useful to help the government make good urban planning.

Keywords: CCAM, comfort index, IPCC AR5, temperature, urban climate change

Procedia PDF Downloads 145
9479 Social Economy Effects on Wetlands Change in China during Three Decades Rapid Growth Period

Authors: Ying Ge

Abstract:

Wetlands are one of the essential types of ecosystems in the world. They are of great value to human society thanks to their special ecosystem functions and services, such as protecting biodiversity, adjusting hydrology and climate, providing essential habitats and, products and tourism resources. However, wetlands worldwide are degrading severely due to climate change, accelerated urbanization, and rapid economic development. Both nature and human factors drive wetland change, and the influences are variable from wetland types. Thus, the objectives of this study were to (1) to compare the changes in China’s wetland area during the three decades rapid growth period (1978-2008); (2) to analyze the effects of social economy and environmental factors on wetlands change (area loss and change of wetland types) in China during the high-speed economic development. The socio-economic influencing factors include population, income, education, development of agriculture, industry, infrastructure, wastewater amount, etc. Several statistical methods (canonical correlation analysis, principal component analysis, and regression analysis) were employed to analyze the relationship between socio-economic indicators and wetland area change. This study will determine the relevant driving socio-economic factors on wetland changes, which is of great significance for wetland protection and management.

Keywords: socioeconomic effects, China, wetland change, wetland type

Procedia PDF Downloads 79
9478 Nature-Based Solutions: An Intelligent Method to Enhance Urban Resilience in Response to Climate Change

Authors: Mario Calabrese, Francesca Iandolo, Pietro Vito, Raffaele D'Amore, Francesco Caputo

Abstract:

This article presents a synopsis of Nature-Based Solutions (NBS), a fresh and emerging concept in mitigating and adapting to climate change. It outlines a classification of NBS, from the least intrusive to the most advanced engineering, and provides illustrations of each. Moreover, it gives an overview of the 'Life Metro Adapt' initiative, which dealt with the climatic challenges faced by the Milan Metropolitan City and encouraged the development of climate change adaptation methods using alternative, nature-focused solutions. Lastly, the article emphasizes the necessity of raising awareness about environmental issues to ensure that NBS becomes a regular practice today and can be refined in the future.

Keywords: nature-based solutions, urban resilience, climate change adaptation, life metro adapt initiative

Procedia PDF Downloads 113
9477 Detection of Pharmaceutical Personal Protective Equipment in Video Stream

Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva

Abstract:

Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.

Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE

Procedia PDF Downloads 89
9476 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 326
9475 Climate Change Impact on Economic Efficiency of Leguminous Crops Production and Perspectives in Kazakhstan

Authors: Zh. Bolatova, Zh. Bulkhairova, M. Kulshigashova

Abstract:

In this article, the authors consider the main aspects of climate change's impact on the economic efficiency of leguminous crop production and perspectives in Kazakhstan. It is worth noting that climate change has an impact on the instability of leguminous crops and leads to a decrease in production efficiency. Ultimately, all of the above determines the relevance and significance of this topic. The level of productivity of grain and legumes in the country and by regions of Kazakhstan was also analyzed. The authors conducted a survey and a deeper analysis of agricultural producers in the Kazakhstan region. In the end, the authors considered the prospects for the development of leguminous crops in Kazakhstan. For the article have been used different literature and reports from IPCC, WMO, WTO, FAO, UNEP, UNFCCC, UNDP, IMF, WB, OECD, KAZHYDROMET, Committee of the Statistics of Kazakhstan, etc.

Keywords: climate change, economic efficiency, leguminous crops, production, yield

Procedia PDF Downloads 111