Search results for: predictive Model
16689 The Social Model of Disability and Disability Rights: Defending a Conceptual Alignment between the Social Model’s Concept of Disability and the Nature of Rights and Duties
Authors: Adi Goldiner
Abstract:
Historically, the social model of disability has played a pivotal role in bringing rights discourse into the disability debate. Against this backdrop, the paper explores the conceptual alignment between the social model’s account of disability and the nature of rights. Specifically, the paper examines the possibility that the social model conceptualizes disability in a way that aligns with the nature of rights and thus motivates the invocation of disability rights. Methodologically, the paper juxtaposes the literature on the social model of disability, primarily the work of the Union of the Physically Impaired Against Segregation in the UK and related scholarship, with theories of moral rights. By focusing on the interplay between the social model of disability and rights, the paper provides a conceptual explanation for the rise of disability rights. In addition, the paper sheds light on the nature of rights, their function and limitations, in the context of disability rights. The paper concludes that the social model’s conceptualization of disability is hospitable to rights, because it opens up the possibility that there are duties that correlate with disability rights. Under the social model, disability is a condition that can be eliminated by the removal of social, structural, and attitudinal barriers. Accordingly, the social model dispels the idea that the actions of others towards disabled people will have a marginal impact on their interests in not being disabled. Equally important, the social model refutes the idea that in order to significantly serve people's interest in not being disabled, it is necessary to cure bodily impairments, which is not always possible. As rights correlate with duties that are possible to comply with, as well as those that significantly serve the interests of the right holders, the social model’s conceptualization of disability invites the reframing of problems related to disability in terms of infringements of disability rights. A possible objection to the paper’s argument is raised, according to which the social model is at odds with the invocation of disability rights because disability rights are ineffective in realizing the social model's goal of improving the lives of disabled by eliminating disability. The paper responds to this objection by drawing a distinction between ‘moral rights,’ which, conceptually, are not subject to criticism of ineffectiveness, and ‘legal rights’ which are.Keywords: disability rights, duties, moral rights, social model
Procedia PDF Downloads 40916688 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 15916687 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 37616686 A New Fuzzy Fractional Order Model of Transmission of Covid-19 With Quarantine Class
Authors: Asma Hanif, A. I. K. Butt, Shabir Ahmad, Rahim Ud Din, Mustafa Inc
Abstract:
This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo’s sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17.Keywords: Caputo fractional derivative, existence and uniqueness, gronwall inequality, Lyapunov theory
Procedia PDF Downloads 11216685 Upon Further Reflection: More on the History, Tripartite Role, and Challenges of the Professoriate
Authors: Jeffrey R. Mueller
Abstract:
This paper expands on the role of the professor by detailing the origins of the profession, adding some of the unique contributions of North American Universities, as well as some of the best practice recommendations, to the unique tripartite role of the professor. It describes current challenges to the profession including the ever-controversial student rating of professors. It continues with the significance of empowerment to the role of the professor. It concludes with a predictive prescription for the future of the professoriate and the role of the university-level educational administrator toward that end.Keywords: professoriate history, tripartite role, challenges, empowerment, shared governance, administratization
Procedia PDF Downloads 40516684 A New Car-Following Model with Consideration of the Brake Light
Authors: Zhiyuan Tang, Ju Zhang, Wenyuan Wu
Abstract:
In this research, a car-following model with consideration of the status of the brake light is proposed. The numerical results show that the stability of the traffic flow is improved. The ability of the brake light to reduce car accident is also showed.Keywords: brake light, car-following model, traffic flow, regional planning, transportation
Procedia PDF Downloads 58016683 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function
Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu
Abstract:
Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model
Procedia PDF Downloads 39816682 Boredom in the Classroom: Sentiment Analysis on Teaching Practices and Related Outcomes
Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís
Abstract:
Students’ emotional experiences have been a widely discussed theme among researchers, proving a central role on students’ outcomes. Yet, up to now, far too little attention has been paid to teaching practices that negatively relate with students’ negative emotions in the higher education. The present work aims to examine the relationship between teachers’ teaching practices (i.e., students’ evaluations of teaching and autonomy support), the students’ feelings of boredom and agentic engagement and motivation in the higher education context. To do so, the present study incorporates one of the most popular tools in natural processing language to address students’ evaluations of teaching: sentiment analysis. Whereas most research has focused on the creation of SA models and assessing students’ satisfaction regarding teachers and courses to the author’s best knowledge, no research before has included results from SA into an explanatory model. A total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) participated in the study. Students were enrolled in degree and masters’ studies at the faculty of Education of a public university of Spain. Data was collected using an online questionnaire students could access through a QR code they completed during a teaching period where the assessed teacher was not present. To assess students’ sentiments towards their teachers’ teaching, we asked them the following open-ended question: “If you had to explain a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?”. Sentiment analysis was performed with Microsoft's pre-trained model. For this study, we relied on the probability of the students answer belonging to the negative category. To assess the reliability of the measure, inter-rater agreement between this NLP tool and one of the researchers, who independently coded all answers, was examined. The average pairwise percent agreement and the Cohen’s kappa were calculated with ReCal2. The agreement reached was of 90.8% and Cohen’s kappa .68, both considered satisfactory. To test the hypothesis relations a structural equation model (SEM) was estimated. Results showed that the model fit indices displayed a good fit to the data; χ² (134) = 351.129, p < .001, RMSEA = .07, SRMR = .09, TLI = .91, CFI = .92. Specifically, results show that boredom was negatively predicted by autonomy support practices (β = -.47[-.61, -.33]), whereas for the negative sentiment extracted from SET, this relation was positive (β = .23[.16, .30]). In other words, when students’ opinion towards their instructors’ teaching practices was negative, it was more likely for them to feel bored. Regarding the relations among boredom and student outcomes, results showed a negative predictive value of boredom on students’ motivation to study (β = -.46[-.63, -.29]) and agentic engagement (β = -.24[-.33, -.15]). Altogether, results show a promising future for sentiment analysis techniques in the field of education as they proved the usefulness of this tool when evaluating relations among teaching practices and student outcomes.Keywords: sentiment analysis, boredom, motivation, agentic engagement
Procedia PDF Downloads 10216681 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction
Authors: Ratchada Sopakayang, Gerhard A. Holzapfel
Abstract:
In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.Keywords: constitutive model, fiber-matrix, hyperelasticity, interaction, ligament, tendon
Procedia PDF Downloads 30316680 Bayesian Semiparametric Geoadditive Modelling of Underweight Malnutrition of Children under 5 Years in Ethiopia
Authors: Endeshaw Assefa Derso, Maria Gabriella Campolo, Angela Alibrandi
Abstract:
Objectives:Early childhood malnutrition can have long-term and irreversible effects on a child's health and development. This study uses the Bayesian method with spatial variation to investigate the flexible trends of metrical covariates and to identify communities at high risk of injury. Methods: Cross-sectional data on underweight are collected from the 2016 Ethiopian Demographic and Health Survey (EDHS). The Bayesian geo-additive model is performed. Appropriate prior distributions were provided for scall parameters in the models, and the inference is entirely Bayesian, using Monte Carlo Markov chain (MCMC) stimulation. Results: The results show that metrical covariates like child age, maternal body mass index (BMI), and maternal age affect a child's underweight non-linearly. Lower and higher maternal BMI seem to have a significant impact on the child’s high underweight. There was also a significant spatial heterogeneity, and based on IDW interpolation of predictive values, the western, central, and eastern parts of the country are hotspot areas. Conclusion: Socio-demographic and community- based programs development should be considered compressively in Ethiopian policy to combat childhood underweight malnutrition.Keywords: bayesX, Ethiopia, malnutrition, MCMC, semi-parametric bayesian analysis, spatial distribution, P- splines
Procedia PDF Downloads 9716679 Approach to Study the Workability of Concrete with the Fractal Model
Authors: Achouri Fatima, Chouicha Kaddour
Abstract:
The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.Keywords: concrete, fractal method, paste thickness, water thickness, workability
Procedia PDF Downloads 38216678 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level
Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham
Abstract:
Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes
Procedia PDF Downloads 23316677 Kalman Filter for Bilinear Systems with Application
Authors: Abdullah E. Al-Mazrooei
Abstract:
In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.Keywords: bilinear systems, state space model, Kalman filter, application, models
Procedia PDF Downloads 44516676 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.Keywords: UPFC, decoupled model, load flow, control parameters
Procedia PDF Downloads 55916675 Rheological Model for Describing Spunlace Nonwoven Behavior
Authors: Sana Ridene, Soumaya Sayeb, Houda Helali, Mohammed Ben Hassen
Abstract:
Nonwoven structures have a range of applications which include Medical, filtration, geotextile and recently this unconventional fabric is finding a niche in fashion apparel. In this paper, a modified form of Vangheluwe rheological model is used to describe the mechanical behavior of nonwovens fabrics in uniaxial tension. This model is an association in parallel of three Maxwell elements characterized by damping coefficients η1, η2 and η3 and E1, E2, E3 elastic modulus and a nonlinear spring C. The model is verified experimentally with two types of nonwovens (50% viscose /50% Polyester) and (40% viscose/60% Polyester) and a range of three square weights values. Comparative analysis of the theoretical model and the experimental results of tensile test proofs a high correlation between them. The proposed model can fairly well replicate the behavior of nonwoven fabrics during relaxation and sample traction. This allowed us to predict the mechanical behavior in tension and relaxation of fabrics starting only from their technical parameters (composition and weight).Keywords: mechanical behavior, tensile strength, relaxation, rheological model
Procedia PDF Downloads 41316674 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems
Authors: Bronwen Wade
Abstract:
Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality
Procedia PDF Downloads 5916673 Thermal Modelling and Experimental Comparison for a Moving Pantograph Strip
Authors: Nicolas Delcey, Philippe Baucour, Didier Chamagne, Geneviève Wimmer, Auditeau Gérard, Bausseron Thomas, Bouger Odile, Blanvillain Gérard
Abstract:
This paper proposes a thermal study of the catenary/pantograph interface for a train in motion. A 2.5D complex model of the pantograph strip has been defined and created by a coupling between a 1D and a 2D model. Experimental and simulation results are presented and with a comparison allow validating the 2.5D model. Some physical phenomena are described and presented with the help of the model such as the stagger motion thermal effect, particular heats and the effect of the material characteristics. Finally it is possible to predict the critical thermal configuration during a train trip.Keywords: electro-thermal studies, mathematical optimizations, multi-physical approach, numerical model, pantograph strip wear
Procedia PDF Downloads 33216672 Longitudinal Profile of Antibody Response to SARS-CoV-2 in Patients with Covid-19 in a Setting from Sub–Saharan Africa: A Prospective Longitudinal Study
Authors: Teklay Gebrecherkos
Abstract:
Background: Serological testing for SARS-CoV-2 plays an important role in epidemiological studies, in aiding the diagnosis of COVID-19 and assess vaccine responses. Little is known about the dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. Methods: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune assays (LFIAs) and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. Results: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in the positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increase in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly from 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested within a median time of 11 (IQR: 9–15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6–11) vs. 15 (IQR: 13–21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibodies at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. Conclusions: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of serum assays before implementation. Factors associated with failure to seroconvert need further research.Keywords: COVID-19, antibody, rapid diagnostic tests, ethiopia
Procedia PDF Downloads 8716671 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 66816670 Cellular Automata Using Fractional Integral Model
Authors: Yasser F. Hassan
Abstract:
In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.Keywords: fractional integral, cellular automata, memory, learning
Procedia PDF Downloads 41516669 OpenFOAM Based Simulation of High Reynolds Number Separated Flows Using Bridging Method of Turbulence
Authors: Sagar Saroha, Sawan S. Sinha, Sunil Lakshmipathy
Abstract:
Reynolds averaged Navier-Stokes (RANS) model is the popular computational tool for prediction of turbulent flows. Being computationally less expensive as compared to direct numerical simulation (DNS), RANS has received wide acceptance in industry and research community as well. However, for high Reynolds number flows, the traditional RANS approach based on the Boussinesq hypothesis is incapacitated to capture all the essential flow characteristics, and thus, its performance is restricted in high Reynolds number flows of practical interest. RANS performance turns out to be inadequate in regimes like flow over curved surfaces, flows with rapid changes in the mean strain rate, duct flows involving secondary streamlines and three-dimensional separated flows. In the recent decade, partially averaged Navier-Stokes (PANS) methodology has gained acceptability among seamless bridging methods of turbulence- placed between DNS and RANS. PANS methodology, being a scale resolving bridging method, is inherently more suitable than RANS for simulating turbulent flows. The superior ability of PANS method has been demonstrated for some cases like swirling flows, high-speed mixing environment, and high Reynolds number turbulent flows. In our work, we intend to evaluate PANS in case of separated turbulent flows past bluff bodies -which is of broad aerodynamic research and industrial application. PANS equations, being derived from base RANS, continue to inherit the inadequacies from the parent RANS model based on linear eddy-viscosity model (LEVM) closure. To enhance PANS’ capabilities for simulating separated flows, the shortcomings of the LEVM closure need to be addressed. Inabilities of the LEVMs have inspired the development of non-linear eddy viscosity models (NLEVM). To explore the potential improvement in PANS performance, in our study we evaluate the PANS behavior in conjugation with NLEVM. Our work can be categorized into three significant steps: (i) Extraction of PANS version of NLEVM from RANS model, (ii) testing the model in the homogeneous turbulence environment and (iii) application and evaluation of the model in the canonical case of separated non-homogeneous flow field (flow past prismatic bodies and bodies of revolution at high Reynolds number). PANS version of NLEVM shall be derived and implemented in OpenFOAM -an open source solver. Homogeneous flows evaluation will comprise the study of the influence of the PANS’ filter-width control parameter on the turbulent stresses; the homogeneous analysis performed over typical velocity fields and asymptotic analysis of Reynolds stress tensor. Non-homogeneous flow case will include the study of mean integrated quantities and various instantaneous flow field features including wake structures. Performance of PANS + NLEVM shall be compared against the LEVM based PANS and LEVM based RANS. This assessment will contribute to significant improvement of the predictive ability of the computational fluid dynamics (CFD) tools in massively separated turbulent flows past bluff bodies.Keywords: bridging methods of turbulence, high Re-CFD, non-linear PANS, separated turbulent flows
Procedia PDF Downloads 15016668 A Strategic Communication Design Model for Indigenous Knowledge Management
Authors: Dilina Janadith Nawarathne
Abstract:
This article presents the initial development of a communication model (Model_isi) as the means of gathering, preserving and transferring indigenous knowledge in the field of knowledge management. The article first discusses the need for an appropriate complimentary model for indigenous knowledge management which differs from the existing methods and models. Then the paper suggests the newly developed model for indigenous knowledge management which generate as result of blending key aspects of different disciplines, which can be implemented as a complementary approach for the existing scientific method. The paper further presents the effectiveness of the developed method in reflecting upon a pilot demonstration carried out on selected indigenous communities of Sri Lanka.Keywords: indigenous knowledge management, knowledge transferring, tacit knowledge, research model, asian centric philosophy
Procedia PDF Downloads 48316667 Optimal Geothermal Borehole Design Guided By Dynamic Modeling
Authors: Hongshan Guo
Abstract:
Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.Keywords: geothermal borehole, MPC, dynamic modeling, simulation
Procedia PDF Downloads 28816666 Study on the Model Predicting Post-Construction Settlement of Soft Ground
Authors: Pingshan Chen, Zhiliang Dong
Abstract:
In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.Keywords: prediction, model, post-construction settlement, soft ground
Procedia PDF Downloads 42716665 Designing the Lesson Instructional Plans for Exploring the STEM Education and Creative Learning Processes to Students' Logical Thinking Abilities with Different Learning Outcomes in Chemistry Classes
Authors: Pajaree Naramitpanich, Natchanok Jansawang, Panwilai Chomchid
Abstract:
The aims of this are compared between the students’ logical thinking abilities of their learning for designing the 5-lesson instructional plans of the 2-instructional methods, namely; the STEM Education and the Creative Learning Process (CLP) for developing students’ logical thinking abilities that a sample consisted of 90 students from two chemistry classes of different learning outcomes in Wapi Phathum School with the cluster random sampling technique was used at the 11th grade level. To administer of their learning environments with the 45-experimenl student group by the STEM Education method and the 45-controlling student group by the Creative Learning Process. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of the STEM Education and the Creative Learning Process to enhance the logical thinking tests on Mineral issue were used. The efficiency of the Creative Learning Processes (CLP) Model and the STEM Education’s innovations of these each five instructional lesson plans based on criteria are higher than of 80/80 standard level with the IOC index from the expert educators. The averages mean scores of students’ learning achievement motives were assessed with the Pre and Post Techniques and Logical Thinking Ability Test (LTAT) and dependent t-test analysis were differentiated between the CLP and the STEM, significantly. Students’ perceptions of their chemistry classroom environment inventories with the MCI with the CLP and the STEM methods also were found, differently. Associations between students’ perceptions of their chemistry classroom learning environment inventories on the CLP Model and the STEM Education learning designs toward their logical thinking abilities toward chemistry, the predictive efficiency of R2 values indicate that 68% and 76% of the variances in students’ logical thinking abilities toward chemistry to their controlling and experimental chemistry classroom learning environmental groups with the MCI were correlated at .05 levels, significantly. Implementations of this result are showed the students’ learning by the CLP of the potential thinking life-changing roles in most their logical thinking abilities that it is revealed that the students perceive their abilities to be highly learning achievement in chemistry group are differentiated with the STEM education of students’ outcomes.Keywords: design, the lesson instructional plans, the stem education, the creative learning process, logical thinking ability, different, learning outcome, student, chemistry class
Procedia PDF Downloads 32516664 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 27116663 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data
Authors: R. Shamsi, F. Sharifi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis
Procedia PDF Downloads 11016662 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method
Procedia PDF Downloads 27516661 Link Between Intensity-trajectories Of Acute Postoperative Pain And Risk Of Chronicization After Breast And Thoracopulmonary Surgery
Authors: Beloulou Mohamed Lamine, Fedili Benamar, Meliani Walid, Chaid Dalila
Abstract:
Introduction: The risk factors for the chronicization of postoperative pain are numerous and often intricately intertwined. Among these, the severity of acute postoperative pain is currently recognized as one of the most determining factors. Mastectomy and thoracotomy are described as among the most painful surgeries and the most likely to lead to chronic post-surgical pain (CPSP). Objective: To examine the aspects of acute postoperative pain potentially involved in the development of chronic pain following breast and thoracic surgery. Patients and Methods: A prospective study involving 164 patients was conducted over a six-month period. Postoperative pain (during mobilization) was assessed using a Visual Analog Scale (VAS) at various time points after surgery: Day 0, 1st, 2nd, 5th days, 1st and 6th months. Moderate to severe pain was defined as a VAS score ≥ 4. A comparative analysis (univariate analysis) of postoperative pain intensities at different evaluation phases was performed on patients with and without CPSP to identify potential associations with the risk of chronicization six months after surgery. Results: At the 6th month post-surgery, the incidence of CPSP was 43.0%. Moderate to severe acute postoperative pain (in the first five days) was observed in 64% of patients. The highest pain scores were reported among thoracic surgery patients. Comparative measures revealed a highly significant association between the presence of moderate to severe acute pain, especially lasting for ≥ 48 hours, and the occurrence of CPSP (p-value <0.0001). Likewise, the persistence of subacute pain (up to 4 to 6 weeks after surgery), especially of moderate to severe intensity, was significantly associated with the risk of chronicization at six months (p-value <0.0001). Conclusion: CPSP after breast and thoracic surgery remains a fairly common morbidity that profoundly affects the quality of life. Severe acute postoperative pain, especially if it is prolonged and/or with a slow decline in intensity, can be an important predictive factor for the risk of chronicization. Therefore, more effective and intensive management of acute postoperative pain, as well as longitudinal monitoring of its trajectory over time, should be an essential component of strategies for preventing chronic pain after surgery.Keywords: chronic post-surgical pain, acute postoperative pain, breast and thoracic surgery, subacute postoperative pain, pain trajectory, predictive factor
Procedia PDF Downloads 7816660 A Unified Model for Orotidine Monophosphate Synthesis: Target for Inhibition of Growth of Mycobacterium tuberculosis
Authors: N. Naga Subrahmanyeswara Rao, Parag Arvind Deshpande
Abstract:
Understanding nucleotide synthesis reaction of any organism is beneficial to know the growth of it as in Mycobacterium tuberculosis to design anti TB drug. One of the reactions of de novo pathway which takes place in all organisms was considered. The reaction takes places between phosphoribosyl pyrophosphate and orotate catalyzed by orotate phosphoribosyl transferase and divalent metal ion gives orotdine monophosphate, a nucleotide. All the reaction steps of three experimentally proposed mechanisms for this reaction were considered to develop kinetic rate expression. The model was validated using the data for four organisms. This model could successfully describe the kinetics for the reported data. The developed model can serve as a reliable model to describe the kinetics in new organisms without the need of mechanistic determination. So an organism-independent model was developed.Keywords: mechanism, nucleotide, organism, tuberculosis
Procedia PDF Downloads 337