Search results for: corporate credit rating prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: corporate credit rating prediction

3241 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
3240 [Keynote Talk]: Let Us Move to Ethical Finance: A Case Study of Takaful

Authors: Syed Ahmed Salman

Abstract:

Ethicality is essential in our daily activities, including personal and commercial activities. This is evidenced by referring to the historical development of the corporate governance and ethical guidelines. The first corporate governance guideline, i.e. Cadbury Report from U.K. focuses the responsibility of board members towards the shareholders only. Gradually, realising the need to take care of the society and community, stakeholders are now concerns of business entities. Consequently, later codes of corporate governance started extending the responsibility to the other stakeholders in addition to the shareholders. One prevailing corporate governance theory, i.e. stakeholder theory, has been widely used in the research to explore the effects of business entities on society. In addition, the Global Reporting Initiative (GRI) is the leading organisation which promotes social care from businesses for sustainable development. Conventionally, history shows that ethics is key to the long term success of businesses. Many organisations, societies, and regulators give full attention and consideration to ethics. Several countries have introduced ethical codes of conduct to direct trade activities. Similarly, Islam and other religions prohibit the practice of interest, uncertainty, and gambling because of its unethical nature. These prohibited practices are not at all good for the society, business, and any organisation especially as it is detrimental to the well-being of society. In order to avoid unethicality in the finance industry, Shari’ah scholars come out with the idea of Islamic finance which is free from the prohibited elements from the Islamic perspective. It can also be termed ethical finance. This paper highlights how Takaful as one of the Islamic finance products offers fair and just products to the contracting parties and the society. Takaful is framed based on ethical guidelines which are extracted from Shari’ah principles and divine sources such as the Quran and Sunnah. Takaful products have been widely offered all over the world, including in both Muslim and non-Muslim countries. It seems that it is gaining acceptance regardless of religion. This is evidence that Takaful is being accepted as an ethical financial product.

Keywords: ethics, insurance, Islamic finance, religion and takaful

Procedia PDF Downloads 272
3239 Governance and Financial Constraints the Impact on Corporate Social Responsibility Implementation in Cooperatives

Authors: Wanlapha Phraibueng, Patrick Sentis, Geraldine Riviere-Giordano

Abstract:

Corporate Social Responsibility (CSR) initiatives have been widely discussed especially in investor-oriented firms. In contrast, cooperatives pay less attention to CSR because their activities have integrated the responsibility and the solidity of social, economic and environment. On the other hand, by adopting ownership theory and agency theory – cooperatives ignore CSR investment due to unclarified decision control in the governance and the limitation to acquire the capital financed. The unique governance and financial structures in cooperatives lead to the conflict among the stakeholders and long-term investment which have an impact on firm financial performance. As an illustration of cooperatives dilemmas, we address the question of Whether or not cooperatives in term of governance and financial structures are the constraints on implementing CSR policies. We find that the governance and financial structures in large cooperatives are the influence factors which predispose cooperatives to invest on CSR. In contrast, in the startup or small cooperatives, its governance and financial structures are the constraints on implementing CSR policies. We propose the alternative financial structure based on the trade-off between debt and equity which aims to relax the restrictions in cooperatives’ governance and allow cooperatives to acquire the capital financed either from its members or non-members. We suggest that engaging equity as a financial structure induces cooperatives to invest on CSR policies. Alternative financial structure eliminates not only cooperative ownership control problem but also the constraints in capital acquisition. By implementing CSR activities consistent with the alternative financial choice, cooperatives can increase firm’s value and reduce the conflict among their stakeholders.

Keywords: cooperatives, corporate social responsibility, financial, governance

Procedia PDF Downloads 139
3238 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 88
3237 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)

Procedia PDF Downloads 161
3236 Providing Healthy Food in Primary and Secondary Schools of Saudi Arabia to Significantly Reduce Obesity and Improve Health by Using the Star Rating System for a Healthier Diet

Authors: Emran M. Badghish

Abstract:

Overweight and obesity have now become an epidemic around the globe, both in high-, as well as low-income regions. It is important to use preventive measures that are cost-effective. Schools are the essence of building societies and engaging them in healthy nutrition will offer a way to reach individuals at an early stage in life, with many positive and significant impacts. Aim: Provide healthy food in schools of children aged 5 to 18 years old. Methods: Distributing healthy food to a school and implementation of a star rating system for healthier foods, with five stars for the healthiest option to a half a star for the unhealthiest. The stars system was developed in Australia and should motivate children to consume the healthier nutritional options. Each canteen should be allowed a minimum of 3.5 stars rating for the food provided. Outcome Measurement: Body-mass-index as an indicator of overweight and obesity should be checked at the beginning of the study annually for five years for all children. Another side measurement is the performance by checking the grades and a questionnaire on eating habits at the start of the study and yearly. Expected Outcome: A lower health-risk behaviour and assistance to children in reaching their potentials as they will adapt to eating healthier. Nutrition during childhood has the potential to prevent obesity, type 2 diabetes, dental diseases, hypertension and, in later life, cardiovascular disease, osteoporosis and a variety of cancers. In Australia NSW starting from 2016 is expecting a 5% reduction of childhood overweight and obesity by 2025. As for Saudi-Arabia, it is expected to have an, even more, reduction by 2023 as a lot of our children are canteen-dependent. Conclusion: Introducing healthy food in schools is a preventative method that would have significant influence on the reduction of the prevalence of obesity in Saudi-Arabia and improves its general health.

Keywords: food, healthy, children, obesity, schools

Procedia PDF Downloads 194
3235 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables

Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran

Abstract:

This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.

Keywords: power management, reactive power, subsea cables, variable shunt reactors

Procedia PDF Downloads 251
3234 Anxiety and Depression in Chronic Headache Patients: Major Concern for Community Mental Health

Authors: Neeti Sharma, Harshika Pareek, Prerna Puri, Manika Mohan

Abstract:

The present study is aimed at studying the significant relationship between anxiety and depression in chronic headache patients. Chronic Headache patients coming to the Neurology Unit-1 Outpatient Department of the Sawai Mansingh Hospital (SMS) Jaipur, Rajasthan, were included in this study. The sample consisted of 100 patients (N=100). Initially patients were examined by a physician and then they were assessed for Anxiety and Depression using the Hamilton Anxiety Rating Scale (HAM-A) and the Hamilton Rating Scale for Depression. The relevant information was recorded on a Performa designed for this purpose comprising of socio-demographic variables like age, gender and triggering factors. The correlation-coefficient indicated a significant positive relationship between the anxiety and depression in chronic headache patients. These findings implicate high prevalence of anxiety and depression in the general population, and also indicate an association between headache and psychological disorders. Many evidences support the anxiety-headache-depression syndrome as a distinct disorder, and the association of co-morbid psychiatric illness with headache intractability. This study highlights the importance of prospective research for studying the developmental course and consequences of headache syndromes. Also, various psychotherapies should be applied to the headache patients so as to treat them, at the onset level of anxiety and depression, with the help of medication.

Keywords: anxiety, chronic headaches, depression, HAM-A, HAM

Procedia PDF Downloads 470
3233 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 356
3232 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
3231 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
3230 Fracture and Fatigue Crack Growth Analysis and Modeling

Authors: Volkmar Nolting

Abstract:

Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.

Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring

Procedia PDF Downloads 49
3229 Close-Out Netting Clauses from a Comparative Perspective

Authors: Lidija Simunovic

Abstract:

A Close-out netting cause is a clause within master agreements which reduces credit risks. This clause contains the parties ' advance agreement that the occurrence of a certain event (such as the commencement of bankruptcy proceedings) will result in the termination of the contract and that their mutual claims will be calculated as a net lump-sum to be paid by one party to the other. The legal treatment of the enforceability of close-out netting clauses opens up many legal matters in comparative legal systems because it is not uniformly treated in comparative laws. Certain legal systems take a liberal approach and allow the enforcement of close-out netting clauses. Others are much stricter, and they limit or completely prohibit the enforcement of close-out netting clauses through the mandatory provisions of their national bankruptcy laws. The author analyzes the concept of close-out netting clauses in selected comparative legal systems and examines the differences in their legal treatment by using the historical, analytical, and comparative method. It results that special treatment of the close-out netting in national laws with a liberal approach is often forced by financial industry lobbies and introduced in national laws without the justified reasons. Contrary to that in legal systems with limited or prohibited approach on close-out netting the uncertain enforceability of the close-out netting clause causes potential credit risks. The detected discrepancy on the national legal treatment and national financial markets regarding close-out netting lead to the conclusion to author’s best knowledge that is not possible to use any national model of close-out netting as a role model which perfectly fits all.

Keywords: close-out netting clauses, derivatives, insolvency, offsetting

Procedia PDF Downloads 145
3228 Corporate Governance and Audit Report Lag: The Case of Tunisian Listed Companies

Authors: Lajmi Azhaar, Yab Mdallelah

Abstract:

This study examines the Tunisian market in which recent events, notably financial scandals, provide an appropriate framework for studying the impact of corporate governance on the audit report lag. Moreover, very little research has been done to examine this relationship in this context. The objective of this work is, therefore, to understand the factors influencing audit report lag, drawing primarily on agency theory (Jensen and Meckling, 1976), which shows that the characteristics of the board of directors have an impact on the report lag (independence, diligence, and size). In addition, the characteristics of the committee also have an impact on the audit report lag (size, independence, diligence, and expertise). Therefore, our research provides empirical evidence on the impact of governance mechanisms attributes on audit report lag. Using a sample of forty-seven (47) Tunisian companies listed on the Tunis Stock Exchange (BVMT) during the period from 2014 to 2019, and basing on the GMM method of the dynamic panel, multivariate analysis shows that most corporate governance attributes have a significant effect on audit report lag. Specifically, the audit committee diligence and the audit committee expertise have a significant and positive effect on audit report lag. But the diligence of the board has a significant and negative effect on audit report lag. However, this study finds no evidence that the audit committee independence, the size, independence, and diligence of the director’s board are associated with the audit report lag. In addition, the results of this study also show that there is a significant effect of some control variables. Finally, we are contributing to this study by using the GMM method of the dynamic panel. We are also using an emerging context that is very poorly developed and exploited by previous studies.

Keywords: governance mechanisms, audit committee, board of directors, audit report lag

Procedia PDF Downloads 174
3227 Corporate Female Entrepreneurship, Moving Boundaries

Authors: Morena Paulisic, Marli Gonan Bozac

Abstract:

Business organization and management in theory are typically presented as gender- neutral. Although in practice female contribution to corporation is not questionable, gender diversity in top management of corporation is and that especially in emerging countries like Croatia. This paper brings insights into obstacles and problems which should be overcome. Furthermore, gives an introspective view on the most important promotion and motivation factors of powerful female CEOs in Croatia. The goal was to clarify perception and performance of female CEOs that contributed to their success and to determine mutual characteristics of women in corporate entrepreneurship regarding the motivation. For our study we used survey instrument that was developed for this research. The research methods used were: table research, field research, generalization method, comparative method, and statistical method (descriptive statistics and Pearson’s Chi-square test). Some result showed us that today even more women in corporations are not likely to accept more engagement at work if it harms their families (2003 – 31.9% in 2013 – 33.8%) although their main motivating factor is still interested job (2003 – 95.8%; in 2013-100%). It is also significant that 78.8 % of Croatian top managers (2013) think that women managers in Croatia are insufficiently spoken and written about, and that the reasons for this are that: (1) the society underestimates their ability (37.9%); (2) women underestimate themselves (22.4%); (3) the society still mainly focuses on male managers (20.7%) and (4) women managers avoid interviews and appearing on front pages (19%). The environment still “blocks” the natural course of advancement of women managers in organisations (entrepreneurship in general) and the main obstacle is that women must always or almost always be more capable than men in order to succeed (96.6%). Based on survey results on longitudinal research conducted in 2003 (return rate 30,8%) and 2013 (return rate 29,2%) in Croatia we expand understanding of determination indicators of corporate female entrepreneurship. Theoretically in practice gender structure at the management level (executive management, management board and supervisory board) throw years (2011- 2014) have positive score but still women remain significantly underrepresented at those positions. Findings from different sources have shown that diversity at the top of corporations’ correlates with better performance. In this paper, we have contributed to research on gender in corporate entrepreneurship by offering experiences from successful female CEOs and explanation why in social responsible society women with their characteristics can support needed changes and construct different way forward for corporations. Based on research result we can conclude that in future underrepresentation of female in corporate entrepreneurship should be overcome.

Keywords: Croatia, female entrepreneurship, glass ceiling, motivation

Procedia PDF Downloads 330
3226 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui

Abstract:

In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed

Procedia PDF Downloads 692
3225 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity

Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink

Abstract:

The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.

Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction

Procedia PDF Downloads 313
3224 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique

Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian

Abstract:

Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.

Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction

Procedia PDF Downloads 79
3223 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 338
3222 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 194
3221 An Exploratory Study of Changing Organisational Practices of Third-Sector Organisations in Mandated Corporate Social Responsibility in India

Authors: Avadh Bihari

Abstract:

Corporate social responsibility (CSR) has become a global parameter to define corporates' ethical and responsible behaviour. It was a voluntary practice in India till 2013, driven by various guidelines, which has become a mandate since 2014 under the Companies Act, 2013. This has compelled the corporates to redesign their CSR strategies by bringing in structures, planning, accountability, and transparency in their processes with a mandate to 'comply or explain'. Based on the author's M.Phil. dissertation, this paper presents the changes in organisational practices and institutional mechanisms of third-sector organisations (TSOs) with the theoretical frameworks of institutionalism and co-optation. It became an interesting case as India is the only country to have a law on CSR, which is not only mandating the reporting but the spending too. The space of CSR in India is changing rapidly and affecting multiple institutions, in the context of the changing roles of the state, market, and TSOs. Several factors such as stringent regulation on foreign funding, mandatory CSR pushing corporates to look out for NGOs, and dependency of Indian NGOs on CSR funds have come to the fore almost simultaneously, which made it an important area of study. Further, the paper aims at addressing the gap in the literature on the effects of mandated CSR on the functioning of TSOs through the empirical and theoretical findings of this study. The author had adopted an interpretivist position in this study to explore changes in organisational practices from the participants' experiences. Data were collected through in-depth interviews with five corporate officials, eleven officials from six TSOs, and two academicians, located at Mumbai and Delhi, India. The findings of this study show the legislation has institutionalised CSR, and TSOs get co-opted in the process of implementing mandated CSR. Seventy percent of the corporates implement their CSR projects through TSOs in India; this has affected the organisational practices of TSOs to a large extent. They are compelled to recruit expert workforce, create new departments for monitoring & evaluation, communications, and adopt management practices of project implementation from corporates. These are attempts to institutionalise the TSOs so that they can produce calculated results as demanded by corporates. In this process, TSOs get co-opted in a struggle to secure funds and lose their autonomy. The normative, coercive, and mimetic isomorphisms of institutionalism come into play as corporates are mandated to take up CSR, thereby influencing the organisational practices of TSOs. These results suggest that corporates and TSOs require an understanding of each other's work culture to develop mutual respect and work towards the goal of sustainable development of the communities. Further, TSOs need to retain their autonomy and understanding of ground realities without which they become an extension of the corporate-funder. For a successful CSR project, engagement beyond funding is required from corporate, through their involvement and not interference. CSR-led community development can be structured by management practices to an extent, but cannot overshadow the knowledge and experience of TSOs.

Keywords: corporate social responsibility, institutionalism, organisational practices, third-sector organisations

Procedia PDF Downloads 114
3220 Corporate Social Responsibility and the Legal Framework of Foreign Direct Investment: Time for Conceptual Innovation

Authors: Agata Ferreira

Abstract:

Rapidly increasing debates and initiatives in the area of Corporate Social Responsibility (“CSR”) have reached the world of international investment law. CSR standards that focus on the operations of multinational companies are increasingly relevant in the context of international investment policy making. In the past, the connection between CSR standards and legal framework for foreign direct investment has been largely non-existent. Recently, however, there is a growing trend of a more balance approach to rights and obligations as between investors and states under investment treaties. CSR principles join other social and environmental measures slowly being included in the investment treaties to enhance their sustainable development dimension. Issues of CSR are present on negotiation tables of new mega regional investment treaties like TTIP for example. To date, only a very few bilateral investment treaties and a handful of other international treaties with investment provisions include CSR clauses. In addition, the existing provisions tend to be of a soft type, where parties merely acknowledge importance of good corporate governance and CSR for sustainable development or generally affirm their aim to encourage enterprises to observe internationally recognised guidelines and principles of CSR. The relevant provisions often leave it up to the states to encourage enterprises operating within their territories to voluntarily incorporate CSR principles. The interaction between general non-binding CSR standards, domestic laws and policies and provisions of international investment treaties have not been tested by investment tribunals yet. The role of investment treaties in raising awareness and promoting CSR is still in its infancy. The use of CSR standards in the international investment protection regime for promotion of CSR standards, and as a tool for disciplining investors into complying with such standards, pose a number of questions and is met with resistance from investors` lobbies. Integration of these two areas, CSR and international investment law, both consisting of multilayered, diverse and often overlapping instruments is by no means an easy task. Whether international investment world is ready to embrace CSR standards or shrug them off is a matter of uncertain future. The subject however has been raised, first introductions have been made and the time will show whether the relationship between legal framework of international investment and CSR will flourish or remain dormant.

Keywords: corporate social responsibility, foreign direct investment, investment treaties, sustainable development

Procedia PDF Downloads 270
3219 The Ethical Imperative of Corporate Social Responsibility Practice and Disclosure by Firms in Nigeria Delta Swamplands: A Qualitative Analysis

Authors: Augustar Omoze Ehighalua, Itotenaan Henry Ogiri

Abstract:

As a mono-product economy, Nigeria relies largely on oil revenues for its foreign exchange earnings and the exploration activities of firms operating in the Niger Delta region have left in its wake tales of environmental degradation, poverty and misery. This, no doubt, have created corporate social responsibility issues in the region. The focus of this research is the critical evaluation of the ethical response to Corporate Social Responsibility (CSR) practice by firms operating in Nigeria Delta Swamplands. While CSR is becoming more popular in developed society with effective practice guidelines and reporting benchmark, there is a relatively low level of awareness and selective applicability of existing international guidelines to effectively support CSR practice in Nigeria. This study, haven identified the lack of CSR institutional framework attempts to develop an ethically-driven CSR transparency benchmark laced within a regulatory framework based on international best practices. The research adopts a qualitative methodology and makes use of primary data collected through semi-structured interviews conducted across the six core states of the Niger Delta Region. More importantly, the study adopts an inductive, interpretivist philosophical paradigm that reveal deep phenomenological insights into what local communities, civil society and government officials consider as good ethical benchmark for responsible CSR practice by organizations. The institutional theory provides for the main theoretical foundation, complemented by the stakeholder and legitimacy theories. The Nvivo software was used to analyze the data collected. This study shows that ethical responsibility is lacking in CSR practice by firms in the Niger Delta Region of Nigeria. Furthermore, findings of the study indicate key issues of environmental, health and safety, human rights, and labour as fundamental in developing an effective CSR practice guideline for Nigeria. The study has implications for public policy formulation as well as managerial perspective.

Keywords: corporate social responsibility, CSR, ethics, firms, Niger-Delta Swampland, Nigeria

Procedia PDF Downloads 106
3218 Prediction of Fillet Weight and Fillet Yield from Body Measurements and Genetic Parameters in a Complete Diallel Cross of Three Nile Tilapia (Oreochromis niloticus) Strains

Authors: Kassaye Balkew Workagegn, Gunnar Klemetsdal, Hans Magnus Gjøen

Abstract:

In this study, the first objective was to investigate whether non-lethal or non-invasive methods, utilizing body measurements, could be used to efficiently predict fillet weight and fillet yield for a complete diallel cross of three Nile tilapia (Oreochromis niloticus) strains collected from three Ethiopian Rift Valley lakes, Lakes Ziway, Koka and Chamo. The second objective was to estimate heritability of body weight, actual and predicted fillet traits, as well as genetic correlations between these traits. A third goal was to estimate additive, reciprocal, and heterosis effects for body weight and the various fillet traits. As in females, early sexual maturation was widespread, only 958 male fish from 81 full-sib families were used, both for the prediction of fillet traits and in genetic analysis. The prediction equations from body measurements were established by forward regression analysis, choosing models with the least predicted residual error sums of squares (PRESS). The results revealed that body measurements on live Nile tilapia is well suited to predict fillet weight but not fillet yield (R²= 0.945 and 0.209, respectively), but both models were seemingly unbiased. The genetic analyses were carried out with bivariate, multibreed models. Body weight, fillet weight, and predicted fillet weight were all estimated with a heritability ranged from 0.23 to 0.28, and with genetic correlations close to one. Contrary, fillet yield was only to a minor degree heritable (0.05), while predicted fillet yield obtained a heritability of 0.19, being a resultant of two body weight variables known to have high heritability. The latter trait was estimated with genetic correlations to body weight and fillet weight traits larger than 0.82. No significant differences among strains were found for their additive genetic, reciprocal, or heterosis effects, while total heterosis effects were estimated as positive and significant (P < 0.05). As a conclusion, prediction of prediction of fillet weight based on body measurements is possible, but not for fillet yield.

Keywords: additive, fillet traits, genetic correlation, heritability, heterosis, prediction, reciprocal

Procedia PDF Downloads 187
3217 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour

Abstract:

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.

Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies

Procedia PDF Downloads 576
3216 Corporate Social Responsibility and Dividend Policy

Authors: Mohammed Benlemlih

Abstract:

Using a sample of 22,839 US firm-year observations over the 1991-2012 period, we find that high CSR firms pay more dividends than low CSR firms. The analysis of individual components of CSR provides strong support for this main finding: five of the six individual dimensions are also associated with high dividend payout. When analyzing the stability of dividend payout, our results show that socially irresponsible firms adjust dividends more rapidly than socially responsible firms do: dividend payout is more stable in high CSR firms. Additional results suggest that firms involved in two controversial activities -the military and alcohol - are associated with low dividend payouts. These findings are robust to alternative assumptions and model specifications, alternative measures of dividend, additional control, and several approaches to address endogeneity. Overall, our results are consistent with the expectation that high CSR firms may use dividend policy to manage the agency problems related to overinvestment in CSR.

Keywords: corporate social responsibility, dividend policy, Lintner model, agency theory, signaling theory, dividend stability

Procedia PDF Downloads 265
3215 Corporate In-Kind Donations and Economic Efficiency: The Case of Surplus Food Recovery and Donation

Authors: Sedef Sert, Paola Garrone, Marco Melacini, Alessandro Perego

Abstract:

This paper is aimed at enhancing our current understanding of motivations behind corporate in-kind donations and to find out whether economic efficiency may be a major driver. Our empirical setting is consisted of surplus food recovery and donation by companies from food supply chain. This choice of empirical setting is motivated by growing attention on the paradox of food insecurity and food waste i.e. a total of 842 million people worldwide were estimated to be suffering from regularly not getting enough food, while approximately 1.3 billion tons per year food is wasted globally. Recently, many authors have started considering surplus food donation to nonprofit organizations as a way to cope with social issue of food insecurity and environmental issue of food waste. In corporate philanthropy literature the motivations behind the corporate donations for social purposes, such as altruistic motivations, enhancements to employee morale, the organization’s image, supplier/customer relationships, local community support, have been examined. However, the relationship with economic efficiency is not studied and in many cases the pure economic efficiency as a decision making factor is neglected. Although in literature there are some studies give us the clue on economic value creation of surplus food donation such as saving landfill fees or getting tax deductions, so far there is no study focusing deeply on this phenomenon. In this paper, we develop a conceptual framework which explores the economic barriers and drivers towards alternative surplus food management options i.e. discounts, secondary markets, feeding animals, composting, energy recovery, disposal. The case study methodology is used to conduct the research. Protocols for semi structured interviews are prepared based on an extensive literature review and adapted after expert opinions. The interviews are conducted mostly with the supply chain and logistics managers of 20 companies in food sector operating in Italy, in particular in Lombardy region. The results shows that in current situation, the food manufacturing companies can experience cost saving by recovering and donating the surplus food with respect to other methods especially considering the disposal option. On the other hand, retail and food service sectors are not economically incentivized to recover and donate surplus food to disfavored population. The paper shows that not only strategic and moral motivations, but also economic motivations play an important role in managerial decision making process in surplus food management. We also believe that our research while rooted in the surplus food management topic delivers some interesting implications to more general research on corporate in-kind donations. It also shows that there is a huge room for policy making favoring the recovery and donation of surplus products.

Keywords: corporate philanthropy, donation, recovery, surplus food

Procedia PDF Downloads 312
3214 Spanish University Governance Reporting

Authors: Agustin Baidez, Yolanda Ramirez

Abstract:

There is currently a growing interest in the improvement of university governance and the disclosure of information on governance processes as an essential part of the transparency and accountability of universities. This paper aims to examine the extent and quality of voluntary corporate governance disclosure by public Spanish universities on their websites in relation to information need of stakeholders. The results of this study show that Spanish university stakeholders attach great importance to the disclosure of specific information on aspects of corporate governance. However, the quality of disclosed information on university governance in public Spanish universities websites is in the middle level. In order to satisfy the information needs of university stakeholders, Spanish universities can be recommended to focus on reporting higher quality information on university autonomy in financing, autonomy in management, autonomy regarding student selection and assessment, degree of consanguinity of executive directors, report on assigned public funding based on results, and management reports.

Keywords: university, governance, transparency, stakeholders

Procedia PDF Downloads 57
3213 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives

Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić

Abstract:

In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.

Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes

Procedia PDF Downloads 455
3212 A Comparative Study of Self, Peer and Teacher Assessment Based on an English Writing Checklist

Authors: Xiaoting Shi, Xiaomei Ma

Abstract:

In higher education, students' self-assessment and peer assessment of compositions in writing classes can effectively improve their ability of evaluative judgment. However, students' self-assessment and peer assessment are not advocated by most teachers because of the significant difference in scoring compared with teacher assessment. This study used a multi-faceted Rasch model to explore whether an English writing checklist containing 30 descriptors can effectively improve rating consistency among self-assessment, peer assessment and teacher assessment. Meanwhile, a questionnaire was adopted to survey students’ and teachers’ attitudes toward self-assessment and peer assessment using the writing checklist. Results of the multi-faceted Rasch model analysis show that the writing checklist can effectively distinguish the students’ writing ability (separate coefficient = 2.05, separate reliability = 0.81, chi-square value (df = 32) = 123.4). Moreover, the results revealed that the checklist could improve rating consistency among self-assessment, peer assessment and teacher assessment. (separate coefficient = 1.71, separate reliability = 0.75, chi-square value (df=4) = 20.8). The results of the questionnaire showed that more than 85% of students and all teachers believed that the checklist had a good advantage in self-assessment and peer assessment, and they were willing to use the checklist to conduct self-assessment and peer assessment in class in the future.

Keywords: english writing, self-assessment, peer assessment, writing checklist

Procedia PDF Downloads 153