Search results for: artificial cell
5022 Enhanced Optical and Electrical Properties of P-Type AgBiS₂ Energy Harvesting Materials as an Absorber of Solar Cell by Copper Doping
Authors: Yasaman Tabari-Saadi, Kaiwen Sun, Jialiang Huang, Martin Green, Xiaojing Hao
Abstract:
Optical and electrical properties of p-type AgBiS₂ absorber material have been improved by copper doping on silver sites. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that complete solid solutions of Ag₁₋ₓCuₓBiS₂ thin film have been formed. The carrier concentration of pure AgBiS₂ thin film deposited by the chemical process is 4.5*E+14 cm⁻³, and copper doping leads to the improved carrier concentration despite the semiconductor AgBiS₂ remains p-type semiconductor. Copper doping directly changed the absorption coefficient and increased the optical band gap (~1.5eV), which makes it a promising absorber for thin-film solar cell applications.Keywords: copper doped, AgBiS₂, thin-film solar cell, carrier concentration, p-type semiconductor
Procedia PDF Downloads 1275021 Comparison of the Performance of GaInAsSb and GaSb Cells under Different Temperature Blackbody Radiations
Authors: Liangliang Tang, Chang Xu, Xingying Chen
Abstract:
GaInAsSb cells probably show better performance than GaSb cells in low-temperature thermophotovoltaic systems due to lower bandgap; however, few experiments proved this phenomenon so far. In this paper, numerical simulation is used to evaluate GaInAsSb and GaSb cells with similar structures under different radiation temperatures. We found that GaInAsSb cells with n-type emitters show slightly higher output power densities compared with that of GaSb cells with n-type emitters below 1,550 K-blackbody radiation, and the power density of the later cells will suppress the formers above this temperature point. During the temperature range of 1,000~2,000 K, the efficiencies of GaSb cells are about twice of GaInAsSb cells if perfect filters are used to prevent the emission of the non-absorbed long wavelength photons. Several parameters that affect the GaInAsSb cell were analyzed, such as doping profiles, thicknesses of GaInAsSb epitaxial layer and surface recombination velocity. The non-p junctions, i.e., n-type emitters are better for GaInAsSb cell fabrication, which is similar to that of GaSb cells.Keywords: thermophotovoltaic cell, GaSb, GaInAsSb, diffused emitters
Procedia PDF Downloads 2815020 Optimal Feedback Linearization Control of PEM Fuel Cell
Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh
Abstract:
This paper presents a new method to design nonlinear feedback linearization controller for polymer electrolyte membrane fuel cells (PEMFCs). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEM fuel cells. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEM fuel cell system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA_II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.Keywords: nonlinear dynamic model, polymer electrolyte membrane fuel cells, feedback linearization, optimal control, NSGA_II
Procedia PDF Downloads 5185019 Democracy in Gaming: An Artificial Neural Network Based Approach towards Rule Evolution
Authors: Nelvin Joseph, K. Krishna Milan Rao, Praveen Dwarakanath
Abstract:
The explosive growth of Smart phones around the world has led to the shift of the primary engagement tool for entertainment from traditional consoles and music players to an all integrated device. Augmented Reality is the next big shift in bringing in a new dimension to the play. The paper explores the construct and working of the community engine in Delta T – an Augmented Reality game that allows users to evolve rules in the game basis collective bargaining mirroring democracy even in a gaming world.Keywords: augmented reality, artificial neural networks, mobile application, human computer interaction, community engine
Procedia PDF Downloads 3335018 Exploration of Critical Success Factors in Business and Management in Artificial Intelligence Era
Authors: Najah Kalifah Almazmomi
Abstract:
In the time of artificial intelligence (AI), there is a need to know the determinants of success in business management, which are taking on a new dimension. This research purports to scrutinize the Critical Success Factors (CSFs) that drive and ignite the fire of success to help uncover the subtle and profound dynamics that might be operative in organizations. By means of a systematic literature review and a number of empirical methods, the paper is aimed at determining and assessing the key aspects of CSFs, putting emphasis on their role and meaning in the context of AI technology adoption. Some central features such as leadership ways, innovation models, strategic thinking methodologies, organizational culture transformations, and human resource management approaches are compared and contrasted with the AI-driven revolution. Additionally, this research will explore the interactive effects of these factors and their joint impact on the success, survival, and flexibility of a business in the current environment, which is changing due to AI development. Through the use of different qualitative and quantitative methodologies, the research concludes that the findings are significant in understanding the relative roles of individual CSFs and in studying the interactions between them in such an AI-enabled business environment.Keywords: critical success factors, business and management, artificial intelligence, leadership strategies
Procedia PDF Downloads 395017 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends
Authors: Nigus Maregu Demewoz, Shu-Kai Yeh
Abstract:
Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX blend
Procedia PDF Downloads 955016 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm
Authors: J. S. Dhillon, K. K. Dhaliwal
Abstract:
In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization
Procedia PDF Downloads 4795015 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy
Authors: Jian Yu
Abstract:
Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process
Procedia PDF Downloads 1895014 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: artificial neural networks, biodiesel, iodine value, prediction
Procedia PDF Downloads 6075013 MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells
Authors: Jae-Hyeon Kim, Michael Lee
Abstract:
Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs.Keywords: microRNA, BRAF inhibitor, drug resistance, autophagy
Procedia PDF Downloads 3275012 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems
Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans
Abstract:
Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake
Procedia PDF Downloads 3205011 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm
Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan
Abstract:
With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization
Procedia PDF Downloads 3285010 Impact of Artificial Intelligence Technologies on Information-Seeking Behaviors and the Need for a New Information Seeking Model
Authors: Mohammed Nasser Al-Suqri
Abstract:
Former information-seeking models are proposed more than two decades ago. These already existed models were given prior to the evolution of digital information era and Artificial Intelligence (AI) technologies. Lack of current information seeking models within Library and Information Studies resulted in fewer advancements for teaching students about information-seeking behaviors, design of library tools and services. In order to better facilitate the aforementioned concerns, this study aims to propose state-of-the-art model while focusing on the information seeking behavior of library users in the Sultanate of Oman. This study aims for the development, designing and contextualizing the real-time user-centric information seeking model capable of enhancing information needs and information usage along with incorporating critical insights for the digital library practices. Another aim is to establish far-sighted and state-of-the-art frame of reference covering Artificial Intelligence (AI) while synthesizing digital resources and information for optimizing information-seeking behavior. The proposed study is empirically designed based on a mix-method process flow, technical surveys, in-depth interviews, focus groups evaluations and stakeholder investigations. The study data pool is consist of users and specialist LIS staff at 4 public libraries and 26 academic libraries in Oman. The designed research model is expected to facilitate LIS by assisting multi-dimensional insights with AI integration for redefining the information-seeking process, and developing a technology rich model.Keywords: artificial intelligence, information seeking, information behavior, information seeking models, libraries, Sultanate of Oman
Procedia PDF Downloads 1165009 The Use of Artificial Intelligence to Curb Corruption in Brazil
Authors: Camila Penido Gomes
Abstract:
Over the past decade, an emerging body of research has been pointing to artificial intelligence´s great potential to improve the use of open data, increase transparency and curb corruption in the public sector. Nonetheless, studies on this subject are scant and usually lack evidence to validate AI-based technologies´ effectiveness in addressing corruption, especially in developing countries. Aiming to fill this void in the literature, this paper sets out to examine how AI has been deployed by civil society to improve the use of open data and prevent congresspeople from misusing public resources in Brazil. Building on the current debates and carrying out a systematic literature review and extensive document analyses, this research reveals that AI should not be deployed as one silver bullet to fight corruption. Instead, this technology is more powerful when adopted by a multidisciplinary team as a civic tool in conjunction with other strategies. This study makes considerable contributions, bringing to the forefront discussion a more accurate understanding of the factors that play a decisive role in the successful implementation of AI-based technologies in anti-corruption efforts.Keywords: artificial intelligence, civil society organization, corruption, open data, transparency
Procedia PDF Downloads 2065008 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 185007 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly
Authors: Jui-Chen Huang
Abstract:
This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare
Procedia PDF Downloads 2135006 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 995005 A New Internal Architecture Based On Feature Selection for Holonic Manufacturing System
Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani
Abstract:
This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine data set, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.Keywords: artificial neural network, bees algorithm, feature selection, Holon
Procedia PDF Downloads 4575004 Assessing the Efficacy of Artificial Intelligence Integration in the FLO Health Application
Authors: Reema Alghamdi, Rasees Aleisa, Layan Sukkar
Abstract:
The primary objective of this research is to conduct an examination of the Flo menstrual cycle application. We do that by evaluating the user experience and their satisfaction with integrated AI features. The study seeks to gather data from primary resources, primarily through surveys, to gather different insights about the application, like its usability functionality in addition to the overall user satisfaction. The focus of our project will be particularly directed towards the impact and user perspectives regarding the integration of artificial intelligence features within the application, contributing to an understanding of the holistic user experience.Keywords: period, women health, machine learning, AI features, menstrual cycle
Procedia PDF Downloads 775003 The Use of Artificial Intelligence in Language Learning and Teaching: A New Frontier in Education
Authors: Abdulaziz Fageeh
Abstract:
This study investigates the integration of artificial intelligence (AI) within the landscape of language learning and teaching, exploring its potential benefits and challenges. Employing a mixed-methods approach, the research draws upon a comprehensive literature review, case studies, user reviews, and in-depth interviews with educators and students. Findings demonstrate that AI tools, including language learning apps and writing assistants, can enhance personalization, improve writing skills, and increase accessibility to language learning resources. However, the study also highlights concerns regarding over-reliance on AI, potential accuracy and reliability issues, and ethical implications such as data privacy and potential bias. User and educator perspectives emphasize the importance of balancing AI with traditional teaching methods, fostering critical thinking skills, and addressing potential misuse. The study concludes by underscoring the need for ongoing research and development to ensure responsible AI integration in language learning, focusing on pedagogical strategies, ethical frameworks, and the long-term impact of AI on learning outcomes.Keywords: artificial intelligence, language learning, education, technology, ethical considerations, user perceptions
Procedia PDF Downloads 185002 Artificial Intelligence Aided Improvement in Canada's Supply Chain Management
Authors: Mohammad Talebi
Abstract:
Supply chain administration could be a concern for all the countries within the world, whereas there's no special approach towards supportability. Generally, for one decade, manufactured insights applications in keen supply chains have found a key part. In this paper, applications of artificial intelligence in supply chain management have been clarified, and towards Canadian plans for smart supply chain management (SCM), a few notes have been suggested. A hierarchical framework for smart SCM might provide a great roadmap for decision-makers to find the most appropriate approach toward smart SCM. Within the system of decision-making, all the levels included in the accomplishment of smart SCM are included. In any case, more considerations are got to be paid to available and needed infrastructures.Keywords: smart SCM, AI, SSCM, procurement
Procedia PDF Downloads 895001 The Many Faces of Cancer and Knowing When to Say Stop
Authors: Diwei Lin, Amanda Jh. Tan
Abstract:
We present a very rare case of de novo large cell neuroendocrine carcinoma of the prostate (LCNEC) in an 84-year-old male on a background of high-grade, muscle-invasive transitional cell carcinoma of the bladder. While NE tumours account for 1% to 5% of all cases of prostate cancer and scattered NE cells can be found in 10% to 100% of prostate adenocarcinomas, pure LCNEC of the prostate is extremely rare. Most LCNEC of the prostate is thought to originate by clonal progression under the selection pressure of therapy and refractory to long-term hormonal treatment for adenocarcinoma of the prostate. De novo LCNEC is only described in case reports and is thought to develop via direct malignant transformation. Limited data in the English literature makes it difficult to accurately predict the prognosis of LCNEC of the prostate. However, current evidence suggesting that increasing NE differentiation in prostate adenocarcinoma is associated with a higher stage, high-grade disease, and a worse prognosis.Keywords: large cell neuroendocrine cancer, prostate cancer, refractory cancer, medical and health sciences
Procedia PDF Downloads 4225000 Power Allocation in User-Centric Cell-Free Massive Multiple-Input Multiple-Output Systems with Limited Fronthaul Capacity
Authors: Siminfar Samakoush Galougah
Abstract:
In this paper, we study two power allocation problems for an uplink user-centric (UC) cell-free massive multiple-input multiple-output (CF-mMIMO) system. Besides, we assume each access point (AP) is connected to a central processing unit (CPU) via a fronthaul link with limited capacity. To efficiently use the fronthaul capacity, two strategies for transmitting signals from APs to the CPU are employed, namely, compress-forward estimate (CFE), estimate-compress-forward (ECF). The capacity of the aforementioned strategies in user-centric CF-mMIMO is drived. Then, we solved the two power allocation problems with minimum Spectral Efficiency (SE) and sum-SE maximization objectives for ECF and CFE strategies.Keywords: cell-free massive MIMO, limited capacity fronthaul, spectral efficiency
Procedia PDF Downloads 734999 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1254998 Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study
Authors: S. Saadi, S. Benissaad, S. Poncet, Y. Kabar
Abstract:
In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs.Keywords: effective cooling, numerical modeling, photovoltaic cell, triangular ribs
Procedia PDF Downloads 1784997 Isolation and Elimination of Latent and Productive Herpes Simplex Virus from the Sacral and Trigeminal Ganglions
Authors: Bernard L. Middleton, Susan P. Cosgrove
Abstract:
There is an immediate need for alternative anti-herpetic treatment options effective for both primary infections and reoccurring reactivations of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Alternatives currently approved for the purposes of clinical administration includes antivirals and a reduced set of nucleoside analogues. The present article tests a treatment based on a systemic understanding of how the herpes virus affects cell inhibition and breakdown and targets different phases of the viral cycle, including the entry stage, reproductive cross mutation, and cell-to-cell infection. The treatment consisted of five immunotherapeutic core compounds (5CC), which were hypothesized to be capable of neutralizing human monoclonal antibodies. The tested 5CC were noted as being functional in the application of eliminating the DNA synthesis of herpes viral interferon (IFN) - induced cellular antiviral response. They were here found to neutralize antiviral reproduction by blocking cell-to-cell infection. The activity of the 5CC was tested on RC-37 in vitro using an assay plaque reduction and in vivo against HSV-1 and HSV-2. The 50% inhibitory concentration (IC50) of 5CC was 0.0009% for HSV-1 plaque formation and 0.0008% for HSV-2 plaque formation. Further tests were performed to evaluate the susceptibility of HSV-1 and HSV-2 to anti-herpetic drugs in Vero cells after virus entry. There were high-level markers of the 5CC virucidal activity in the viral suspension of HSV-1 and HSV-2. These concentrations of the 5CC are nontoxic and reduced plaque formation by 98.2% for HSV-1 and 93.0% for HSV-2. Virus HSV-1 and HSV-2 titers were reduced significantly by 5CC to the point of being negative, ranging 0.01–0.09 in 72%. The results concluded the 5CC as being an effective treatment option for the herpes simplex virus.Keywords: synergy pharmaceuticals, herpes treatment, herpes cure, synergy pharmaceuticals treatment
Procedia PDF Downloads 2414996 Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources
Authors: Ana M. Lara, Manuela Llano, Felipe Gaitán, Rosa H. Bustos, Ana Maria Perdomo-Arciniegas, Ximena Bonilla
Abstract:
Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults.Keywords: ex-vivo expansion, hematopoietic stem cells, hematopoietic stem cell transplantation, mesenchymal stem cells, umbilical cord blood
Procedia PDF Downloads 1154995 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 5364994 Cytotoxic Activity Of Major Iridoids From Barleria Trispinosa (Forssk.) Vahl. Growing In Saudi Arabia
Authors: Hamza Assiry, Gamal A. Mohamed, Sabrin R. M. Ibrahim, Hossam M. Abdallah
Abstract:
Chemical investigation of the aerial parts of Barleria trispinosa(Forssk.) Vahl. resulted in isolation of four major iridoids that were identified as 6,8-O,O-diacetylshanhiside methyl ester (acetyl barlerin) (1), 8-O-acetylshanzhiside methyl ester (barlerin) (2), shanzhiside methyl ester (3), and 6- ⍺ -L-rhamnopyranosyl-8-O-acetylshanzihiside methyl ester (4). The isolated compounds were confirmed by detailed one and two-dimensional NMR. Isolated compounds were tested for their cytotoxic activity on breast cancer (MCF-7, MDA-MB-231) and colon cancer (LS174T) cell linesusing sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards MDA-MB-231 cell line with IC5016.7 ± 2.7µg / mL compared to doxorubicin whereas compounds 2, showed moderate cytotoxic potential with IC5021.2 ± 1.9µg / mL on MCF-7. The other compounds showed moderate activity on the tested cell lines.Keywords: acanthaceae, cytotoxicity, metabolites, barleria trispinosa
Procedia PDF Downloads 1494993 Treatment of NMSC with Traditional Medicine Method
Authors: Aferdita Stroka Koka, Laver Stroka, Juna Musa, Samanda Celaj
Abstract:
Non-melanoma skin cancers (NMSCs) are the most common human malignancies. About 5.4 million basal and squamous cell skin cancers are diagnosed each year in the US and new cases continue to grow. About eight out of ten of these are basal cell cancers. Squamous cell cancers occur less often. NMSC usually are treatable, but treatment is expensive and can leave scars. In 2019, 167 patients of both sexes suffering from NMSC were treated by traditional medicine. Patients who have been diagnosed with Basal Cell Carcinoma were 122 cases, Squamous Cell Carcinoma 32 cases and both of them 13 cases. Of these,122 cases were ulcerated lesions and 45 unulcerated lesions. All patients were treated with the herbal solution called NILS, which contains extracts of some Albanian plants such as Allium sativum, Jugulans regia and Laurus nobilis. The treatment is done locally, on the surface of the tumor, applying the solution until the tumor mass is destroyed and, after that, giving the necessary time to the wound to make the regeneration that coincides with the complete healing of the wound. We have prepared a collection of photos for each case. Since the first sessions, a shrinkage and reduction of the tumor mass were evident, up to the total disappearance of the lesion at the end of treatment. The normal period of treatment lasted 1 to 2 weeks, depending on the size of the tumor, then take care of it until the closure of the wound, taking the whole process from 1 to 3 months. In 7 patients, the lesion failed to be dominated by treatment and they underwent standard treatment with radiotherapy or surgery, while in 10 patients, the lesion recurred and was treated again. The aim of this survey was to put in evidence the good results obtained by treatment of NMSC with Albanian traditional medicine methods.Keywords: local treatment, nils, NMSC, traditional medicine
Procedia PDF Downloads 211