Search results for: computer- supported collaborative learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11303

Search results for: computer- supported collaborative learning

3983 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 17
3982 The Effects of Subjective and Objective Indicators of Inequality on Life Satisfaction in a Comparative Perspective Using a Multi-Level Analysis

Authors: Atefeh Bagherianziarat, Dana Hamplova

Abstract:

The inverse social gradient in life satisfaction (LS) is a well-established research finding. To estimate the influence of inequality on LS, most of the studies have explored the effect of the objective aspects of inequality or individuals’ socioeconomic status (SES). However, relatively fewer studies have confirmed recently the significant effect of the subjective aspect of inequality or subjective socioeconomic status (SSS) on life satisfaction over and above SES. In other words, it is confirmed by some studies that individuals’ perception of their unequal status in society or SSS can moderate the impact of their absolute unequal status on their life satisfaction. Nevertheless, this newly confirmed moderating link has not been affirmed to work likewise in societies with different levels of social inequality and also for people who believe in the value of equality, at different levels. In this study, we compared the moderative influence of subjective inequality on the link between objective inequality and life satisfaction. In particular, we focus on differences across welfare state regimes based on Esping-Andersen's theory. Also, we explored the moderative role of believing in the value of equality on the link between objective and subjective inequality on LS in the given societies. Since our studied variables were measured at both individual and country levels, we applied a multilevel analysis to the European Social Survey data (round 9). The results showed that people in deferent regimes reported statistically meaningful different levels of life satisfaction that is explained to different extends by their household income and their perception of their income inequality. The findings of the study supported the previous findings of the moderator influence of perceived inequality on the link between objective inequality and LS. However, this link is different in various welfare state regimes. The results of the multilevel modeling showed that country-level subjective equality is a positive predictor for individuals’ life satisfaction, while the GINI coefficient that was considered as the indicator of absolute inequality has a smaller effect on life satisfaction. Also, country-level subjective equality moderates the confirmed link between individuals’ income and their life satisfaction. It can be concluded that both individual and country-level subjective inequality slightly moderate the effect of individuals’ income on their life satisfaction.

Keywords: individual values, life satisfaction, multilevel analysis, objective inequality, subjective inequality, welfare regimes status

Procedia PDF Downloads 103
3981 The New World Kirkpatrick Model as an Evaluation Tool for a Publication Writing Programme

Authors: Eleanor Nel

Abstract:

Research output is an indicator of institutional performance (and quality), resulting in increased pressure on academic institutions to perform in the research arena. Research output is further utilised to obtain research funding. Resultantly, academic institutions face significant pressure from governing bodies to provide evidence on the return for research investments. Research output has thus become a substantial discourse within institutions, mainly due to the processes linked to evaluating research output and the associated allocation of research funding. This focus on research outputs often surpasses the development of robust, widely accepted tools to additionally measure research impact at institutions. A publication writing programme, for enhancing research output, was launched at a South African university in 2011. Significant amounts of time, money, and energy have since been invested in the programme. Although participants provided feedback after each session, no formal review was conducted to evaluate the research output directly associated with the programme. Concerns in higher education about training costs, learning results, and the effect on society have increased the focus on value for money and the need to improve training, research performance, and productivity. Furthermore, universities rely on efficient and reliable monitoring and evaluation systems, in addition to the need to demonstrate accountability. While publishing does not occur immediately, achieving a return on investment from the intervention is critical. A multi-method study, guided by the New World Kirkpatrick Model (NWKM), was conducted to determine the impact of the publication writing programme for the period of 2011 to 2018. Quantitative results indicated a total of 314 academics participating in 72 workshops over the study period. To better understand the quantitative results, an open-ended questionnaire and semi-structured interviews were conducted with nine participants from a particular faculty as a convenience sample. The purpose of the research was to collect information to develop a comprehensive framework for impact evaluation that could be used to enhance the current design and delivery of the programme. The qualitative findings highlighted the critical role of a multi-stakeholder strategy in strengthening support before, during, and after a publication writing programme to improve the impact and research outputs. Furthermore, monitoring on-the-job learning is critical to ingrain the new skills academics have learned during the writing workshops and to encourage them to be accountable and empowered. The NWKM additionally provided essential pointers on how to link the results more effectively from publication writing programmes to institutional strategic objectives to improve research performance and quality, as well as what should be included in a comprehensive evaluation framework.

Keywords: evaluation, framework, impact, research output

Procedia PDF Downloads 77
3980 Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis

Authors: Parth Prajapati, A. R. Srinivas

Abstract:

The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system.

Keywords: dynamics, manufacturing, reflectors, segmentation, statics

Procedia PDF Downloads 376
3979 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials

Authors: Marc Sader, Michiel Stock, Bernard De Baets

Abstract:

Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.

Keywords: adsorption, predictive modeling, QSAR, random forest

Procedia PDF Downloads 232
3978 Generative AI in Higher Education: Pedagogical and Ethical Guidelines for Implementation

Authors: Judit Vilarmau

Abstract:

Generative AI is emerging rapidly and transforming higher education in many ways, occasioning new challenges and disrupting traditional models and methods. The studies and authors explored remark on the impact on the ethics, curriculum, and pedagogical methods. Students are increasingly using generative AI for study, as a virtual tutor, and as a resource for generating works and doing assignments. This point is crucial for educators to make sure that students are using generative AI with ethical considerations. Generative AI also has relevant benefits for educators and can help them personalize learning experiences and promote self-regulation. Educators must seek and explore tools like ChatGPT to innovate without forgetting an ethical and pedagogical perspective. Eighteen studies were systematically reviewed, and the findings provide implementation guidelines with pedagogical and ethical considerations.

Keywords: ethics, generative artificial intelligence, guidelines, higher education, pedagogy

Procedia PDF Downloads 91
3977 Study on the Role of Positive Emotions in Developmental Psychology

Authors: Hee Soo Kim, Ha Young Kyung

Abstract:

This paper examines the role of positive emotions in human psychology. By understanding Fredrickson and Lyubomirsky et al.’s on positive emotions, one can better understand people’s intuitive understanding, mental health and well-being. Fredrickson asserts that positive emotions create positive affects and personal resources, and Lyubomirsky et al. relate such positive resources to the creation of happiness and personal development. This paper finds that positive emotions play a significant role in the learning process, and they are instrumental in creating a long-lasting repertoire of personal resources and play an essential role in the development of the intuitive understanding of life variables, resilience in coping with life challenges, and ability to build more successful lives.

Keywords: Positive emotions, positive affects, personal resources, negative emotions, development

Procedia PDF Downloads 312
3976 A Systematic Literature Review of the Influence of New Media-Based Interventions on Drug Abuse

Authors: Wen Huei Chou, Te Lung Pan, Tsu Wen Yeh

Abstract:

New media have recently received increasing attention as a new communication form. The COVID-19 outbreak has pushed people’s lifestyles into the digital age, and the drug market has infiltrated formal e-commerce platforms. The self-media boom has fostered growth in online drug myths. To set the record straight, it is imperative to develop new media-based interventions. However, the usefulness of new media on this issue has not yet been fully examined. This study selected 13 articles on the development of new media-based interventions to prevent drug abuse from Airiti Library and Pub-Med as of October 3, 2021. The key conclusions are that (1) new media have a significantly positive influence on skills, self-efficacy, and behavior; (2) most interventions package traditional course learning into new media formats; and (3) new media can create a covert, interactive environment that cannot be replicated offline, which may merit attention in future research.

Keywords: drug abuse, interventions, new media, systematic review

Procedia PDF Downloads 156
3975 A Closer Look at Inclusion-For-All Approaches to Diversity Initiative Implementation

Authors: Payton Small

Abstract:

In response to increasing demographic diversity, many U.S. organizations have implemented diversity initiatives to increase the representation of women and ethnic minorities. While these initiatives aim to promote more fair and positive outcomes for underrepresented minorities (URMs) widespread backlash against these policies can negatively impact the groups of individuals that are supposed to be supported by them. A recent theory-based analysis of best practices for instituting diversity policies proposes an "inclusion for all" approach that negotiates the oft-divergent goals and motivations of both marginalized and dominant group members in these contexts. Empirical work finds that "inclusion for all" strategies decrease White's tendency to implicitly associate diversity with exclusion and increased their personal endorsement of diversity initiatives. Similarly, Whites report higher belongingness when considering an inclusion for all approach to diversity versus a colorblind approach. While inclusion-for-all approaches may effectively increase Whites' responsiveness to diversity efforts, the downstream consequences of implementing these policies on URM's have yet to be explored. The current research investigated how inclusion-for-all diversity framing influences Whites' sensitivity to detecting discrimination against URM's as well as perceptions of reverse discrimination against Whites. Lastly, the current research looked at how URM's respond to inclusion-for-all diversity approaches. Three studies investigated the impact of inclusion-for-all diversity framing on perceptions of discrimination against Whites and URM's in a company setting. Two separate mechanisms by which exposure to an inclusion-for-all diversity statement might differentially influence perceptions of discrimination for URMs and Whites were also tested. In Studies 1 and 2, exposure to an inclusion-for-all diversity approach reduced Whites' concerns about reverse discrimination and heightened sensitivity to detecting discrimination against URM's. These effects were mediated by decreased concerns about zero-sum outcomes at the company. Study 3 found that racial minorities are concerned about increased discrimination at a company with an inclusion-for-all diversity statement and that this effect is mediated by decreased feelings of belonging at the company. In sum, companies that adopt an inclusion-for-all approach to diversity implementation reduce Whites' backlash and the negative downstream consequences associated with such backlash; however, racial minorities feel excluded and expect heightened experiences of discrimination at these same companies.

Keywords: diversity, intergroup relations, organizational social psychology, zero-sum

Procedia PDF Downloads 136
3974 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.

Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time

Procedia PDF Downloads 351
3973 The Convergence between Science Practical Work and Scientific Discourse: Lessons Learnt from Using a Practical Activity to Encourage Student Discourse

Authors: Abraham Motlhabane

Abstract:

In most practical-related science lessons, the focus is on completing the experimental procedure as directed by the teacher. However, the scientific discourse among learners themselves and teacher–learner discourse about scientific processes, scientific inquiry and the nature of science should play an important role in the teaching and learning of science. This means the incorporation of inquiry-based activities aimed at sparking debates about scientific concepts. This article analyses a science lesson presented by a teacher to his colleagues acting as learners. Six lessons were presented and transcribed. One of the lessons has been used for this study as the basis for the events as they unfolded during the lesson. Data was obtained through direct observations and the use of a predetermined observation schedule. Field notes were compiled during teacher preparations and the presentation of the lessons.

Keywords: discourse, inquiry, practical work, science, scientific

Procedia PDF Downloads 496
3972 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 304
3971 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Authors: Debjit Ray

Abstract:

Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.

Keywords: genomics, pathogens, genome assembly, superbugs

Procedia PDF Downloads 198
3970 Touch Interaction through Tagging Context

Authors: Gabriel Chavira, Jorge Orozco, Salvador Nava, Eduardo Álvarez, Julio Rolón, Roberto Pichardo

Abstract:

Ambient Intelligence promotes a shift in computing which involves fitting-out the environments with devices to support context-aware applications. One of main objectives is the reduction to a minimum of the user’s interactive effort, the diversity and quantity of devices with which people are surrounded with, in existing environments; increase the level of difficulty to achieve this goal. The mobile phones and their amazing global penetration, makes it an excellent device for delivering new services to the user, without requiring a learning effort. The environment will have to be able to perceive all of the interaction techniques. In this paper, we present the PICTAC model (Perceiving touch Interaction through TAgging Context), which similarly delivers service to members of a research group.

Keywords: ambient intelligence, tagging context, touch interaction, touching services

Procedia PDF Downloads 387
3969 ANAC-id - Facial Recognition to Detect Fraud

Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira

Abstract:

This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.

Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision

Procedia PDF Downloads 160
3968 Linguistic Competence Analysis and the Development of Speaking Instructional Material

Authors: Felipa M. Rico

Abstract:

Linguistic oral competence plays a vital role in attaining effective communication. Since the English language is considered as universally used language and has a high demand skill needed in the work-place, mastery is the expected output from learners. To achieve this, learners should be given integrated differentiated tasks which help them develop and strengthen the expected skills. This study aimed to develop speaking instructional supplementary material to enhance the English linguistic competence of Grade 9 students in areas of pronunciation, intonation and stress, voice projection, diction and fluency. A descriptive analysis was utilized to analyze the speaking level of performance of the students in order to employ appropriate strategies. There were two sets of respondents: 178 Grade 9 students selected through a stratified sampling and chosen at random. The other set comprised English teachers who evaluated the usefulness of the devised teaching materials. A teacher conducted a speaking test and activities were employed to analyze the speaking needs of students. Observation and recordings were also used to evaluate the students’ performance. The findings revealed that the English pronunciation of the students was slightly unclear at times, but generally fair. There were lapses but generally they rated moderate in intonation and stress, because of other language interference. In terms of voice projection, students have erratic high volume pitch. For diction, the students’ ability to produce comprehensible language is limited, and as to fluency, the choice of vocabulary and use of structure were severely limited. Based on the students’ speaking needs analyses, the supplementary material devised was based on Nunan’s IM model, incorporating context of daily life and global work settings, considering the principle that language is best learned in the actual meaningful situation. To widen the mastery of skill, a rich learning environment, filled with a variety instructional material tends to foster faster acquisition of the requisite skills for sustained learning and development. The role of IM is to encourage information to stick in the learners’ mind, as what is seen is understood more than what is heard. Teachers say they found the IM “very useful.” This implied that English teachers could adopt the materials to improve the speaking skills of students. Further, teachers should provide varied opportunities for students to get involved in real life situations where they could take turns in asking and answering questions and share information related to the activities. This would minimize anxiety among students in the use of the English language.

Keywords: diction, fluency, intonation, instructional materials, linguistic competence

Procedia PDF Downloads 243
3967 Evaluating Classification with Efficacy Metrics

Authors: Guofan Shao, Lina Tang, Hao Zhang

Abstract:

The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.

Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty

Procedia PDF Downloads 216
3966 Factors Related to Teachers’ Analysis of Classroom Assessments

Authors: Hussain A. Alkharusi, Said S. Aldhafri, Hilal Z. Alnabhani, Muna Alkalbani

Abstract:

Analysing classroom assessments is one of the responsibilities of the teacher. It aims improving teacher’s instruction and assessment as well as student learning. The present study investigated factors that might explain variation in teachers’ practices regarding analysis of classroom assessments. The factors considered in the investigation included gender, in-service assessment training, teaching load, teaching experience, knowledge in assessment, attitude towards quantitative aspects of assessment, and self-perceived competence in analysing assessments. Participants were 246 in-service teachers in Oman. Results of a stepwise multiple linear regression analysis revealed that self-perceived competence was the only significant factor explaining the variance in teachers’ analysis of assessments. Implications for research and practice are discussed.

Keywords: analysis of assessment, classroom assessment, in-service teachers, self-competence

Procedia PDF Downloads 335
3965 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.

Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity

Procedia PDF Downloads 78
3964 The Experimental and Numerical Analysis of the Joining Processes for Air Conditioning Systems

Authors: M.St. Węglowski, D. Miara, S. Błacha, J. Dworak, J. Rykała, K. Kwieciński, J. Pikuła, G. Ziobro, A. Szafron, P. Zimierska-Nowak, M. Richert, P. Noga

Abstract:

In the paper the results of welding of car’s air-conditioning elements are presented. These systems based on, mainly, the environmental unfriendly refrigerants. Thus, the producers of cars will have to stop using traditional refrigerant and to change it to carbon dioxide (R744). This refrigerant is environmental friendly. However, it should be noted that the air condition system working with R744 refrigerant operates at high temperature (up to 150 °C) and high pressure (up to 130 bar). These two parameters are much higher than for other refrigerants. Thus new materials, design as well as joining technologies are strongly needed for these systems. AISI 304 and 316L steels as well as aluminium alloys 5xxx are ranked among the prospective materials. As a joining process laser welding, plasma welding, electron beam welding as well as high rotary friction welding can be applied. In the study, the metallographic examination based on light microscopy as well as SEM was applied to estimate the quality of welded joints. The analysis of welding was supported by numerical modelling based on Sysweld software. The results indicated that using laser, plasma and electron beam welding, it is possible to obtain proper quality of welds in stainless steel. Moreover, high rotary friction welding allows to guarantee the metallic continuity in the aluminium welded area. The metallographic examination revealed that the grain growth in the heat affected zone (HAZ) in laser and electron beam welded joints were not observed. It is due to low heat input and short welding time. The grain growth and subgrains can be observed at room temperature when the solidification mode is austenitic. This caused low microstructural changes during solidification. The columnar grain structure was found in the weld metal. Meanwhile, the equiaxed grains were detected in the interface. The numerical modelling of laser welding process allowed to estimate the temperature profile in the welded joint as well as predicts the dimensions of welds. The agreement between FEM analysis and experimental data was achieved.  

Keywords: car’s air–conditioning, microstructure, numerical modelling, welding

Procedia PDF Downloads 411
3963 From Theory to Practice: An Iterative Design Process in Implementing English Medium Instruction in Higher Education

Authors: Linda Weinberg, Miriam Symon

Abstract:

While few institutions of higher education in Israel offer international programs taught entirely in English, many Israeli students today can study at least one content course taught in English during their degree program. In particular, with the growth of international partnerships and opportunities for student mobility, English medium instruction is a growing phenomenon. There are however no official guidelines in Israel for how to develop and implement content courses in English and no training to help lecturers prepare for teaching their materials in a foreign language. Furthermore, the implications for the students and the nature of the courses themselves have not been sufficiently considered. In addition, the institution must have lecturers who are able to teach these courses effectively in English. An international project funded by the European Union addresses these issues and a set of guidelines which provide guidance for lecturers in adapting their courses for delivery in English have been developed. A train-the-trainer approach is adopted in order to cascade knowledge and experience in English medium instruction from experts to language teachers and on to content teachers thus maximizing the scope of professional development. To accompany training, a model English medium course has been created which serves the dual purpose of highlighting alternatives to the frontal lecture while integrating language learning objectives with content goals. This course can also be used as a standalone content course. The development of the guidelines and of the course utilized backwards, forwards and central design in an iterative process. The goals for combined language and content outcomes were identified first after which a suitable framework for achieving these goals was constructed. The assessment procedures evolved through collaboration between content and language specialists and subsequently were put into action during a piloting phase. Feedback from the piloting teachers and from the students highlight the need for clear channels of communication to encourage frank and honest discussion of expectations versus reality. While much of what goes on in the English medium classroom requires no better teaching skills than are required in any classroom, the understanding of students' abilities in achieving reasonable learning outcomes in a foreign language must be rationalized and accommodated within the course design. Concomitantly, preparatory language classes for students must be able to adapt to prepare students for specific language and cognitive skills and activities that courses conducted in English require. This paper presents findings from the implementation of a purpose-designed English medium instruction course arrived at through an iterative backwards, forwards and central design process utilizing feedback from students and lecturers alike leading to suggested guidelines for English medium instruction in higher education.

Keywords: English medium instruction, higher education, iterative design process, train-the-trainer

Procedia PDF Downloads 301
3962 Multimodal Employee Attendance Management System

Authors: Khaled Mohammed

Abstract:

This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.

Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio

Procedia PDF Downloads 157
3961 The Impact of Feuerstein Enhancement of Learning Potential to the Integration of Children from Socially Disadvantaged Backgrounds into Society

Authors: Michal Kozubík, Svetlana Síthová

Abstract:

Aim: Aim of this study is to introduce the method of instrumental enrichment to people who works in the helping professions, and show further possibilities of its realization with children from socially disadvantaged backgrounds into society. Methods: We focused on Feuerstein’s Instrumental Enrichment method, its theoretical grounds and practical implementation. We carried out questionnaires and directly observed children from the disadvantaged background in Partizánske district. Results: We outlined the issues of children from disadvantaged social environment and their opportunity of social integration using the method. The findings showed the utility of Feuerstein method. Conclusions: We conclude that Feuerstein methods are very suitable for children from socially disadvantaged background and importance of social workers and special educator co-operation.

Keywords: Feuerstein, inclusion, education, socially disadvantaged background

Procedia PDF Downloads 313
3960 Inferring Cognitive Skill in Concept Space

Authors: Rania A. Aboalela, Javed I. Khan

Abstract:

This research presents a learning assessment theory of Cognitive Skill in Concept Space (CS2) to measure the assessed knowledge in terms of cognitive skill levels of the concepts. The cognitive skill levels refer to levels such as if a student has acquired the state at the level of understanding, or applying, or analyzing, etc. The theory is comprised of three constructions: Graph paradigm of a semantic/ ontological scheme, the concept states of the theory and the assessment analytics which is the process to estimate the sets of concept state at a certain skill level. Concept state means if a student has already learned, or is ready to learn, or is not ready to learn a certain skill level. The experiment is conducted to prove the validation of the theory CS2.

Keywords: cognitive skill levels, concept states, concept space, knowledge assessment theory

Procedia PDF Downloads 326
3959 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System

Authors: Miguel Angel Calvo Salve

Abstract:

Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.

Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems

Procedia PDF Downloads 67
3958 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection

Authors: S. Delgado, C. Cerrada, R. S. Gómez

Abstract:

This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.

Keywords: voxelization, GPU acceleration, computer graphics, compute shaders

Procedia PDF Downloads 75
3957 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent

Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar

Abstract:

Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.

Keywords: artificial intelligence, trustworthiness, voice, adolescent

Procedia PDF Downloads 65
3956 Understanding the Nature of Student Conceptions of Mathematics: A Study of Mathematics Students in Higher Education

Authors: Priscilla Eng Lian Murphy

Abstract:

This study examines the nature of student conceptions of mathematics in higher education using quantitative research methods. This study validates the Short Form of Conception of Mathematics survey as well as reveals the epistemological nature of student conceptions of mathematics. Using a random sample of mathematics students in Australia and New Zealand (N=274), this paper highlighted three key findings, of relevance to lecturers in higher education. Firstly, descriptive data shows that mathematics students in Australia and New Zealand reported that mathematics is about numbers and components, models and life. Secondly, models conceptions of mathematics predicted strong examination performances using regression analyses; and thirdly, there is a positive correlation between high mathematics examination scores and cohesive conceptions of mathematics.

Keywords: higher education, learning mathematics, mathematics performances, student conceptions of mathematics

Procedia PDF Downloads 267
3955 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module

Procedia PDF Downloads 345
3954 Public Health Emergency Management (PHEM) to COVID-19 Pandemic in North-Eastern Part of Thailand

Authors: Orathai Srithongtham, Ploypailin Mekathepakorn, Tossaphong Buraman, Pontida Moonpradap, Rungrueng Kitpati, Chulapon Kratet, Worayuth Nak-ai, Suwaree Charoenmukkayanan, Peeranuch Keawkanya

Abstract:

The COVID-19 pandemic was effect to the health security of the Thai people. The PHEM principle was essential to the surveillance, prevention, and control of COVID-19. This study aimed to present the process of prevention and control of COVID-19 from February 29, 2021- April 30, 2022, and the factors and conditions influent the successful outcome. The study areas were three provinces. The target group was 37 people, composed of public health personnel. The data was collected in-depth, and group interviews followed the non-structure interview guide and were analyzed by content analysis. The components of COVID-19 prevention and control were found in the process of PHEM as follows; 1) Emergency Operation Center (EOC) with an incidence command system (ICS) from the district to provincial level and to propose the provincial measure, 2) Provincial Communicable Disease Committee (PCDC) to decide the provincial measure 3) The measure for surveillance, prevention, control, and treatment of COVID-19, and 4) outcomes and best practices for surveillance and control of COVID-19. The success factors of 4S and EC were as follows; Space: prepare the quarantine (HQ, LQ), Cohort Ward (CW), field hospital, and community isolation and home isolation to face with the patient and risky group, Staff network from various organization and group cover the community leader and Health Volunteer (HV), Stuff the management and sharing of the medical and non-medical equipment, System of Covid-19 respond were EOC, ICS, Joint Investigation Team (JIT) and Communicable Disease Control Unit (CDCU) for monitoring the real-time of surveillance and control of COVID-19 output, Environment management in hospital and the community with Infections Control (IC) principle, and Culture in term of social capital on “the relationship of Isan people” supported the patient provide the good care and support. The structure of PHEM, Isan’s Culture, and good preparation was a significant factor in the three provinces.

Keywords: public health, emergency management, covid-19, pandemic

Procedia PDF Downloads 83