Search results for: loading efficiency
700 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.
Procedia PDF Downloads 90699 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink
Authors: Sanjay Rathee, Arti Kashyap
Abstract:
Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining
Procedia PDF Downloads 294698 Nutrition Program Planning Based on Local Resources in Urban Fringe Areas of a Developing Country
Authors: Oktia Woro Kasmini Handayani, Bambang Budi Raharjo, Efa Nugroho, Bertakalswa Hermawati
Abstract:
Obesity prevalence and severe malnutrition in Indonesia has increased from 2007 to 2013. The utilization of local resources in nutritional program planning can be used to program efficiency and to reach the goal. The aim of this research is to plan a nutrition program based on local resources for urban fringe areas in a developing country. This research used a qualitative approach, with a focus on local resources including social capital, social system, cultural system. The study was conducted in Mijen, Central Java, as one of the urban fringe areas in Indonesia. Purposive and snowball sampling techniques are used to determine participants. A total of 16 participants took part in the study. Observation, interviews, focus group discussion, SWOT analysis, brainstorming and Miles and Huberman models were used to analyze the data. We have identified several local resources, such as the contributions from nutrition cadres, social organizations, social financial resources, as well as the cultural system and social system. The outstanding contribution of nutrition cadres is the participation and creativity to improve nutritional status. In addition, social organizations, like the role of the integrated health center for children (Pos Pelayanan Terpadu), can be engaged in the nutrition program planning. This center is supported by House of Nutrition to assist in nutrition program planning, and provide social support to families, neighbors and communities as social capitals. The study also reported that cultural systems that show appreciation for well-nourished children are a better way to improve the problem of balanced nutrition. Social systems such as teamwork and mutual cooperation can also be a potential resource to support nutritional programs and overcome associated problems. The impact of development in urban areas such as the introduction of more green areas which improve the perceived status of local people, as well as new health services facilitated by people and companies, can also be resources to support nutrition programs. Local resources in urban fringe areas can be used in the planning of nutrition programs. The expansion of partnership with all stakeholders, empowering the community through optimizing the roles of nutrition care centers for children as our recommendation with regard to nutrition program planning.Keywords: developing country, local resources, nutrition program, urban fringe
Procedia PDF Downloads 251697 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid Onaizah
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 79696 An Interactive User-Oriented Approach to Optimizing Public Space Lighting
Authors: Tamar Trop, Boris Portnov
Abstract:
Public Space Lighting (PSL) of outdoor urban areas promotes comfort, defines spaces and neighborhood identities, enhances perceived safety and security, and contributes to residential satisfaction and wellbeing. However, if excessive or misdirected, PSL leads to unnecessary energy waste and increased greenhouse gas emissions, poses a non-negligible threat to the nocturnal environment, and may become a potential health hazard. At present, PSL is designed according to international, regional, and national standards, which consolidate best practice. Yet, knowledge regarding the optimal light characteristics needed for creating a perception of personal comfort and safety in densely populated residential areas, and the factors associated with this perception, is still scarce. The presented study suggests a paradigm shift in designing PSL towards a user-centered approach, which incorporates pedestrians' perspectives into the process. The study is an ongoing joint research project between China and Israel Ministries of Science and Technology. Its main objectives are to reveal inhabitants' perceptions of and preferences for PSL in different densely populated neighborhoods in China and Israel, and to develop a model that links instrumentally measured parameters of PSL (e.g., intensity, spectra and glare) with its perceived comfort and quality, while controlling for three groups of attributes: locational, temporal, and individual. To investigate measured and perceived PSL, the study employed various research methods and data collection tools, developed a location-based mobile application, and used multiple data sources, such as satellite multi-spectral night-time light imagery, census statistics, and detailed planning schemes. One of the study’s preliminary findings is that higher sense of safety in the investigated neighborhoods is not associated with higher levels of light intensity. This implies potential for energy saving in brightly illuminated residential areas. Study findings might contribute to the design of a smart and adaptive PSL strategy that enhances pedestrians’ perceived safety and comfort while reducing light pollution and energy consumption.Keywords: energy efficiency, light pollution, public space lighting, PSL, safety perceptions
Procedia PDF Downloads 134695 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis
Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh
Abstract:
Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.Keywords: cottonseed, glucantime, gossypol, leishmaniasis
Procedia PDF Downloads 61694 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)
Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad
Abstract:
Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis
Procedia PDF Downloads 263693 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings
Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian
Abstract:
Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM
Procedia PDF Downloads 111692 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 130691 The Efficacy of Salicylic Acid and Puccinia Triticina Isolates Priming Wheat Plant to Diuraphis Noxia Damage
Authors: Huzaifa Bilal
Abstract:
Russian wheat aphid (Diuraphis noxia, Kurdjumov) is considered an economically important wheat (Triticum aestivum L.) pest worldwide and in South Africa. The RWA damages wheat plants and reduces annual yields by more than 10%. Even though pest management by pesticides and resistance breeding is an attractive option, chemicals can cause harm to the environment. Furthermore, the evolution of resistance-breaking aphid biotypes has out-paced the release of resistant cultivars. An alternative strategy to reduce the impact of aphid damage on plants, such as priming, which sensitizes plants to respond effectively to subsequent attacks, is necessary. In this study, wheat plants at the seedling and flag leaf stages were primed by salicylic acid and isolate representative of two races of the leaf rust pathogen Puccinia triticina Eriks. (Pt), before RWA (South African RWA biotypes 1 and 4) infestation. Randomized complete block design experiments were conducted in the greenhouse to study plant-pest interaction in primed and non-primed plants. Analysis of induced aphid damage indicated salicylic acid differentially primed wheat cultivars for increased resistance to the RWASA biotypes. At the seedling stage, all cultivars were primed for enhanced resistance to RWASA1, while at the flag leaf stage, only PAN 3111, SST 356 and Makalote were primed for increased resistance. The Puccinia triticina efficaciously primed wheat cultivars for excellent resistance to RWASA1 at the seedling and flag leaf stages. However, Pt failed to enhance the four Lesotho cultivars' resistance to RWASA4 at the seedling stage and PAN 3118 at the flag leaf stage. The induced responses at the seedling and flag leaf stages were positively correlated in all the treatments. Primed plants induced high activity of antioxidant enzymes like peroxidase, ascorbate peroxidase and superoxide dismutase. High antioxidant activity indicates activation of resistant responses in primed plants (primed by salicylic acid and Puccina triticina). Isolates of avirulent Pt races can be a worthy priming agent for improved resistance to RWA infestation. Further confirmation of the priming effects needs to be evaluated at the field trials to investigate its application efficiency.Keywords: Russian wheat aphis, salicylic acid, puccina triticina, priming
Procedia PDF Downloads 208690 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices
Authors: Ekta, G. K. Darbha
Abstract:
Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology
Procedia PDF Downloads 256689 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning
Authors: Newton Muhury, Armando A. Apan, Tek Maraseni
Abstract:
This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 119688 Using Hemicellulosic Liquor from Sugarcane Bagasse to Produce Second Generation Lactic Acid
Authors: Regiane A. Oliveira, Carlos E. Vaz Rossell, Rubens Maciel Filho
Abstract:
Lactic acid, besides a valuable chemical may be considered a platform for other chemicals. In fact, the feasibility of hemicellulosic sugars as feedstock for lactic acid production process, may represent the drop of some of the barriers for the second generation bioproducts, especially bearing in mind the 5-carbon sugars from the pre-treatment of sugarcane bagasse. Bearing this in mind, the purpose of this study was to use the hemicellulosic liquor from sugarcane bagasse as a substrate to produce lactic acid by fermentation. To release of sugars from hemicellulose it was made a pre-treatment with a diluted sulfuric acid in order to obtain a xylose's rich liquor with low concentration of inhibiting compounds for fermentation (≈ 67% of xylose, ≈ 21% of glucose, ≈ 10% of cellobiose and arabinose, and around 1% of inhibiting compounds as furfural, hydroxymethilfurfural and acetic acid). The hemicellulosic sugars associated with 20 g/L of yeast extract were used in a fermentation process with Lactobacillus plantarum to produce lactic acid. The fermentation process pH was controlled with automatic injection of Ca(OH)2 to keep pH at 6.00. The lactic acid concentration remained stable from the time when the glucose was depleted (48 hours of fermentation), with no further production. While lactic acid is produced occurs the concomitant consumption of xylose and glucose. The yield of fermentation was 0.933 g lactic acid /g sugars. Besides, it was not detected the presence of by-products, what allows considering that the microorganism uses a homolactic fermentation to produce its own energy using pentose-phosphate pathway. Through facultative heterofermentative metabolism the bacteria consume pentose, as is the case of L. plantarum, but the energy efficiency for the cell is lower than during the hexose consumption. This implies both in a slower cell growth, as in a reduction in lactic acid productivity compared with the use of hexose. Also, L. plantarum had shown to have a capacity for lactic acid production from hemicellulosic hydrolysate without detoxification, which is very attractive in terms of robustness for an industrial process. Xylose from hydrolyzed bagasse and without detoxification is consumed, although the hydrolyzed bagasse inhibitors (especially aromatic inhibitors) affect productivity and yield of lactic acid. The use of sugars and the lack of need for detoxification of the C5 liquor from sugarcane bagasse hydrolyzed is a crucial factor for the economic viability of second generation processes. Taking this information into account, the production of second generation lactic acid using sugars from hemicellulose appears to be a good alternative to the complete utilization of sugarcane plant, directing molasses and cellulosic carbohydrates to produce 2G-ethanol, and hemicellulosic carbohydrates to produce 2G-lactic acid.Keywords: fermentation, lactic acid, hemicellulosic sugars, sugarcane
Procedia PDF Downloads 373687 Correlation Between the Toxicity Grade of the Adverse Effects in the Course of the Immunotherapy of Lung Cancer and Efficiency of the Treatment in Anti-PD-L1 and Anti-PD-1 Drugs - Own Clinical Experience
Authors: Anna Rudzińska, Katarzyna Szklener, Pola Juchaniuk, Anna Rodzajweska, Katarzyna Machulska-Ciuraj, Monika Rychlik- Grabowska, Michał łOziński, Agnieszka Kolak-Bruks, SłAwomir Mańdziuk
Abstract:
Introduction: Immune checkpoint inhibition (ICI) belongs to the modern forms of anti-cancer treatment. Due to the constant development and continuous research in the field of ICI, many aspects of the treatment are yet to be discovered. One of the less researched aspects of ICI treatment is the influence of the adverse effects on the treatment success rate. It is suspected that adverse events in the course of the ICI treatment indicate a better response rate and correlate with longer progression-free- survival. Methodology: The research was conducted with the usage of the documentation of the Department of Clinical Oncology and Chemotherapy. Data of the patients with a lung cancer diagnosis who were treated between 2019-2022 and received ICI treatment were analyzed. Results: Out of over 133 patients whose data was analyzed, the vast majority were diagnosed with non-small cell lung cancer. The majority of the patients did not experience adverse effects. Most adverse effects reported were classified as grade 1 or grade 2 according to CTCAE classification. Most adverse effects involved skin, thyroid and liver toxicity. Statistical significance was found for the adverse effect incidence and overall survival (OS) and progression-free survival (PFS) (p=0,0263) and for the time of toxicity onset and OS and PFS (p<0,001). The number of toxicity sites was statistically significant for prolonged PFS (p=0.0315). The highest OS was noted in the group presenting grade 1 and grade 2 adverse effects. Conclusions: Obtained results confirm the existence of the prolonged OS and PFS in the adverse-effects-charged patients, mostly in the group presenting mild to intermediate (Grade 1 and Grade 2) adverse effects and late toxicity onset. Simultaneously our results suggest a correlation between treatment response rate and the toxicity grade of the adverse effects and the time of the toxicity onset. Similar results were obtained in several similar research conducted - with the proven tendency of better survival in mild and moderate toxicity; meanwhile, other studies in the area suggested an advantage in patients with any toxicity regardless of the grade. The contradictory results strongly suggest the need for further research on this topic, with a focus on additional factors influencing the course of the treatment.Keywords: adverse effects, immunotherapy, lung cancer, PD-1/PD-L1 inhibitors
Procedia PDF Downloads 92686 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes
Authors: H. Ishii, S. Araki, H. Yamamoto
Abstract:
In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.Keywords: membrane, perovskite structure, dual-phase, carbonate
Procedia PDF Downloads 367685 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 76684 A Modified QuEChERS Method Using Activated Carbon Fibers as r-DSPE Sorbent for Sample Cleanup: Application to Pesticides Residues Analysis in Food Commodities Using GC-MS/MS
Authors: Anshuman Srivastava, Shiv Singh, Sheelendra Pratap Singh
Abstract:
A simple, sensitive and effective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for simultaneous analysis of multi pesticide residues (organophosphate, organochlorines, synthetic pyrethroids and herbicides) in food commodities using phenolic resin based activated carbon fibers (ACFs) as reversed-dispersive solid phase extraction (r-DSPE) sorbent in modified QuEChERS (Quick Easy Cheap Effective Rugged Safe) method. The acetonitrile-based QuEChERS technique was used for the extraction of the analytes from food matrices followed by sample cleanup with ACFs instead of traditionally used primary secondary amine (PSA). Different physico-chemical characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and Brunauer-Emmet-Teller surface area analysis were employed to investigate the engineering and structural properties of ACFs. The recovery of pesticides and herbicides was tested at concentration levels of 0.02 and 0.2 mg/kg in different commodities such as cauliflower, cucumber, banana, apple, wheat and black gram. The recoveries of all twenty-six pesticides and herbicides were found in acceptable limit (70-120%) according to SANCO guideline with relative standard deviation value < 15%. The limit of detection and limit of quantification of the method was in the range of 0.38-3.69 ng/mL and 1.26 -12.19 ng/mL, respectively. In traditional QuEChERS method, PSA used as r-DSPE sorbent plays a vital role in sample clean-up process and demonstrates good recoveries for multiclass pesticides. This study reports that ACFs are better in terms of removal of co-extractives in comparison of PSA without compromising the recoveries of multi pesticides from food matrices. Further, ACF replaces the need of charcoal in addition to the PSA from traditional QuEChERS method which is used to remove pigments. The developed method will be cost effective because the ACFs are significantly cheaper than the PSA. So the proposed modified QuEChERS method is more robust, effective and has better sample cleanup efficiency for multiclass multi pesticide residues analysis in different food matrices such as vegetables, grains and fruits.Keywords: QuEChERS, activated carbon fibers, primary secondary amine, pesticides, sample preparation, carbon nanomaterials
Procedia PDF Downloads 271683 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods
Authors: Sohyoung Won, Heebal Kim, Dajeong Lim
Abstract:
Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium
Procedia PDF Downloads 141682 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy
Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright
Abstract:
The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.Keywords: information entropy, communication in manufacturing, mass customisation, scheduling
Procedia PDF Downloads 245681 Urban Compactness and Sustainability: Beijing Experience
Authors: Xilu Liu, Ameen Farooq
Abstract:
Beijing has several compact residential housing settings in many of its urban districts. The study in this paper reveals that urban compactness, as predictor of density, may carry an altogether different meaning in the developing world when compared to the U.S for achieving objectives of urban sustainability. Recent urban design studies in the U.S are debating for compact and mixed-use higher density housing to achieve sustainable and energy efficient living environments. While the concept of urban compactness is widely accepted as an approach in modern architectural and urban design fields, this belief may not directly carry well into all areas within cities of developing countries. Beijing’s technology-driven economy, with its historic and rich cultural heritage and a highly speculated real-estate market, extends its urban boundaries into multiple compact urban settings of varying scales and densities. The accelerated pace of migration from the countryside for better opportunities has led to unsustainable and uncontrolled buildups in order to meet the growing population demand within and outside of the urban center. This unwarranted compactness in certain urban zones has produced an unhealthy physical density with serious environmental and ecological challenging basic living conditions. In addition, crowding, traffic congestion, pollution and limited housing surrounding this compactness is a threat to public health. Several residential blocks in close proximity to each other were found quite compacted, or ill-planned, with residential sites due to lack of proper planning in Beijing. Most of them at first sight appear to be compact and dense but further analytical studies revealed that what appear to be dense actually are not as dense as to make a good case that could serve as the corner stone of sustainability and energy efficiency. This study considered several factors including floor area ratio (FAR), ground coverage (GSI), open space ratio (OSR) as indicators in analyzing urban compactness as a predictor of density. The findings suggest that these measures, influencing the density of residential sites under study, were much smaller in density than expected given their compact adjacencies. Further analysis revealed that several residential housing appear to support the notion of density in its compact layout but are actually compacted due to unregulated planning marred by lack of proper urban design standards, policies and guidelines specific to their urban context and condition.Keywords: Beijing, density, sustainability, urban compactness
Procedia PDF Downloads 424680 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study
Authors: Thomas Arink, Isam Janajreh
Abstract:
The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires
Procedia PDF Downloads 520679 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert
Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh
Abstract:
The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara
Procedia PDF Downloads 158678 Factors Impacting Training and Adult Education Providers’ Business Performance: The Singapore Context
Abstract:
The SkillsFuture Singapore’s mission to develop a responsive and forward-looking Training and Adult Education (TAE) and workforce development system is undergirded by how successful TAE providers are in their business performance and strategies that strengthen their operational efficiency and processes. Therefore, understanding the factors that drive the business performance of TAE providers is critical to the success of SkillsFuture Singapore’s initiatives. This study aims to investigate how business strategy, work autonomy, work intensity and professional development support impact the business performance of private TAE providers. Specifically, the three research questions are: (1) Are there significant relationships between the above-mentioned four factors and TAE providers’ business performance?; (2) Are there significant differences on the four factors between low and high TAE providers’ business performance groups?; and (3) To what extent and in what manner do the four factors predict TAE providers’ business performance? This was part of the first national study on organizations and professionals working in the Training and Adult Education (TAE) sector. Data from 265 private TAE providers where respondents were Chief Executive Officers representatives from the Senior Management were analyzed. The results showed that business strategy (the extent that the organization leads the way in terms of developing new products and services; uses up-to-date learning technologies; customizes its products and services to the client’s needs), work autonomy (the extent that the staff personally have an influence on how hard they work; deciding what tasks they are to do; deciding how they are to do the tasks, and deciding the quality standards to which they work) and professional development support (both monetary and non-monetary support and incentives) had positive and significant relationships with business performance. However, no significant relationship is found between work intensity and business performance. A business strategy, work autonomy and professional development support were significantly higher in the high business performance group compared to the low-performance group among the TAE providers. Results of hierarchical regression analyses controlling for the size of the TAE providers showed significant impacts of business strategy, work autonomy and professional development support on TAE providers’ business performance. Overall, the model accounted for 27% of the variance in TAE providers’ business performance. This study provides policymakers with insights into improving existing policies, designing new initiatives and implementing targeting interventions to support TAE providers. The findings also have implications on how the TAE providers could better formulate their organizational strategies and business models. Finally, limitations of study, along with directions for future research will be discussed in the paper.Keywords: adult education, business performance, business strategy, training, work autonomy
Procedia PDF Downloads 208677 Marketing and Pharmaceutical Analysis of Medical Cosmetics in Bulgaria and Japan
Authors: V. Petkova, V. Valchanova, D. Grekova, K. Andreevska, S. T. Geurguiev, V. Madgarov, D. Grekov
Abstract:
Introduction: Production, distribution and sale of cosmetics is a global industry, which played a key role in the European Union (EU), the US and Japan. A major participant EU whose market cosmetics is greater than in the US and 2 times greater than that in Japan. The output value of the cosmetics industry in the EU is estimated at about € 35 billion in 2001. Nearly 5 billion cosmetic products (number of packages) are sold annually in the EU, and the main markets are France, Germany, Italy, Spain and the UK. The aim of the study is legal and marketing analysis of cosmetic products dispensed in a pharmacy. Materials and methodology: Historical legislative analysis - the method is applied in the analysis of changes in the legislative regulation of the activities of cosmetic products in Japan and Bulgaria Comparative legislative analysis - the method is applied when comparing the legislative requirements for cosmetic products in the already mentioned countries. Both methods are applied to the following regulations: 1) Japanese Pharmaceuticals Affairs Law, Tokyo, Japan, Ministry of Health, Labour and Welfare; 2) Law on Medicinal Products for Human Use; effective from 3.01.2014. Results: The legislative framework for cosmetic products in Bulgaria and Japan is close and generally includes general guidelines: Definition of a medicinal product; Categorization of drugs (with differences in sub-categories); Pre-registration and marketing approval of the competent authorities; Compulsory compliance with gmp (unlike cosmetics); Regulatory focus on product quality, efficacy and safety; Obligations for labeling of such products; Created systems Pharmacovigilance and commitment of all parties - industry and health professionals; The main similarities in the regulation of products classified as cosmetics are in the following segments: Full producer responsibility for product safety; Surveillance of market regulatory authorities; No need for pre-registration or pre-marketing approval (a basic requirement for notification); Without restrictions on sales channels; GMP manuals for cosmetics; Regulatory focus on product safety (than over efficiency); General requirements in labeling: The main differences in the regulation of products classified as cosmetics are in the following segments: Details in the regulation of cosmetic products; Future convergence of regulatory frameworks can contribute to the removal of barriers to trade, to encourage innovation, while simultaneously ensuring a high level of protection of consumer safety.Keywords: cosmetics, legislation, comparative analysis, Bulgaria, Japan
Procedia PDF Downloads 592676 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades
Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac
Abstract:
With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.Keywords: assessment, closed cavity façade, life cycle, sustainability
Procedia PDF Downloads 192675 Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles
Authors: Sayed Mansour, Mohammad Aldoasri, Nagib Elmarzugi, Nadia A. Al-Mouallimi
Abstract:
The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin.Keywords: epoxy resins, nanocomposites, clay nanoparticles, re-assembly, archaeological massive stones, mechanical properties
Procedia PDF Downloads 113674 Derivational Morphology Training Improves Spelling in School-Aged Children
Authors: Estelle Ardanouy, Helene Delage, Pascal Zesiger
Abstract:
Morphological awareness contributes to the acquisition of reading and spelling in typical learners as well as in children with learning disorders. Indeed, the acquisition of phoneme-grapheme correspondences is not sufficient to master spelling, especially in inconsistent orthographic systems such as English or French. Several meta-analyses show the benefit of explicit training in derivational morphology on reading and spelling in old children (who have already learned the main grapheme-phoneme correspondences), but highlight the lack of studies with younger children, particularly in French. In this study, we chose to focus on the efficiency of an intensive training in derivational morphology on spelling skills in French-speaking four-graders (9-10 years of age). The training consisted of 1) learning how to divide words into morphemes (ex: para/pente in French, paraglider in English), as well as 2) working on the meaning of affixes in relation to existing words (ex: para/pente: to protect against – para - the slope -pente). One group of pupils (N = 37, M age = 9.5) received this experimental group training in morphology while an alternative training group (N = 34, M age = 9.6) received a visuo-semantic training based on visual cues to memorize the spelling difficulties of complex words (such as the doubling of “r” in “verre” in French -or "glass" in English-which are represented by the drawing of two glasses). Both trainings lasted a total of 15 hours at a rate of four 45 minutes sessions per week, resulting in five weeks of training in the school setting. Our preliminary results show a significant improvement in the experimental group in the spelling of affixes on the trained (p < 0.001) and untrained word lists (p <0.001), but also in the root of words on the trained (p <0.001) and untrained word lists group (p <0.001). The training effect is also present on both trained and untrained morphologically composed words. By contrast, the alternative training group shows no progress on these previous measures (p >0.15). Further analyses testing the effects of both trainings on other measures such as morphological awareness and reading of morphologically compose words are in progress. These first results support the effectiveness of explicitly teaching derivational morphology to improve spelling in school-aged children. The study is currently extended to a group of children with developmental dyslexia because these children are known for their severe and persistent spelling difficulties.Keywords: developmental dyslexia, derivational morphology, reading, school-aged children, spelling, training
Procedia PDF Downloads 177673 System Transformation: Transitioning towards Low Carbon, Resource Efficient, and Circular Economy for Global Sustainability
Authors: Anthony Halog
Abstract:
In the coming decades the world that we know today will be drastically transformed. Population and economic growth, particularly in developing countries, are radically changing the demand for food and natural resources. Due to the transformations caused by these megatrends, especially economic growth which is rapidly expanding the middle class and changing consumption patterns worldwide, it is expected that this will result to an increase of approximately 40 percent in the demand for food, water, energy and other resources in the next decades. To fulfill this demand in a sustainable and efficient manner while avoiding food and water scarcity as well as environmental catastrophes in the near future, some industries, particularly the ones involved in food and energy production, have to drastically change its current production systems towards circular and green economy. In Australia, the agri-food industry has played a very important role in the scenario described above. It is one of the major food exporters in the world, supplying fast growing international markets in Asia and the Middle East. Though the Australian food supply chains are economically and technologically developed, it has been facing enduring challenges about its international competitiveness and environmental burdens caused by its production processes. An integrated framework for sustainability assessment is needed to precisely identify inefficiencies and environmental impacts created during food production processes. This research proposes a combination of industrial ecology and systems science based methods and tools intending to develop a novel and useful methodological framework for life cycle sustainability analysis of the agri-food industry. The presentation highlights circular economy paradigm aiming to implement sustainable industrial processes to transform the current industrial model of agri-food supply chains. The results are expected to support government policy makers, business decision makers and other stakeholders involved in agri-food-energy production system in pursuit of green and circular economy. The framework will assist future life cycle and integrated sustainability analysis and eco-redesign of food and other industrial systems.Keywords: circular economy, eco-efficiency, agri-food systems, green economy, life cycle sustainability assessment
Procedia PDF Downloads 281672 Properties of Sustainable Artificial Lightweight Aggregate
Authors: Wasan Ismail Khalil, Hisham Khalid Ahmed, Zainab Ali
Abstract:
Structural Lightweight Aggregate Concrete (SLWAC) has been developed in recent years because it reduces the dead load, cost, thermal conductivity and coefficient of thermal expansion of the structure. So SLWAC has the advantage of being a relatively green building material. Lightweight Aggregate (LWA) is either occurs as natural material such as pumice, scoria, etc. or as artificial material produced from different raw materials such as expanded shale, clay, slate, etc. The use of SLWAC in Iraq is limited due to the lack in natural LWA. The existence of Iraqi clay deposit with different types and characteristics leads to the idea of producing artificial expanded clay aggregate. The main aim in this work is to present of the properties of artificial LWA produced in the laboratory. Available local bentonite clay which occurs in the Western region of Iraq was used as raw material to produce the LWA. Sodium silicate as liquid industrial waste material from glass plant was mixed with bentonite clay in mix proportion 1:1 by weight. The manufacturing method of the lightweight aggregate including, preparation and mixing of clay and sodium silicate, burning of the mixture in the furnace at the temperature between 750-800˚C for two hours, and finally gradually cooling process. The produced LWA was then crushed to small pieces then screened on standard sieve series and prepared with grading which conforms to the specifications of LWA. The maximum aggregate size used in this investigation is 10 mm. The chemical composition and the physical properties of the produced LWA are investigated. The results indicate that the specific gravity of the produced LWA is 1.5 with the density of 543kg/m3 and water absorption of 20.7% which is in conformity with the international standard of LWA. Many trail mixes were carried out in order to produce LWAC containing the artificial LWA produced in this research. The selected mix proportion is 1:1.5:2 (cement: sand: aggregate) by weight with water to cement ratio of 0.45. The experimental results show that LWAC has oven dry density of 1720 kg/m3, water absorption of 8.5%, the thermal conductivity of 0.723 W/m.K and compressive strength of 23 N/mm2. The SLWAC produced in this research can be used in the construction of different thermal insulated buildings and masonry units. It can be concluded that the SLWA produced in this study contributes to sustainable development by, using industrial waste materials, conserving energy, enhancing the thermal and structural efficiency of concrete.Keywords: expanded clay, lightweight aggregate, structural lightweight aggregate concrete, sustainable
Procedia PDF Downloads 328671 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 144