Search results for: students with learning disabilities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10810

Search results for: students with learning disabilities

3580 Crisis In/Out, Emergent, and Adaptive Urban Organisms

Authors: Alessandra Swiny, Michalis Georgiou, Yiorgos Hadjichristou

Abstract:

This paper focuses on the questions raised through the work of Unit 5: ‘In/Out of crisis, emergent and adaptive’; an architectural research-based studio at the University of Nicosia. It focusses on sustainable architectural and urban explorations tackling with the ever growing crises in its various types, phases and locations. ‘Great crisis situations’ are seen as ‘great chances’ that trigger investigations for further development and evolution of the built environment in an ultimate sustainable approach. The crisis is taken as an opportunity to rethink the urban and architectural directions as new forces for inventions leading to emergent and adaptive built environments. The Unit 5’s identity and environment facilitates the students to respond optimistically, alternatively and creatively towards the global current crisis. Mark Wigley’s notion that “crises are ultimately productive” and “They force invention” intrigued and defined the premises of the Unit. ‘Weather and nature are coauthors of the built environment’ Jonathan Hill states in his ‘weather architecture’ discourse. The weather is constantly changing and new environments, the subnatures are created which derived from the human activities David Gissen explains. The above set of premises triggered innovative responses by the Unit’s students. They thoroughly investigated the various kinds of crisis and their causes in relation to their various types of Terrains. The tools used for the research and investigation were chosen in contradictive pairs to generate further crisis situations: The re-used/salvaged competed with the new, the handmade rivalling with the fabrication, the analogue juxtaposed with digital. Students were asked to delve into state of art technologies in order to propose sustainable emergent and adaptive architectures and Urbanities, having though always in mind that the human and the social aspects of the community should be the core of the investigation. The resulting unprecedented spatial conditions and atmospheres of the emergent new ways of living are deemed to be the ultimate aim of the investigation. Students explored a variety of sites and crisis conditions such as: The vague terrain of the Green Line in Nicosia, the lost footprints of the sinking Venice, the endangered Australian coral reefs, the earthquake torn town of Crevalcore, and the decaying concrete urbanscape of Athens. Among other projects, ‘the plume project’ proposes a cloud-like, floating and almost dream-like living environment with unprecedented spatial conditions to the inhabitants of the coal mine of Centralia, USA, not just to enable them to survive but even to prosper in this unbearable environment due to the process of the captured plumes of smoke and heat. Existing water wells inspire inversed vertical structures creating a new living underground network, protecting the nomads from catastrophic sand storms in the Araoune of Mali. “Inverted utopia: Lost things in the sand”, weaves a series of tea-houses and a library holding lost artifacts and transcripts into a complex underground labyrinth by the utilization of the sand solidification technology. Within this methodology, crisis is seen as a mechanism for allowing an emergence of new and fascinating ultimate sustainable future cultures and cities.

Keywords: adaptive built environments, crisis as opportunity, emergent urbanities, forces for inventions

Procedia PDF Downloads 432
3579 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 123
3578 Mealtime Talk as a Context of Learning: A Multiple Case Study of Australian Chinese Parents' Interaction with Their Preschool Aged Children at Dinner Table

Authors: Jiangbo Hu, Frances Hoyte, Haiquan Huang

Abstract:

Research identifies that mealtime talk can be a significant learning context that provides children with rich experiences to foster their language and cognitive development. Middle-classed parents create an extended learning discourse for their children through sophisticated vocabulary, narrative and explanation genres at dinner table. However, mealtime opportunities vary with some parents having little interaction with their children and some parents focusing on directive of children’s behaviors. This study investigated five Chinese families’ parent-child interaction during mealtime that was rarely reported in the literature. The five families differ in terms of their living styles. Three families are from professional background where both mothers the fathers work in Australian companies and both of them present at dinner time. The other two families own business. The mothers are housemakers and the fathers are always absent at dinner time due to their busy business life. Employing case study method, the five Chinese families’ parent-child interactions at dinner table were recorded using a video camera. More than 3000 clauses were analyzed with the framework of 'systems of clause complexing' from systemic functional linguistic theory. The finding shows that mothers played a critical role in the interaction with their children by initiating most conversations. The three mothers from professional background tended to use more language in extending and expanding pattern that is beneficial for children’s language development and high level of thinking (e.g., logical thinking). The two house making mothers’ language focused more on the directive of their children’s social manners and dietary behaviors. The fathers though seemed to be less active, contributing to the richness of the conversation through their occasional props such as asking open questions or initiating a new topic. In general, the families from professional background were more advantaged in providing learning opportunities for their children at dinner table than the families running business were. The home experiences of Chinese children is an important topic in research due to the rapidly increasing number of Chinese children in Australia and other English speaking countries. Such research assist educators in the education of Chinese children with more awareness of Chinese children experiences at home that could be very unlike the settings in English schools. This study contributes to the research in this area through the analysis of language in parent-child interaction during mealtime, which is very different from previous research that mainly investigated Chinese families through survey and interview. The finding of different manners in language use between the professional families and business families has implication for the understanding of the variation of Chinese children’s home experiences that is influenced not only by parents’ socioeconomic status but their lifestyles.

Keywords: Chinese children, Chinese parents, mealtime talk, parent-child interaction

Procedia PDF Downloads 235
3577 From Paper to the Ether: The Innovative and Historical Development of Distance Education from Correspondence to On-Line Learning and Teaching in Queensland Universities over the past Century

Authors: B. Adcock, H. van Rensburg

Abstract:

Education is ever-changing to keep up with innovative technological development and the rapid acceleration of globalisation. This chapter introduces the historical development and transformation of teaching in distance education from correspondence to on-line learning in Queensland universities. It furthermore investigates changes to the delivery models of distance education that have impacted on teaching at tertiary level in Queensland, and reflects on the social changes that have taken place during the past 100 years. This includes an analysis of the following five different periods in time: Foundation period (1911-1919) including World War I; 1920-1939 including the Great Depression; 1940-1970s, including World War II and the post war reconstruction; and the current technological era (1980s to present). In Queensland, the concept of distance education was begun by the University of Queensland (UQ) in 1911, when it began offering extension courses. The introduction of modern technology, in the form of electronic delivery, dramatically changed tertiary distance education due to political initiatives. The inclusion of electronic delivery in education signifies change at many levels, including policy, pedagogy, curriculum and governance. Changes in delivery not only affect the way study materials are delivered, but also the way courses are be taught and adjustments made by academics to their teaching methods.

Keywords: distance education, innovative technological development, on line education, tertiary education

Procedia PDF Downloads 507
3576 Controlled Digital Lending, Equitable Access to Knowledge and Future Library Services

Authors: Xuan Pang, Alvin L. Lee, Peggy Glatthaar

Abstract:

Libraries across the world have been an innovation engine of creativity and opportunityin many decades. The on-going global epidemiology outbreak and health crisis experience illuminates potential reforms, rethinking beyond traditional library operations and services. Controlled Digital Lending (CDL) is one of the emerging technologies libraries used to deliver information digitally in support of online learning and teachingand make educational materials more affordable and more accessible. CDL became a popular term in the United States of America (USA) as a result of a white paper authored by Kyle K. Courtney (Harvard University) and David Hansen (Duke University). The paper gave the legal groundwork to explore CDL: Fair Use, First Sale Doctrine, and Supreme Court rulings. Library professionals implemented this new technology to fulfill their users’ needs. Three libraries in the state of Florida (University of Florida, Florida Gulf Coast University, and Florida A&M University) started a conversation about how to develop strategies to make CDL work possible at each institution. This paper shares the stories of piloting and initiating a CDL program to ensure students have reliable, affordable access to course materials they need to be successful. Additionally, this paper offers an overview of the emerging trends of Controlled Digital Lending in the USA and demonstrates the development of the CDL platforms, policies, and implementation plans. The paper further discusses challenges and lessons learned and how each institution plans to sustain the program into future library services. The fundamental mission of the library is providing users unrestricted access to library resources regardless of their physical location, disability, health status, or other circumstances. The professional due diligence of librarians, as information professionals, is to makeeducational resources more affordable and accessible.CDL opens a new frontier of library services as a mechanism for library practice to enhance user’s experience of using libraries’ services. Libraries should consider exploring this tool to distribute library resources in an effective and equitable way. This new methodology has potential benefits to libraries and end users.

Keywords: controlled digital lending, emerging technologies, equitable access, collaborations

Procedia PDF Downloads 142
3575 De-Learning Language at Preschool: A Case of Nepal

Authors: Meenakshi Dahal

Abstract:

Generally, children start verbal communication by the age of eighteen months. Though they have difficulties in constructing complete sentences, they try to make their thought s understandable to the audience. By the age of 36 months, when they enroll in preschool, their Language and communication skills are enhanced. Children need plenty of classroom experiences that will help them to develop their oral language skills. Oral language is the primary means through which each individual child is enabled to structure, evaluate, describe and to express his/her experiences. In the context of multi lingual and multi-cultural country like Nepal, the languages used in preschool and the communities vary. In such a case, the language of instruction in the preschool is different from the language used by the children to communicate at home. Using qualitative research method the socio-cultural aspect of the language learning has been analyzed. This has been done by analyzing and exploring preschool activities as well as the language of instruction and communication in the preschools in rural Nepal. It is found that the language of instruction is different from the language of communications primarily used by the children. Teachers seldom use local language resulting in difficulties for the children to understand. Instead of recognizing their linguistic, social and cultural capitals teachers conform to using the Nepali language which the children are not familiar with. Children have to adapt to new language structures and patterns of usage resulting them to be slow in oral language and communication in the preschool. The paper concludes that teachers have to recognize the linguistic capitals of the children and schools need to be responsible to facilitate this process for all children, whatever their language background.

Keywords: children, language, preschool, socio-culture

Procedia PDF Downloads 397
3574 Exploring the Role of Media Activity Theory as a Conceptual Basis for Advancing Journalism Education: A Comprehensive Analysis of Its Impact on News Production and Consumption in the Digital Age

Authors: Shohnaza Uzokova Beknazarovna

Abstract:

This research study provides a comprehensive exploration of the Theory of Media Activity and its relevance as a conceptual framework for journalism education. The author offers a thorough review of existing literature on media activity theory, emphasizing its potential to enhance the understanding of the evolving media landscape and its implications for journalism practice. Through a combination of theoretical analysis and practical examples, the paper elucidates the ways in which the Theory of Media Activity can inform and enrich journalism education, particularly in relation to the interactive and participatory nature of contemporary media. The author presents a compelling argument for the integration of media activity theory into journalism curricula, emphasizing its capacity to equip students with a nuanced understanding of the reciprocal relationship between media producers and consumers. Furthermore, the paper discusses the implications of technological advancements on media production and consumption, highlighting the need for journalism educators to prepare students to navigate and contribute to the future of journalism in a rapidly changing media environment. Overall, this research paper offers valuable insights into the potential benefits of embracing the Theory of Media Activity as a foundational framework for journalism education. Its thorough analysis and practical implications make it a valuable resource for educators, researchers, and practitioners seeking to enhance journalism pedagogy in response to the dynamic nature of contemporary media.

Keywords: theory of media activity, journalism education, media landscape, media production, media consumption, interactive media, participatory media, technological advancements, media producers, media consumers, journalism practice, contemporary media environment, journalism pedagogy, media theory, media studies

Procedia PDF Downloads 51
3573 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 110
3572 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms

Authors: Ahmad E. Aldousaria, Abdulla Al Kafy

Abstract:

Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.

Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing

Procedia PDF Downloads 230
3571 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 23
3570 The Impact of Corporate Social Responsibility on Tertiary Institutions in Bauchi State Nigeria

Authors: Aliyu Aminu Baba, Mustapha Makama

Abstract:

Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, these institutions are solely financed by the government alone. As stakeholders of society, corporations have to have to intervene and provide corporate social responsibility. The study intends to investigate the role of Entrepreneurs in incorporating social Responsibility. Tertiary institutions are citadel of learning and societal orientation. Due to the huge investment of various government to tertiary institutions, the study intends to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and Entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State. Corporate social responsibility is vital in enhancing the infrastructural development of the tertiary institution as almost all individuals and corporate bodies benefit from this tertiary institutions. The study intends to examine the impact of corporate social responsibility to tertiary institutions and entrepreneurs in Bauchi state Nigeria. Questionnaires would be distributed to tertiary institutions and entrepreneurs in the Bauchi metropolis. The data collected will be analyzed with the help of SPSS version 23. The main objective is to investigate the role of businesses and Entrepreneurs, which could be among the important contributions of businesses and entrepreneurs on corporate social Responsibility to Tertiary Institutions in Bauchi State.

Keywords: corporate social responsibility, tertiary, institutions, profitability

Procedia PDF Downloads 232
3569 Differences in Preschool Educators' and Parents' Interactive Behavior during a Cooperative Task with Children

Authors: Marina Fuertes

Abstract:

Introduction: In everyday life experiences, children are solicited to cooperate with others. Often they perform cooperative tasks with their parents (e.g., setting the table for dinner) or in school. These tasks are very significant since children may learn to turn taking in interactions, to participate as well to accept others participation, to trust, to respect, to negotiate, to self-regulate their emotions, etc. Indeed, cooperative tasks contribute to children social, motor, cognitive and linguistic development. Therefore, it is important to study what learning, social and affective experiences are provided to children during these tasks. In this study, we included parents and preschool educators. Parents and educators are both significant: educative, interactive and affective figures. Rarely parents and educators behavior have been compared in studies about cooperative tasks. Parents and educators have different but complementary styles of interaction and communication. Aims: Therefore, this study aims to compare parents and educators' (of both genders) interactive behavior (cooperativity, empathy, ability to challenge the child, reciprocity, elaboration) during a play/individualized situation involving a cooperative task. Moreover, to compare parents and educators' behavior with girls and boys. Method: A quasi-experimental study with 45 dyads educators-children and 45 dyads with parents and their children. In this study, participated children between 3 and 5 years old and with age appropriate development. Adults and children were videotaped using a variety of materials (e.g., pencils, wood, wool) and tools (e.g., scissors, hammer) to produce together something of their choice during 20-minutes. Each dyad (one adult and one child) was observed and videotaped independently. Adults and children agreed and consented to participate. Experimental conditions were suitable, pleasant and age appropriated. Results: Findings indicate that parents and teachers offer different learning experiences. Teachers were more likely to challenged children to explore new concepts and to accept children ideas. In turn, parents gave more support to children actions and were more likely to use their own example to teach children. Multiple regression analysis indicates that parent versus educator status predicts their behavior. Gender of both children and adults affected the results. Adults acted differently with girls and boys (e.g., adults worked more cooperatively with girls than boys). Male participants supported more girls participation rather than boys while female adults allowed boys to make more decisions than girls. Discussion: Taking our results and past studies, we learn that different qualitative interactions and learning experiences are offered by parents, educators according to parents and children gender. Thus, the same child needs to learn different cooperative strategies according to their interactive patterns and specific context. Yet, cooperative play and individualized activities with children generate learning opportunities and benefits children participation and involvement.

Keywords: early childhood education, parenting, gender, cooperative tasks, adult-child interaction

Procedia PDF Downloads 329
3568 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 292
3567 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 78
3566 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 198
3565 Physical, Psychological, and Sexual Implications of Living with Rheumatoid Arthritis among Women in Re

Authors: Anwaar Anwar Tayel

Abstract:

Background: Rheumatic arthritis (RA) affect all aspects of patients' life, lead to various degrees of disability, and ultimately has a profound impact on the social, economic, psychological, and sexual aspects of the patient's life. Aim of the study: Identify physical, psychological, and sexual implications of rheumatoid arthritis among women in reproductive age. In addition to investigating the correlations between physical functional disability, psychological problems, and sexual dysfunction.Settings: The study was conducted at Rheumatology Clinic at the Main University Hospital of Alexandria. Subjects: Purposive sample was chosen from women patients with rheumatoid arthritis to be subjects of this study (n=250). Tools: Four tools were used to collect data. Tool I: Socio-demographic questionnaire. Tool II: Stanford Health Assessment Questionnaire Disability Index (HAQ- DI). Tool III: Depression Anxiety Stress Scale (DASS). Tool IV: The Sexual Dysfunction Questionnaire (SDQ) Results: The majority of the studied women suffer from severe physical disability, extreme level of depression, anxiety, and about half of them had an extreme level of stress. Also, the majority of the studied women had a severe level of sexual dysfunction. Also, statistically significant correlations between women's physical disability index, psychological problems, and sexual dysfunction were detected. Conclusion: The findings from this study confirm that women patients with RA suffer from multiple negative implications on the physical, psychological and sexual functions. Recommendations: Provide ongoing support to the patients from the time of diagnosis throughout their care and management. To help them to manage their pain and disabilities, improve their sexual function, promote their mental health, and optimize psychosocial functioning

Keywords: pysical, spycholgical, sexual, implication, rheumatic arthritis

Procedia PDF Downloads 138
3564 Environmental Education and Sustainable Development: the Contribution of Eco-Schools Program

Authors: Sara Rute Monteiro Silva Sousa

Abstract:

Since the second half of the 20th century, environmental problems began to generate deep concern around the world. The harmful effects of human's irresponsible actions are increasingly evident, profoundly affecting biodiversity and even human health. Given the seriousness of this human footprint, governments, organizations, and civil society must all be more proactive and adopt more effective measures to solve environmental problems and promote sustainable development. This can be achieved through different tools, namely through a more efficient education that enables current and future generations to meet their needs in an integrated approach to the economic, social, and environmental dimensions of sustainable development. In this context, schools play a key role, being responsible for educating today's students and tomorrow's leaders, decision makers, intellectuals, managers, politicians, employers, and parents. Aware of this crucial role of education and schools, the Foundation for Environmental Education created the Eco-Schools program in 1992, ensuring that schools develop a whole-school approach to environmental and sus-tainable education. This research aims to increase knowledge and information about the efficiency of the Eco-Schools program as a promoter of more sustainable schools and communities. This research study analyses a specific case of a Portuguese higher education institution in the area of management, accounting, and administration. A description, reflection, and discussion are made on some of the main measures implemented in the last academic year of 2021/22 within the scope of the Eco-Schools program, concluding that, despite some implementation difficulties, the program was successfully developed, involving the participation of students, teachers, staff, and outside school community members, being awarded with the Green Flag as a recognition of its key contribution to a more sustainable society.

Keywords: sustainable development, environmental education, eco-schools program, higher education institutions, portugal

Procedia PDF Downloads 241
3563 Academia as Creator of Emerging, Innovative Communities of Practice and Learning

Authors: Francisco Julio Batle Lorente

Abstract:

The present paper aims at presenting a new category of role for academia: proactive creator/promoter of communities of practice in emerging areas of innovation. It is based in research among practitioners in three different areas: social entrepreneurship, alumni engaged in entrepreneurship and innovation, and digital nomads. The concept of CoP is related to an intentionally created space to share experiences and collectively reflect on the cases arising from practice. Such an endeavour is not contemplated in the literature on academic roles in an explicit way. The goal of the paper is providing a framework for this function and throw some light on the perception and priorities of members of emerging communities (78 alumni, 154 social entrepreneurs, and 231 digital nomads) regarding community, learning, engagement, and networking, areas in which the university can help and, by doing so, contributing to signal the emerging area and creating new opportunities for the academia. The research methodology was based in Survey research. It is a specific type of field study that involves the collection of data from a sample of elements drawn from a well-defined population through the use of a questionnaire. It was considered that survey research might be valuable to the present project and help outline the utility of various study designs and future projects with the emerging communities that are the object of the investigation. Open questions were used for different topics, as well as critical incident technique. It was used a standard technique for survey sampling and questionnaire design. Finally, it was defined a procedure for pretesting questionnaires and for data collection. The questionnaire was channelled by means of google forms. The results indicate that the members of emerging, innovative CoPs and learning such the ones that were selected for this investigation lack cohesion, inspiration, networking, opportunities for creation of social capital, opportunities for collaboration beyond their existing and close network. The opportunity that arises for the academia from proactively helping articulate CoP (and Communities of learning) are related to key elements of any CoP/ CoL: community construction approaches, technological infrastructure, benefits, participation issues and urgent challenges, trust, networking, technical ability/training/development and collaboration. Beyond training, other three areas (networking, collaboration and urgent challenges) were the ones in which the contribution of universities to the communities were considered more interesting and workable to practitioners. The analysis of the responses for the open questions related to perception of the universities offer options for terra incognita to be explored for universities (signalling new areas, establishing broader collaborations with research, government, media and corporations, attracting investment). Based on the findings from this research, there is some evidence that CoPs can offer a formal and informal method of professional and interprofessional development for member of any emerging and innovative community and can decrease social and professional isolation. The opportunity that it offers to academia can increase the entrepreneurial and engaged university identity. It also moves to academia into a realm of civic confrontation of present and future challenges in a more proactive way.

Keywords: social innovation, new roles of academia, community of learning, community of practice

Procedia PDF Downloads 86
3562 Automation of AAA Game Development Using AI

Authors: Branden Heng, Harsheni Siddharthan, Allison Tseng, Paul Toprac, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high-budget, high-profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 12 AI tools for game development. During this process, the following tools were found to be the most productive: (i) ChatGPT 4.0 for both game and narrative concepts and documentation; (ii) Dall-E 3 and OpenArt for concept art; (iii) Beatoven for music drafting; (iv) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are, at best, tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 31
3561 A Low Cost Education Proposal Using Strain Gauges and Arduino to Develop a Balance

Authors: Thais Cavalheri Santos, Pedro Jose Gabriel Ferreira, Alexandre Daliberto Frugoli, Lucio Leonardo, Pedro Americo Frugoli

Abstract:

This paper presents a low cost education proposal to be used in engineering courses. The engineering education in universities of a developing country that is in need of an increasing number of engineers carried out with quality and affordably, pose a difficult problem to solve. In Brazil, the political and economic scenario requires academic managers able to reduce costs without compromising the quality of education. Within this context, the elaboration of a physics principles teaching method with the construction of an electronic balance is proposed. First, a method to develop and construct a load cell through which the students can understand the physical principle of strain gauges and bridge circuit will be proposed. The load cell structure was made with aluminum 6351T6, in dimensions of 80 mm x 13 mm x 13 mm and for its instrumentation, a complete Wheatstone Bridge was assembled with strain gauges of 350 ohms. Additionally, the process involves the use of a software tool to document the prototypes (design circuits), the conditioning of the signal, a microcontroller, C language programming as well as the development of the prototype. The project also intends to use an open-source I/O board (Arduino Microcontroller). To design the circuit, the Fritizing software will be used and, to program the controller, an open-source software named IDE®. A load cell was chosen because strain gauges have accuracy and their use has several applications in the industry. A prototype was developed for this study, and it confirmed the affordability of this educational idea. Furthermore, the goal of this proposal is to motivate the students to understand the several possible applications in high technology of the use of load cells and microcontroller.

Keywords: Arduino, load cell, low-cost education, strain gauge

Procedia PDF Downloads 308
3560 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 179
3559 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 145
3558 Systems Intelligence in Management (High Performing Organizations and People Score High in Systems Intelligence)

Authors: Raimo P. Hämäläinen, Juha Törmänen, Esa Saarinen

Abstract:

Systems thinking has been acknowledged as an important approach in the strategy and management literature ever since the seminal works of Ackhoff in the 1970´s and Senge in the 1990´s. The early literature was very much focused on structures and organizational dynamics. Understanding systems is important but making improvements also needs ways to understand human behavior in systems. Peter Senge´s book The Fifth Discipline gave the inspiration to the development of the concept of Systems Intelligence. The concept integrates the concepts of personal mastery and systems thinking. SI refers to intelligent behavior in the context of complex systems involving interaction and feedback. It is a competence related to the skills needed in strategy and the environment of modern industrial engineering and management where people skills and systems are in an increasingly important role. The eight factors of Systems Intelligence have been identified from extensive surveys and the factors relate to perceiving, attitude, thinking and acting. The personal self-evaluation test developed consists of 32 items which can also be applied in a peer evaluation mode. The concept and test extend to organizations too. One can talk about organizational systems intelligence. This paper reports the results of an extensive survey based on peer evaluation. The results show that systems intelligence correlates positively with professional performance. People in a managerial role score higher in SI than others. Age improves the SI score but there is no gender difference. Top organizations score higher in all SI factors than lower ranked ones. The SI-tests can also be used as leadership and management development tools helping self-reflection and learning. Finding ways of enhancing learning organizational development is important. Today gamification is a new promising approach. The items in the SI test have been used to develop an interactive card game following the Topaasia game approach. It is an easy way of engaging people in a process which both helps participants see and approach problems in their organization. It also helps individuals in identifying challenges in their own behavior and in improving in their SI.

Keywords: gamification, management competence, organizational learning, systems thinking

Procedia PDF Downloads 101
3557 A Proposal for Professional Development of Mathematics Teachers in the Kingdom of Saudi Arabia According to the Orientation of Science, Technology, Engineering and Mathematics (STEM)

Authors: Ali Taher Othman Ali

Abstract:

The aim of this research is to provide a draft proposal for the professional development of mathematics teachers in accordance with the orientation of science, technology, engineering and mathematics which is known by the abbreviation STEM, as a modern and contemporary orientation in the teaching and learning of mathematics and in order to achieve the objective of the research, the researcher used the theoretical descriptive method through the induction of the literature of education and the previous studies and experiments related to the topic. The researcher concluded by providing the proposal according to five basic axes, the first axe: professional development as a system, and its requirements include: development of educational systems, and allocate sufficient budgets to support the requirements of teaching STEM, identifying mechanisms for incentives and rewards for teachers attending professional development programs based on STEM; the second: development of in-depth knowledge content and its requirements include: basic sciences content development for STEM, linking the scientific understanding of teachers with real-world issues and problems, to provide the necessary resources to expand teachers' knowledge in this area; the third: the necessary pedagogical skills of teachers in the field of STEM, and its requirements include: identification of the required training and development needs and the mechanism of determining these needs, the types of professional development programs and the mechanism of designing it, the mechanisms and places of execution, evaluation and follow-up; the fourth: professional development strategies and mechanisms in the field of STEM, and its requirements include: using a variety of strategies to enable teachers to design and transfer effective educational experiences which reflect their scientific mastery in the fields of STEM, provide learning opportunities, and developing the skills of procedural research to generate new knowledge about the STEM; the fifth: to support professional development in the area of STEM, and its requirements include: support leadership within the school, provide a clear and appropriate opportunities for professional development for teachers within the school through professional learning communities, building partnerships between the Ministry of education and the local and international community institutions. The proposal includes other factors that should be considered when implementing professional development programs for mathematics teachers in the field of STEM.

Keywords: professional development, mathematics teachers, the orientation of science, technology, engineering and mathematics (STEM)

Procedia PDF Downloads 411
3556 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 95
3555 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children

Authors: Dijana Sulejmanović

Abstract:

Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.

Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification

Procedia PDF Downloads 332
3554 Engaging With Sex, Gender and Sexuality Diversity at Higher Education Institutions

Authors: Shakila Singh

Abstract:

Dominant discourses constitute heterosexuality as natural, normal and the only legitimate sexuality, and diverse sexual subjectivities as abnormal, unnatural and socially taboo. Similarly, the cisgender subject is reified. There are ongoing debates about the inclusion and suitability of sexuality education in the school curriculum and research show that teachers are not adequately prepared to teach about such issues in the classroom. Not surprising then, that many young people enter these institutions having had limited previous exposure to, or education about, sex, gender and sexuality diversity. This paper discusses the presence of heterosexism and cissexism at multiple layers in higher education institutions, impacting students and staff. Increasing knowledge and awareness of sex, gender and sexuality diversities is also crucial to challenging existing perceptions of sex, gender and sexuality diversities that marginalise and subordinate a large proportion of students and staff. There is a persistent disjuncture between dominant discourses that generally position higher education institutions as socially progressive, open environments and the discourses that legitimate the ascendency of heterosexual and cisgender identities. This paper argues that such disjuncture must be addressed by providing inclusive physical and emotional spaces if universities are to affirm every individual and produce graduates across all disciplines with the cultural capability to engage with increasingly diverse communities. Given the key role of language in shaping cultural and social attitudes, using gender-inclusive language is a powerful way to promote gender equality and eradicate gender bias. This means speaking and writing in a way that does not discriminate against a particular sex, gender or sexual identity and does not perpetuate gender stereotypes. Individuals must be allowed to present themselves and identify in ways they choose and be addressed by their chosen pronouns.

Keywords: heteronormativity, inclusivity, gender, universities

Procedia PDF Downloads 125
3553 Teaching Reading in English: The Neglect of Phonics in Nigeria

Authors: Abdulkabir Abdullahi

Abstract:

Nigeria has not yet welcomed phonics into its primary schools. In government-owned primary schools teachers are functionally ignorant of the stories of the reading wars amongst international scholars. There are few or no Nigerian-authored phonics textbooks, and there has been no government-owned phonics curriculum either. There are few or no academic journal articles on phonics in the country and there is, in fact, a certain danger of confusion between phonics and phonetics among Nigerian publishers, authors, writers and academics as if Nigerian teachers of English and the educational policy makers of the country were unaware of reading failures/problems amongst Nigerian children, or had never heard of phonics or read of the stories of the reading wars or the annual phonics test in the United Kingdom, the United States of America and other parts of the world. It is on this note that this article reviews and examines, in the style of a qualitative inquiry, the body of arguments on phonics, and explores the effectiveness of phonics teaching, particularly, in a second-language learning contexts. While the merit of the paper is, perhaps, situated in its supreme effort to draw global attention to reading failures/problems in Nigeria and the ways the situation may affect English language learning, international academic relations and the educational future of the country, it leaves any quantitative verification of its claims to interested quantitative researchers in the world.

Keywords: graphemes, phonics, reading, reading wars, reading theories, phonemic awareness

Procedia PDF Downloads 239
3552 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 219
3551 Family Models in Contemporary Multicultural Society: Exploratory Study Applied to Immigrants of Second and Third Generations

Authors: Danièle Peto

Abstract:

A qualitative research based on twenty-eight semi-structured interviews of students in Social Work, in Brussels (Belgium), showed specific results for the Arab and Muslim students: second and third generations immigrants build their identity on the basis of a mix of differentiation with and recognition of their parents' culture of origin. Building a bridge between Modernity and Tradition, they claim active citizenship; at the same time they show and live by values and religious believes which reinforce the link to their parents’ origins. But they present those values and believes as their own rational choices among other choices, all available and rich for our multicultural society. The way they speak of themselves is highly modern. But, they still have to build a third way to find a place for themselves in society: one allowing them to live their religion as a partially public matter (when the Occidental society leaves no such place for religion) while ensuring, at the same time, the development of independent critical thought. On this basis, other semi-structured interviews are being laid with Social workers working with families from diverse ethnic backgrounds. They will verify the reality of those identity and cultural bricolages when those young adults of second and third generations build their own family. In between the theoretical models of traditional family and modern family, shall we find a new model, hybrid and more or less stable, combining some aspects of the former and the latter? The exploratory research phase focuses on three aspects of building a family life in this context : the way those generations play, discursively or not, in between their parents and the society in which they grew up; the importance of intercultural dialogue in this process of building; and testing the hypothesis that some families, in our society, show a special way of courting Modernity.

Keywords: family models, identity bricolages, intercultural, modernity and tradition

Procedia PDF Downloads 304