Search results for: distance learning education
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13563

Search results for: distance learning education

6393 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece

Authors: Dimitrios Triantakonstantis, Demetris Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction

Procedia PDF Downloads 529
6392 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites

Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui

Abstract:

This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.

Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities

Procedia PDF Downloads 11
6391 Characterizing Content Language Integrated Learning (CLIL) Teaching in an EFL Primary School: A Case Study

Authors: Alfia Sari

Abstract:

The implementation of the Content Language Integrated Learning (CLIL) approach in Indonesia has shown positive impacts in several educational institutions. Several studies have proven the benefits of implementing the CLIL approach, including the development of students’ language and content subject knowledge. Interestingly, one primary school in Surabaya, Indonesia, has been successfully implementing the CLIL approach. The students achieved high content and language subject scores, and the school was accredited A. A study on how the CLIL approach was practiced is important to investigate how teachers implemented it and how students benefited from it. Therefore, this present study attempted to investigate the implementation of the CLIL approach in this school to characterize good practices that can be implemented in other schools. A case study was conducted to observe its implementation in the third-grade classes (English, Science, and Math) by using the Protocol for Language Arts Teaching Observation (PLATO). The findings indicated that the CLIL teaching in this school accommodated the content and language well (scores 3-4). The content and language were clearly integrated, and the teachers successfully carried out the subjects in English. Teachers offered students opportunities to listen, speak, read, and write using the target language. This study described some characteristics of CLIL teaching in primary school that can be used as examples for future CLIL teachers to integrate the content and language in their teaching practices.

Keywords: CLIL, ELT, young learners, case study

Procedia PDF Downloads 49
6390 Design and Analysis of Wireless Charging Lane for Light Rail Transit

Authors: Watcharet Kongwarakom, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong

Abstract:

This paper presents a design and analysis of wireless charging lane system (WCLS) for light rail transit (LRT) by considering the performance of wireless charging, traffic conditions and energy consumption drawn by the LRT system. The dynamic of the vehicle movement in terms of the vehicle speed profile during running on the WCLS, a dwell time during stopping at the station for taking the WCLS and the capacity of the WCLS in each section are taken into account to alignment design of the WCLS. This paper proposes a case study of the design of the WCLS into 2 sub-cases including continuous and discontinuous WCLS with the same distance of WCLS in total. The energy consumption by the LRT through the WCLS with the different designs of the WCLS is compared to find out the better configuration of those two cases by considering the best performance of the power transfer between the LRT and the WCLS.

Keywords: Light rail transit, Wireless charging lane, Energy consumption, Power transfer

Procedia PDF Downloads 154
6389 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects

Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha

Abstract:

The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).

Keywords: artificial intelligence, space traffic management, space situational awareness, space debris

Procedia PDF Downloads 258
6388 Fostering Non-Traditional Student Success in an Online Music Appreciation Course

Authors: Linda Fellag, Arlene Caney

Abstract:

E-learning has earned an essential place in academia because it promotes learner autonomy, student engagement, and technological aptitude, and allows for flexible learning. However, despite advantages, educators have been slower to embrace e-learning for ESL and other non-traditional students for fear that such students will not succeed without the direct faculty contact and academic support of face-to-face classrooms. This study aims to determine if a non-traditional student-friendly online course can produce student retention and performance rates that compare favorably with those of students in standard online sections of the same course aimed at traditional college-level students. One Music faculty member is currently collaborating with an English instructor to redesign an online college-level Music Appreciation course for non-traditional college students. At Community College of Philadelphia, Introduction to Music Appreciation was recently designated as one of the few college-level courses that advanced ESL, and developmental English students can take while completing their language studies. Beginning in Fall 2017, the course will be critical for international students who must maintain full-time student status under visa requirements. In its current online format, however, Music Appreciation is designed for traditional college students, and faculty who teach these sections have been reluctant to revise the course to address the needs of non-traditional students. Interestingly, presenters maintain that the online platform is the ideal place to develop language and college readiness skills in at-risk students while maintaining the course's curricular integrity. The two faculty presenters describe how curriculum rather than technology drives the redesign of the digitized music course, and self-study materials, guided assignments, and periodic assessments promote independent learning and comprehension of material. The 'scaffolded' modules allow ESL and developmental English students to build on prior knowledge, preview key vocabulary, discuss content, and complete graded tasks that demonstrate comprehension. Activities and assignments, in turn, enhance college success by allowing students to practice academic reading strategies, writing, speaking, and student-faculty and peer-peer communication and collaboration. The course components facilitate a comparison of student performance and retention in sections of the redesigned and existing online sections of Music Appreciation as well as in previous sections with at-risk students. Indirect, qualitative measures include student attitudinal surveys and evaluations. Direct, quantitative measures include withdrawal rates, tests of disciplinary knowledge, and final grades. The study will compare the outcomes of three cohorts in the two versions of the online course: ESL students, at-risk developmental students, and college-level students. These data will also be compared with retention and student outcomes data of the three cohorts in f2f Music Appreciation, which permitted non-traditional student enrollment from 1998-2005. During this eight-year period, the presenter addressed the problems of at-risk students by adding language and college success support, which resulted in strong retention and outcomes. The presenters contend that the redesigned course will produce favorable outcomes among all three cohorts because it contains components which proved successful with at-risk learners in f2f sections of the course. Results of their study will be published in 2019 after the redesigned online course has met for two semesters.

Keywords: college readiness, e-learning, music appreciation, online courses

Procedia PDF Downloads 176
6387 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability

Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy

Abstract:

This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).

Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality

Procedia PDF Downloads 257
6386 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 438
6385 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone

Authors: Zhuang Hou, Xiaolei Cao

Abstract:

The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.

Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program

Procedia PDF Downloads 135
6384 The Relationship between Basic Human Needs and Opportunity Based on Social Progress Index

Authors: Ebru Ozgur Guler, Huseyin Guler, Sera Sanli

Abstract:

Social Progress Index (SPI) whose fundamentals have been thrown in the World Economy Forum is an index which aims to form a systematic basis for guiding strategy for inclusive growth which requires achieving both economic and social progress. In this research, it has been aimed to determine the relations among “Basic Human Needs” (BHN) (including four variables of ‘Nutrition and Basic Medical Care’, ‘Water and Sanitation’, ‘Shelter’ and ‘Personal Safety’) and “Opportunity” (OPT) (that is composed of ‘Personal Rights’, ‘Personal Freedom and Choice’, ‘Tolerance and Inclusion’, and ‘Access to Advanced Education’ components) dimensions of 2016 SPI for 138 countries which take place in the website of Social Progress Imperative by carrying out canonical correlation analysis (CCA) which is a data reduction technique that operates in a way to maximize the correlation between two variable sets. In the interpretation of results, the first pair of canonical variates pointing to the highest canonical correlation has been taken into account. The first canonical correlation coefficient has been found as 0.880 indicating to the high relationship between BHN and OPT variable sets. Wilk’s Lambda statistic has revealed that an overall effect of 0.809 is highly large for the full model in order to be counted as statistically significant (with a p-value of 0.000). According to the standardized canonical coefficients, the largest contribution to BHN set of variables has come from ‘shelter’ variable. The most effective variable in OPT set has been detected to be ‘access to advanced education’. Findings based on canonical loadings have also confirmed these results with respect to the contributions to the first canonical variates. When canonical cross loadings (structure coefficients) are examined, for the first pair of canonical variates, the largest contributions have been provided by ‘shelter’ and ‘access to advanced education’ variables. Since the signs for structure coefficients have been found to be negative for all variables; all OPT set of variables are positively related to all of the BHN set of variables. In case canonical communality coefficients which are the sum of the squares of structure coefficients across all interpretable functions are taken as the basis; amongst all variables, ‘personal rights’ and ‘tolerance and inclusion’ variables can be said not to be useful in the model with 0.318721 and 0.341722 coefficients respectively. On the other hand, while redundancy index for BHN set has been found to be 0.615; OPT set has a lower redundancy index with 0.475. High redundancy implies high ability for predictability. The proportion of the total variation in BHN set of variables that is explained by all of the opposite canonical variates has been calculated as 63% and finally, the proportion of the total variation in OPT set that is explained by all of the canonical variables in BHN set has been determined as 50.4% and a large part of this proportion belongs to the first pair. The results suggest that there is a high and statistically significant relationship between BHN and OPT. This relationship is generally accounted by ‘shelter’ and ‘access to advanced education’.

Keywords: canonical communality coefficient, canonical correlation analysis, redundancy index, social progress index

Procedia PDF Downloads 218
6383 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 73
6382 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis

Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.

Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning

Procedia PDF Downloads 8
6381 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning

Authors: Pooja Khanal, Huaming Zhang

Abstract:

Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.

Keywords: bug classification, bug labels, GitHub issues, semantic differences

Procedia PDF Downloads 202
6380 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features

Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.

Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction

Procedia PDF Downloads 382
6379 Difficulties Encountered in the Process of Supporting Reading Skills of a Student with Hearing Loss Whose Inclusion Was Ongoing and Solution Proposals

Authors: Ezgi Tozak, H. Pelin Karasu, Umit Girgin

Abstract:

In this study, difficulties encountered in the process of supporting the reading skills of a student with hearing loss whose inclusion was ongoing and the solutions improved during the practice process were examined. The study design was action research. Participants of this study, which was conducted between the dates of 29 September 2016 and 22 February 2017, consisted of a student with hearing loss, a classroom teacher, a teacher in the rehabilitation center, researcher/teacher and validity committee members. The data were obtained through observations, validity committee meeting, interviews, documents, and the researcher diary. Research findings show that in the process of supporting reading skills of the student with hearing loss, the student's knowledge of concepts was limited, and the student had difficulties in feeling and identification of sounds, reading and understanding words-sentences and retelling what he/she listened to. With the purpose of overcoming these difficulties in the implementation process, activities were prepared towards concepts, sound education, reading and understanding words and sentences, and retelling what you listen to; these activities were supported with visual materials and real objects and repeated with diversities.

Keywords: inclusion, reading process, supportive education, student with hearing loss

Procedia PDF Downloads 148
6378 The Influence of Students’ Race and Socioeconomic Status on Teachers’ Assessment of ADHD: Implications for Educational Inequalities

Authors: Justine McKay

Abstract:

Implicit Bias and its impact on the schooling experience of racial minorities with ADHD is significant. ADHD has become a globally diagnosed disorder. The lack of an objective diagnostic tool for ADHD has created controversy over the disease and its validity. ADHD is referred to as a social construct or a suburban problem related to active white boys who disrupt classrooms. The subjectivity of an ADHD diagnosis and the diagnostic process is based on norm-referenced checklists of behaviours completed by the student, caregiver, teachers, clinicians, and other community members. Teachers' perceptions of classroom behaviours are influenced by implicit bias related to race and socioeconomic status. The same behaviours displayed by white and marginalized or low-income students are perceived differently. The white student is perceived to be struggling academically and needing support, while the marginalized or lower-income student's behaviour is seen as disruptive or criminal. The presence of teacher implicit bias results in the inequity of diagnosis, and academic support, which has long-term implications for these students. The subjectivity of the diagnostic process socially reproduces the systemic injustice of opportunity for marginalized youth within the education system.

Keywords: ADHD, education, equity, implicit bias, subjectivity

Procedia PDF Downloads 73
6377 Locally Crafted Sustainability: A Scoping Review for Nesting Social-Ecological and Socio-Technical Systems Towards Action Research in Agriculture

Authors: Marcia Figueira

Abstract:

Context: Positivist transformations in agriculture were responsible for top-down – often coercive – mechanisms of uniformed modernization that weathered local diversities and agency. New development pathways need to now shift according to comprehensive integrations of knowledge - scientific, indigenous, and local, and to be sustained on political interventions, bottom-up change, and social learning if climate goals are to be met – both in mitigation and adaptation. Objectives The objectives of this research are to understand how social-ecological and socio-technical systems characterisation can be nested to bridge scientific research/knowledge into a local context and knowledge system; and, with it, stem sustainable innovation. Methods To do so, we conducted a scoping review to explore theoretical and empirical works linked to Ostrom’s Social-Ecological Systems framework and Geels’ multi-level perspective of socio-technical systems transformations in the context of agriculture. Results As a result, we were able to identify key variables and connections to 1- understand the rules in use and the community attributes influencing resource management; and 2- how they are and have been shaped and shaping systems innovations. Conclusion Based on these results, we discuss how to leverage action research for mutual learning toward a replicable but highly place-based agriculture transformation frame.

Keywords: agriculture systems innovations, social-ecological systems, socio-technical systems, action research

Procedia PDF Downloads 94
6376 Survivability of Maneuvering Aircraft against Air to Air Infrared Missile

Authors: Ji-Yeul Bae, Hyung Mo Bae, Jihyuk Kim, Hyung Hee Cho

Abstract:

An air to air infrared missile poses a significant threat to the survivability of an aircraft due to an advanced sensitivity of sensor and maneuverability of the missile. Therefore, recent military aircraft is equipped with MAW (Missile Approach Warning) to take an evasive maneuver and to deploy countermeasures like chaff and flare. In this research, an effect of MAW sensitivity and resulting evasive maneuver on the survivability of the fighter aircraft is studied. A single engine fighter jet with Mach 0.9 flying at an altitude of 5 km is modeled in the research and infrared signature of the aircraft is calculated by numerical simulation. The survivability is assessed in terms of lethal range. The MAW sensitivity and maneuverability of an aircraft is used as variables. The result showed that improvement in survivability mainly achieved when the missile approach from the side of the aircraft. And maximum 30% increase in survivability of the aircraft is achieved when existence of the missile is noticed at 7 km distance. As a conclusion, sensitivity of the MAW seems to be more important factor than the maneuverability of the aircraft in terms of the survivability.

Keywords: air to air missile, missile approach warning, lethal range, survivability

Procedia PDF Downloads 568
6375 Machine Learning in Gravity Models: An Application to International Recycling Trade Flow

Authors: Shan Zhang, Peter Suechting

Abstract:

Predicting trade patterns is critical to decision-making in public and private domains, especially in the current context of trade disputes among major economies. In the past, U.S. recycling has relied heavily on strong demand for recyclable materials overseas. However, starting in 2017, a series of new recycling policies (bans and higher inspection standards) was enacted by multiple countries that were the primary importers of recyclables from the U.S. prior to that point. As the global trade flow of recycling shifts, some new importers, mostly developing countries in South and Southeast Asia, have been overwhelmed by the sheer quantities of scrap materials they have received. As the leading exporter of recyclable materials, the U.S. now has a pressing need to build its recycling industry domestically. With respect to the global trade in scrap materials used for recycling, the interest in this paper is (1) predicting how the export of recyclable materials from the U.S. might vary over time, and (2) predicting how international trade flows for recyclables might change in the future. Focusing on three major recyclable materials with a history of trade, this study uses data-driven and machine learning (ML) algorithms---supervised (shrinkage and tree methods) and unsupervised (neural network method)---to decipher the international trade pattern of recycling. Forecasting the potential trade values of recyclables in the future could help importing countries, to which those materials will shift next, to prepare related trade policies. Such policies can assist policymakers in minimizing negative environmental externalities and in finding the optimal amount of recyclables needed by each country. Such forecasts can also help exporting countries, like the U.S understand the importance of healthy domestic recycling industry. The preliminary result suggests that gravity models---in addition to particular selection macroeconomic predictor variables--are appropriate predictors of the total export value of recyclables. With the inclusion of variables measuring aspects of the political conditions (trade tariffs and bans), predictions show that recyclable materials are shifting from more policy-restricted countries to less policy-restricted countries in international recycling trade. Those countries also tend to have high manufacturing activities as a percentage of their GDP.

Keywords: environmental economics, machine learning, recycling, international trade

Procedia PDF Downloads 168
6374 Assessing the Impacts of Folktales (Story Telling) On the Moral Advancement of Children Yoruba Communities in Ute-Owo, Nigeria

Authors: Felicia Titilayo Olanrewaju

Abstract:

Folktales are a subclass of folklores which are verbally told and passed down from one generation to another, from the elderly ones to their children, usually at moonlight. These tales are heavily laden with moral lessons of what should be done and what not within the society. Though these are oftentimes heavily embellished yet are related to guide, guard, train, and dishing out moral attributes and mores worthwhile for ethical progression of the young minds within our traditional settings. With the rapid advancement of technological know-how, the existence of most of these moral-inclined stories becomes questionable; hence this study appraised the influences of these traditional storytellings have in the upgrading of moral learning of ethical behavioral traits acceptable among the Yoruba people. Oral interviews couples with recording gadgets were used to collate both sample parents' and children’s responses within a particular community in Owo (ute) local government area of Owo Ondo State, Nigeria. Findings reveal that diverse tales told at moonlight periods have an untold impact on the speedy growth of the children intellectually than the modern happenings around them. These telltale stories become powerful aids in learning goodly traits and eschewing bad manners. It is recommended that folk stories be told within the household among the family after hard labour in the evenings as this would help develop human relationships and brings about a strong sense of community bindings.

Keywords: folktales, folklores, impact, advancement, ethical progression

Procedia PDF Downloads 178
6373 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 470
6372 An Evaluation of the Efficacy of School-Based Suicide Prevention Programs

Authors: S. Wietrzychowski

Abstract:

The following review has identified specific programs, as well as the elements of these programs, that have been shown to be most effective in preventing suicide in schools. Suicide is an issue that affects many students each year. Although this is a prominent issue, there are few prevention programs used within schools. The primary objective of most prevention programs is to reduce risk factors such as depression and hopelessness, and increase protective factors like support systems and help-seeking behaviors. Most programs include a gatekeeper training model, education component, peer support group, and/or counseling/treatment. Research shows that some of these programs, like the Signs of Suicide and Youth Aware of Mental Health Programme, are effective in reducing suicide behaviors and increasing protective factors. These programs have been implemented in many countries across the world and have shown promising results. Since schools can provide easy access to adolescents, implement education programs, and train staff members and students how to identify and to report suicide behaviors, school-based programs seem to be the best way to prevent suicide among adolescents. Early intervention may be an effective way to prevent suicide. Although, since early intervention is not always an option, school-based programs in high schools have also been shown to decrease suicide attempts by up to 50%. As a result of this presentation, participants will be able to 1.) list at least 2 evidence-based suicide prevention programs, 2.) identify at least 3 factors which protect against suicide, and 3.) describe at least 3 risk factors for suicide.

Keywords: school, suicide, prevention, programs

Procedia PDF Downloads 346
6371 Thermal Spraying of Titanium-Based Alloys on Steel and Aluminum Substrates

Authors: Ionut Claudiu Roata, Catalin Croitoru

Abstract:

Thermal spraying emerges as a versatile and robust technique for enhancing construction steel with protective coatings tailored for anti-corrosion, insulation, and aesthetics. This study showcases the successful application of flame thermal sprayed titanium-based coatings on EN-S273JR steel substrates and on aluminum. Optimizing the process at a 150 mm spray distance and employing argon as a carrier gas, we achieved coatings with characteristic morphologies and a minimal amount of oxides presence at particle boundaries. Corrosion tests in 3.5% wt. NaCl solution confirmed the coatings’ superior performance, displaying an improved corrosion resistance increase over uncoated steel or aluminum. These results underscore the efficacy of thermal spraying in significantly bolstering the durability of construction steel and aluminum, marking it as a pivotal technique for multifunctional coating applications.

Keywords: thermal spraying, corrosion resistance, surface properties, mechanical properties

Procedia PDF Downloads 23
6370 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse

Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham

Abstract:

Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.

Keywords: domestic violence, e-learning, health professionals, trans-European

Procedia PDF Downloads 83
6369 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 406
6368 Investigation of the Impact of Family Status and Blood Group on Individuals’ Addiction

Authors: Masoud Abbasalipour

Abstract:

In this study, the impact of family status on individuals, involving factors such as parents' literacy level, family size, individuals' blood group, and susceptibility to addiction, was investigated. Statistical tests were employed to scrutinize the relationships among these specified factors. The statistical population of the study consisted of 338 samples divided into two groups: individuals with addiction and those without addiction in the city of Amol. The addicted group was selected from individuals visiting the substance abuse treatment center in Amol, and the non-addicted group was randomly selected from individuals in urban and rural areas. The Chi-square test was used to examine the presence or absence of relationships among the variables, and Kramer's V test was employed to determine the strength of the relationship between them. Excel software facilitated the initial entry of data, and SPSS software was utilized for the desired statistical tests. The research results indicated a significant relationship between the variable of parents' education level and individuals' addiction. The analysis showed that the education level of their parents was significantly lower compared to non-addicted individuals. However, the variables of the number of family members and blood group did not significantly impact individuals' susceptibility to addiction.

Keywords: addiction, blood group, parents' literacy level, family status

Procedia PDF Downloads 69
6367 A Tool for Rational Assessment of Dynamic Trust in Networked Organizations

Authors: Simon Samwel Msanjila

Abstract:

Networked environments which provides platforms and environments for business organizations are configured in different forms depending on many factors including life time, member characteristics, communication structure, and business objectives, among others. With continuing advances in digital technologies the distance has become a less barrier for business minded collaboration among organizations. With the need and ease to make business collaborate nowadays organizations are sometimes forced to co-work with others that are either unknown or less known to them in terms of history and performance. A promising approach for sustaining established collaboration has been establishment of trust relationship among organizations based on assessed trustworthiness for each participating organization. It has been stated in research that trust in organization is dynamic and thus assessment of trust level must address such dynamic nature. This paper assess relevant aspects of trust and applies the concepts to propose a semi-automated system for assessing the Sustainability and Evolution of trust in organizations participating in specific objective in a networked organizations environment.

Keywords: trust evolution, trust sustainability, networked organizations, dynamic trust

Procedia PDF Downloads 431
6366 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 210
6365 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 76
6364 The Power of Inferences and Assumptions: Using a Humanities Education Approach to Help Students Learn to Think Critically

Authors: Randall E. Osborne

Abstract:

A four-step ‘humanities’ thought model has been used in an interdisciplinary course for almost two decades and has been proven to aid in student abilities to become more inclusive in their world view. Lack of tolerance for ambiguity can interfere with this progression so we developed an assignment that seems to have assisted students in developing more tolerance for ambiguity and, therefore, opened them up to make more progress on the critical thought model. A four-step critical thought model (built from a humanities education approach) is used in an interdisciplinary course on prejudice, discrimination, and hate in an effort to minimize egocentrism and promote sociocentrism in college students. A fundamental barrier to this progression is a lack of tolerance for ambiguity. The approach to the course is built on the assumption that Tolerance for Ambiguity (characterized by a dislike of uncertain, ambiguous or situations in which expected behaviors are uncertain, will like serve as a barrier (if tolerance is low) or facilitator (if tolerance is high) of active ‘engagement’ with assignments. Given that active engagement with course assignments would be necessary to promote an increase in critical thought and the degree of multicultural attitude change, tolerance for ambiguity inhibits critical thinking and, ultimately multicultural attitude change. As expected, those students showing the least amount of decrease (or even an increase) in intolerance across the semester, earned lower grades in the course than those students who showed a significant decrease in intolerance, t(1,19) = 4.659, p < .001. Students who demonstrated the most change in their Tolerance for Ambiguity (showed an increasing ability to tolerate ambiguity) earned the highest grades in the course. This is, especially, significant because faculty did not know student scores on this measure until after all assignments had been graded and course grades assigned. An assignment designed to assist students in making their assumption and inferences processes visible so they could be explored, was implemented with the goal of this exploration then promoting more tolerance for ambiguity, which, as already outlined, promotes critical thought. The assignment offers students two options and then requires them to explore what they have learned about inferences and/or assumptions This presentation outlines the assignment and demonstrates the humanities model, what students learn from particular assignments and how it fosters a change in Tolerance for Ambiguity which, serves as the foundational component of critical thinking.

Keywords: critical thinking, humanities education, sociocentrism, tolerance for ambiguity

Procedia PDF Downloads 273