Search results for: tasks
837 ESL Students’ Engagement with Written Corrective Feedback
Authors: Khaled Karim
Abstract:
Although a large number of studies have examined the effectiveness of written corrective feedback (WCF) in L2 writing, very few studies have investigated students’ attitudes towards the feedback and their perspectives regarding the usefulness of different types of feedback. Using prompted stimulated recall interviews, this study investigated ESL students’ perceptions and attitudes towards the CF they received as well as their preferences and reactions to the corrections. 24 ESL students first received direct (e.g., providing target forms after crossing out erroneous forms) and indirect (e.g., underlining and underline+metalinguistic) CF on four written tasks and then participated in an interview with the researcher. The analysis revealed that both direct and indirect CF were judged to be useful strategies for correction but in different ways. Underline only CF helped them think about the nature and type of the errors they made while metalinguistic CF was useful as it provided clues about the nature and type of the errors. Most participants indicated that indirect correction needed sufficient prior knowledge of the form to be effective. The majority of the students found the combination of underlining with metalinguistic information as the most effective method of providing feedback. Detailed findings will be presented, and pedagogical implications of the study will be discussed.Keywords: ESL writing, error correction, feedback, written corrective feedback
Procedia PDF Downloads 234836 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks
Authors: Hwayeon Song
Abstract:
The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect
Procedia PDF Downloads 245835 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 369834 Spare Part Inventory Optimization Policy: A Study Literature
Authors: Zukhrof Romadhon, Nani Kurniati
Abstract:
Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.Keywords: spare part, spare part inventory, inventory model, optimization, maintenance
Procedia PDF Downloads 61833 Effects of Aging on Auditory and Visual Recall Abilities
Authors: Rashmi D. G., Aishwarya G., Niharika M. K.
Abstract:
Purpose: Free recall tasks target cognitive and linguistic processes like episodic memory, lexical access and retrieval. Consequently, the free recall paradigm is suitable for assessing memory deterioration caused by aging; this also depends on linguistic factors, including the use of first and second languages and their relative ability. Hence, the present study aimed to determine if aging has an effect on visual and auditory recall abilities. Method: Twenty young adults (mean age: 25.4±0.99) and older adults (mean age: 63.3±3.51) participated in the study. Participants performed a free recall task under two conditions – related and unrelated and two modalities - visual and auditory where they were instructed to recall as many items as possible with no specific order and time limit. Results: Free recall performance was calculated as the mean number of correctly recalled items. Although younger participants recalled a higher number of items, the performance across conditions and modality was variable. Conclusion: In summary, the findings of the present study revealed an age-related decline in the efficiency of episodic memory, which is crucial to remember recent events.Keywords: recall, episodic memory, aging, modality
Procedia PDF Downloads 94832 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program
Authors: Ming Wen, Nasim Nezamoddini
Abstract:
Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM
Procedia PDF Downloads 110831 The Effects of Social Capital and Empowering Leadership on Team Cohesion
Authors: Y. R. Lai, J. C. Jehng, T. T. Chang
Abstract:
Team is a popular job design in the management settings. Because people on a team need to work together to complete a lot of tasks, the interaction between team members strongly influences team effectiveness. The study examines the effect of social capital and empowering leadership on team cohesion. There are three facets of social capital: structural facet, relational facet, and cognitive facet. Empowering leadership includes enhancing the meaningfulness of work, fostering participation in decision making, expressing confidence in high performance, and providing autonomy from bureaucratic constraints. Data were collected from 181 team members of 47 teams in the real estate agency industry. The results show that the relational social capital, enhancing the meaningfulness of work, and providing autonomy from bureaucratic constraints are positively related to two dimensions of team cohesion: sense of belonging and feelings of moral. Additionally, expressing confidence in high performance is negatively related to sense of belonging.Keywords: social capital, empowering leadership, team cohesion, team effectiveness
Procedia PDF Downloads 420830 Domain Adaptive Dense Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, contrastive learning, unsupervised training
Procedia PDF Downloads 101829 Engaging Mature Learners through Video Case Studies
Authors: Jacqueline Mary Jepson
Abstract:
This article provides a case study centred on the development of 13 video episodes which have been created to enhance student engagement with a post graduate online course in Project Management. The student group was unique as their online course needed to provide for asynchronistic learning and an adult learning pedagogy. In addition, students had come from a wide range professional backgrounds, with some having no Project Management experience, while others had 20 years or more. Students had to gain an understanding of an advanced body of knowledge and the course needed to achieve the academic requirements to qualify individuals to apply their learning in a range of contexts for professional practice and scholarship. To achieve this, a 13 episode case study was developed along with supportive learning materials based on the relocation of a zoo. This unique project provided a learning environment where the project could evolve over each video episode demonstrating the application of Project Management methodology which was then tied into the learning outcomes for the course and the assessment tasks. Discussion forums provided a way for students to converse and demonstrate their own understanding of content and how Project Management methodology can be applied.Keywords: project management, adult learning, video case study, asynchronistic education
Procedia PDF Downloads 337828 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview
Authors: Sergey Podluzhnyy
Abstract:
One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task
Procedia PDF Downloads 317827 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory
Procedia PDF Downloads 283826 Testing the Impact of Formal Interpreting Training on Working Memory Capacity: Evidence from Turkish-English Student-Interpreters
Authors: Elena Antonova Unlu, Cigdem Sagin Simsek
Abstract:
The research presents two studies examining the impact of formal interpreting training (FIT) on Working Memory Capacity (WMC) of student-interpreters. In Study 1, the storage and processing capacities of the working memory (WM) of last-year student-interpreters were compared with those of last-year Foreign Language Education (FLE) students. In Study 2, the impact of FIT on the WMC of student-interpreters was examined via comparing their results on WM tasks at the beginning and the end of their FIT. In both studies, Digit Span Task (DST) and Reading Span Task (RST) were utilized for testing storage and processing capacities of WM. The results of Study 1 revealed that the last-year student-interpreters outperformed the control groups on the RST but not on the DST. The findings of Study 2 were consistent with Study 1 showing that after FIT, the student-interpreters performed better on the RST but not on the DST. Our findings can be considered as evidence supporting the view that FIT has a beneficial effect not only on the interpreting skills of student-interpreters but also on the central executive and processing capacity of their WM.Keywords: working memory capacity, formal interpreting training, student-interpreters, cross-sectional and longitudinal data
Procedia PDF Downloads 204825 Cloud Computing in Data Mining: A Technical Survey
Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham
Abstract:
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.Keywords: cloud computing, data mining, computing models, cloud services
Procedia PDF Downloads 479824 Evolution of Performance Measurement Methods in Conditions of Uncertainty: The Implementation of Fuzzy Sets in Performance Measurement
Authors: E. A. Tkachenko, E. M. Rogova, V. V. Klimov
Abstract:
One of the basic issues of development management is connected with performance measurement as a prerequisite for identifying the achievement of development objectives. The aim of our research is to develop an improved model of assessing a company’s development results. The model should take into account the cyclical nature of development and the high degree of uncertainty in dealing with numerous management tasks. Our hypotheses may be formulated as follows: Hypothesis 1. The cycle of a company’s development may be studied from the standpoint of a project cycle. To do that, methods and tools of project analysis are to be used. Hypothesis 2. The problem of the uncertainty when justifying managerial decisions within the framework of a company’s development cycle can be solved through the use of the mathematical apparatus of fuzzy logic. The reasoned justification of the validity of the hypotheses made is given in the suggested article. The fuzzy logic toolkit applies to the case of technology shift within an enterprise. It is proven that some restrictions in performance measurement that are incurred to conventional methods could be eliminated by implementation of the fuzzy logic apparatus in performance measurement models.Keywords: logic, fuzzy sets, performance measurement, project analysis
Procedia PDF Downloads 381823 Use of Oral Communication Strategies: A Study of Bangladeshi EFL Learners at the Graduate Level
Authors: Afroza Akhter Tina
Abstract:
This paper reports on an investigation into the use of specific types of oral communication strategies, namely ‘topic avoidance’, ‘message abandonment’, ‘code-switching’, ‘paraphrasing’, ‘restructuring’, and ‘stalling’ by Bangladeshi EFL learners at the graduate level. It chiefly considers the frequency of using these strategies as well as the students and teachers attitudes toward such uses. The participants of this study are 66 EFL students and 12 EFL teachers of Jahangirnagar University. Data was collected through questionnaire, oral interview, and classroom observation form. The findings reveal that the EFL students tried to employ all the strategies to various extents due to the language difficulties they encountered in their oral English performance. Among them, the mostly used strategy was ‘stalling’ or the use of fillers, followed by ‘code-switching’. The least used strategies were ‘topic avoidance’, ‘restructuring’, and ‘paraphrasing’. The findings indicate that the use of such strategies was related to the contexts of situation and data-elicitation tasks. It also reveals that the students were not formally trained to use the strategies though the majority of the teachers and students acknowledge them as helpful in communication. Finally the study suggests that an awareness of the nature and functions of these strategies can contribute to the overall improvement of the learners’ communicative competence in spoken English.Keywords: communicative strategies, competency, attitude, frequency
Procedia PDF Downloads 407822 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: color moments, visual thing recognition system, SIFT, color SIFT
Procedia PDF Downloads 465821 Hate Speech Detection in Tunisian Dialect
Authors: Helmi Baazaoui, Mounir Zrigui
Abstract:
This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation
Procedia PDF Downloads 7820 U-Turn on the Bridge to Freedom: An Interaction Process Analysis of Task and Relational Messages in Totalistic Organization Exit Conversations on Online Discussion Boards
Authors: Nancy Di Tunnariello, Jenna L. Currie-Mueller
Abstract:
Totalistic organizations include organizations that operate by playing a prominent role in the life of its members through embedding values and practices. The Church of Scientology (CoS) is an example of a religious totalistic organization and has recently garnered attention because of the questionable treatment of members by those with authority, particularly when members try to leave the Church. The purpose of this study was to analyze exit communication and evaluate the task and relational messages discussed on online discussion boards for individuals with a previous or current connection to the totalistic CoS. Using organizational exit phases and interaction process analysis (IPA), researchers coded 30 boards consisting of 14,179 thought units from the Exscn.net website. Findings report all stages of exit were present, and post-exit surfaced most often. Posts indicated more tasks than relational messages, where individuals mainly provided orientation/information. After a discussion of the study’s contributions, limitations and directions for future research are explained.Keywords: Bales' IPA, organizational exit, relational messages, scientology, task messages, totalistic organizations
Procedia PDF Downloads 128819 The Comparison of the Reliability Margin Measure for the Different Concepts in the Slope Analysis
Authors: Filip Dodigovic, Kreso Ivandic, Damir Stuhec, S. Strelec
Abstract:
The general difference analysis between the former and new design concepts in geotechnical engineering is carried out. The application of new regulations results in the need for real adaptation of the computation principles of limit states, i.e. by providing a uniform way of analyzing engineering tasks. Generally, it is not possible to unambiguously match the limit state verification procedure with those in the construction engineering. The reasons are the inability to fully consistency of the common probabilistic basis of the analysis, and the fundamental effect of material properties on the value of actions and the influence of actions on resistance. Consequently, it is not possible to apply separate factorization with partial coefficients, as in construction engineering. For the slope stability analysis design procedures problems in the light of the use of limit states in relation to the concept of allowable stresses is detailed in. The quantifications of the safety margins in the slope stability analysis for both approaches is done. When analyzing the stability of the slope, by the strict application of the adopted forms from the new regulations for significant external temporary and/or seismic actions, the equivalent margin of safety is increased. The consequence is the emergence of more conservative solutions.Keywords: allowable pressure, Eurocode 7, limit states, slope stability
Procedia PDF Downloads 335818 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 156817 Lobbyists’ Competencies as a Basis for Shaping the Positive Image of Modern Lobbying
Authors: Joanna Dzieńdziora
Abstract:
Lobbying is an instrument of influence in various decision-making processes. It is also the underestimated issue as a research problem. The lack of research on the modern lobbyist competencies is the most crucial element. The paper presents attempts of finding answers to the following questions: Who should run the lobbying activity? What competencies should a lobbyist possess in order to implement lobbying activities effectively? Searching for answers for the mentioned above questions requires positioning the opportunity to change the image of lobbying in the area of competencies of entities that provide lobbying activities. The aim of the paper is presenting the lobbyist competencies profile in the framework of his professional role. The essence of lobbying activity and its significance in the modern economy as well as areas, the scope of lobbying activities, diagnosis of a modern lobbyist’s competences, lobbyist’s competencies profile that is focused on the professionalization of the lobbying activity, will have been presented in this paper. Indicated research tasks let emerge lobbyist’s competencies in the way that allows identifying and elaborating the lobbyist competencies profile. The profile lets improve lobbying activities. Its elaboration is based on the author’s research results analysis. Taking into consideration the shortages within the theory and research on the lobbying activity, the implementation of this research enables to fill the cognitive gap existing in the theory of management sciences.Keywords: competencies, competencies profile, lobbying, lobbyist
Procedia PDF Downloads 152816 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 23815 Integrating Practice-Based Learning in Accounting Education: Bolstering Students Engagement and Learning
Authors: Humayun Murshed, Shibly Abdullah
Abstract:
This paper focuses on sharing experience gained through a pilot project undertaken to teach an introductory accounting subject linking real-life ground realities with the fundamental concepts of accounting. In view of the practical dimensions of Accounting it has been observed that adopting a teaching approach based on practical illustrations help students to motivate and generate interests to take accounting profession as their career. The paper reports that students’ perception about accounting as ‘dreary’ has been changed to ‘interesting’ due to adoption of practice based approach in teaching. The authors argue that ‘concept mapping’ can play a vital role in facilitating practice based education in accounting which promotes a rewarding learning experience among the students. The paper considers taking into account generic skills development, student centric learning, development of innovative assessment tasks, making students aware of the potential benefits of practice based education primarily through concept mapping, and engaging them both inside and outside of the class rooms are critical for ensuring success of this approach.Keywords: accounting education, pedagogy, practice-based education, concept mapping
Procedia PDF Downloads 344814 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network
Authors: Pawan Kumar Mishra, Ganesh Singh Bisht
Abstract:
Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.Keywords: resolution, deep-learning, neural network, de-blurring
Procedia PDF Downloads 515813 Effect of Compaction Energy on the Compaction of Soils with Low Water Content in the Semi-arid Region of Chlef
Authors: Obeida Aiche, Mohamed Khiatine, Medjnoun Amal, Ramdane Bahar
Abstract:
Soil compaction is one of the most challenging tasks in the construction of road embankments, railway platforms, and earth dams. Stability and durability are mainly related to the nature of the materials used and the type of soil in place. However, nature does not always offer the engineer materials with the right water content, especially in arid and semi-arid regions where obtaining the optimum Proctor water content requires the addition of considerable quantities of water. The current environmental context does not allow for the rational use of water, especially in arid and semi-arid regions, where it is preferable to preserve water resources for the benefit of the local population. Low water compaction can be an interesting approach as it promotes the reuse of earthworks materials in their dry or very dry state. Thanks to techniques in the field of soil compaction, such as vibratory compactors, which have made it possible to increase the compaction energy considerably, it is possible for some materials to obtain a satisfactory quality by compacting at low water contents or at least lower than the optimum determined by the Proctor test. This communication deals with the low water content compaction of soils in the semi-arid zone of the Chlef region in Algeria by increasing the compaction energy.Keywords: compaction, soil, low water content, compaction energy
Procedia PDF Downloads 107812 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 143811 Moral Dilemmas, Difficulties in the Digital Games
Authors: YuPei Chang
Abstract:
In recent years, moral judgement tasks have served as an increasingly popular plot mechanism in digital gameplay. As a moral agency, the player's choice judgment in digital games is to shuttle between the real world and the game world. The purpose of the research is to explore the moral difficulties brewed by the interactive mechanism of the game and the moral choice of players. In the theoretical level, this research tries to combine moral disengagement, moral foundations theory, and gameplay as an aesthetic experience. And in the methodical level, this research tries to use methods that combine text analysis, diary method, and in-depth interviews. There are three research problems that will be solved in three stages. In the first stage, this project will explore how moral dilemmas are represented in game mechanics. In the second stage, this project will analyze the appearance and conflicts of moral dilemmas in game mechanics based on the five aspects of moral foundations theory. In the third stage, this project will try to understand the players' choices when they face the choices of moral dilemmas, as well as their explanations and reflections after making the decisions.Keywords: morality, moral disengagement, moral foundations theory, PC game, gameplay, moral dilemmas, player
Procedia PDF Downloads 78810 A Mixed Method Study Investigating Dyslexia and Students Experiences of Anxiety and Coping
Authors: Amanda Abbott-Jones
Abstract:
Adult students with dyslexia can receive support for cognitive needs but may also experience anxiety, which is less understood. This study aims to test the hypothesis that dyslexic learners in higher education have a higher prevalence of academic and social anxiety than their non-dyslexic peers and explores wider emotional consequences of studying with dyslexia and the ways that adults with dyslexia cope cognitively and emotionally. A mixed-method approach was used in two stages. Stage one compared survey responses from students with dyslexia (N = 102) and students without dyslexia (N = 72) after completion of an anxiety inventory. Stage two explored the emotional consequences of studying with dyslexia and the types of coping strategies used through semi-structured interviews with 20 dyslexic students. Results revealed a statistically significant effect for academic anxiety but not for social anxiety. Findings for stage two showed that: (1) students’ emotional consequences were characterised by a mixture of negative and positive responses, yet negative responses were more frequent in response to questions about academic tasks than positive responses; (2) participants had less to say on coping emotionally, than coping cognitively.Keywords: dyslexia, higher education, anxiety, emotion
Procedia PDF Downloads 118809 Feasibility of Small Hydropower Plants Odisha
Authors: Sanoj Sahu, Ramakar Jha
Abstract:
Odisha (India) is in need of reliable, cost-effective power generation. A prolonged electricity crisis and increasing power demand have left over thousands of citizens without access to electricity, and much of the population suffers from sporadic outages. The purpose of this project is to build a methodology to evaluate small hydropower potential, which can be used to alleviate the Odisha’s energy problem among rural communities. This project has three major tasks: the design of a simple SHEP for a single location along a river in the Odisha; the development of water flow prediction equations through a linear regression analysis; and the design of an ArcGIS toolset to estimate the flow duration curves (FDCs) at locations where data do not exist. An explanation of the inputs to the tool, as well has how it produces a suitable output for SHEP evaluation will be presented. The paper also gives an explanation of hydroelectric power generation in the Odisha, SHEPs, and the technical and practical aspects of hydroelectric power. Till now, based on topographical and rainfall analysis we have located hundreds of sites. Further work on more number of site location and accuracy of location is to be done.Keywords: small hydropower, ArcGIS, rainfall analysis, Odisha’s energy problem
Procedia PDF Downloads 447808 Development & Standardization of a Literacy Free Cognitive Rehabilitation Program for Patients Post Traumatic Brain Injury
Authors: Sakshi Chopra, Ashima Nehra, Sumit Sinha, Harsimarpreet Kaur, Ravindra Mohan Pandey
Abstract:
Background: Cognitive rehabilitation aims to retrain brain injured individuals with cognitive deficits to restore or compensate lost functions. As illiterates or people with low literacy levels represent a significant proportion of the world, specific rehabilitation modules for such populations are indispensable. Literacy is significantly associated with all neuropsychological measures and retraining programs widely use written or spoken techniques which essentially require the patient to read or write. So, the aim of the study was to develop and standardize a literacy free neuropsychological rehabilitation program for improving cognitive functioning in patients with mild and moderate Traumatic Brain Injury (TBI). Several studies have pointed out to the impairments seen in memory, executive functioning, and attention and concentration post-TBI, so the rehabilitation program focussed on these domains. Visual item memorization, stick constructions, symbol cancellations, and colouring techniques were used to construct the retraining program. Methodology: The development of the program consisted of planning, preparing, analyzing, and revising the different modules. The construction focussed on areas of retraining immediate and delayed visual memory, planning ability, focused and divided attention, concentration, and response inhibition (to control irritability and aggression). A total of 98 home based retraining modules were prepared in the 4 domains (42 for memory, 42 for executive functioning, 7 for attention and concentration, and 7 for response inhibition). The standardization was done on 20 healthy controls to review, select and edit items. For each module, the time, errors made and errors per second were noted down, to establish the difficulty level of each module and were arranged in increasing level of difficulty over a period of 6 weeks. The retraining tasks were then administered on 11 brain injured individuals (5 after Mild TBI and 6 after Moderate TBI). These patients were referred from the Trauma Centre to Clinical Neuropsychology OPD, All India Institute of Medical Sciences, New Delhi, India. Results: The time was taken, errors made and errors per second were analysed for all domains. Education levels were divided into illiterates, up to 10 years, 10 years to graduation and graduation and above. Mean and standard deviations were calculated. Between group and within group analysis was done using the t-test. The performance of 20 healthy controls was analyzed and only a significant difference was observed on the time taken for the attention tasks and all other domains had non-significant differences in performance between different education levels. Comparing the errors, time taken between patient and control group, there was a significant difference in all the domains at the 0.01 level except the errors made on executive functioning, indicating that the tool can successfully differentiate between healthy controls and patient groups. Conclusions: Apart from the time taken for symbol cancellations, the entire cognitive rehabilitation program is literacy free. As it taps the major areas of impairment post-TBI, it could be a useful tool to rehabilitate the patient population with low literacy levels across the world. The next step is already underway to test its efficacy in improving cognitive functioning in a randomized clinical controlled trial.Keywords: cognitive rehabilitation, illiterates, India, traumatic brain injury
Procedia PDF Downloads 330