Search results for: sensor node dataprocessing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1761

Search results for: sensor node dataprocessing

1071 Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment

Authors: M. Owlia, M. H. Azarsa, M. Khabbazan, A. Mirbagheri

Abstract:

Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient’s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician.

Keywords: image processing, Microsoft Kinect, proprioceptive neuromuscular facilitation, upper extremities assessment, virtual reality

Procedia PDF Downloads 264
1070 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications

Authors: Hatim Laalej, Jon Stammers

Abstract:

In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.

Keywords: machining, manufacturing, tool wear, signal processing

Procedia PDF Downloads 233
1069 A Low-Cost Air Quality Monitoring Internet of Things Platform

Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis

Abstract:

In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.

Keywords: distributed sensor system, environmental monitoring, Internet of Things, smart cities

Procedia PDF Downloads 136
1068 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 157
1067 Zinc Nanoparticles Modified Electrode as an Insulin Sensor

Authors: Radka Gorejova, Ivana Sisolakova, Jana Shepa, Frederika Chovancova, Renata Orinakova

Abstract:

Diabetes mellitus (DM) is a serious metabolic disease characterized by chronic hyperglycemia. Often, the symptoms are not sufficiently observable at early stages, and so hyperglycemia causes pathological and functional changes before the diagnosis of the DM. Therefore, the development of an electrochemical sensor that will be fast, accurate, and instrumentally undemanding is currently needful. Screen-printed carbon electrodes (SPCEs) can be considered as the most suitable matrix material for insulin sensors because of the small size of the working electrode. It leads to the analyst's volume reduction to only 50 µl for each measurement. The surface of bare SPCE was modified by a combination of chitosan, multi-walled carbon nanotubes (MWCNTs), and zinc nanoparticles (ZnNPs) to obtain better electrocatalytic activity towards insulin oxidation. ZnNPs were electrochemically deposited on the chitosan-MWCNTs/SPCE surface using the pulse deposition method. Thereafter, insulin was determined on the prepared electrode using chronoamperometry and electrochemical impedance spectroscopy (EIS). The chronoamperometric measurement was performed by adding a constant amount of insulin in 0.1 M NaOH and PBS (2 μl) with the concentration of 2 μM, and the current response of the system was monitored after a gradual increase in concentration. Subsequently, the limit of detection (LOD) of the prepared electrode was determined via the Randles-Ševčík equation. The LOD was 0.47 µM. Prepared electrodes were studied also as the impedimetric sensors for insulin determination. Therefore, various insulin concentrations were determined via EIS. Based on the performed measurements, the ZnNPs/chitosan-MWCNTs/SPCE can be considered as a potential candidate for novel electrochemical sensor for insulin determination. Acknowledgments: This work has been supported by the projects Visegradfund project number 22020140, VEGA 1/0095/21 of the Slovak Scientific Grant Agency, and APVV-PP-COVID-20-0036 of the Slovak Research and Development Agency.

Keywords: zinc nanoparticles, insulin, chronoamperometry, electrochemical impedance spectroscopy

Procedia PDF Downloads 117
1066 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).

Procedia PDF Downloads 174
1065 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Authors: N. David, H. O. Gao

Abstract:

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Keywords: air pollution, commercial microwave links, rainfall, washout

Procedia PDF Downloads 100
1064 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit

Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger

Abstract:

The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.

Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor

Procedia PDF Downloads 244
1063 Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide – 3 (4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode

Authors: Illyas Md Isa, Sharifah Norain Mohd Sharif, Norhayati Hashima

Abstract:

A mercury(II) sensor was developed by using multi-walled carbon nanotubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl)propionate nanocomposite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1x10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury(II).

Keywords: cyclic voltammetry, mercury(II), modified carbon paste electrode, nanocomposite

Procedia PDF Downloads 302
1062 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 96
1061 Electrical and Structural Properties of Polyaniline-Fullerene Nanocomposite

Authors: M. Nagaraja, H. M. Mahesh, K. Rajanna, M. Z. Kurian, J. Manjanna

Abstract:

In recent years, composites of conjugated polymers with fullerenes (C60) has attracted considerable scientific and technological attention in the field of organic electronics because they possess a novel combination of electrical, optical, ferromagnetic, mechanical and sensor properties. These properties represent major advances in the design of organic electronic devices. With the addition of C60 in the conjugated polymer matrix, the primary photo-excitation of the conjugated polymer undergoes an ultrafast electron transfer, and it has been demonstrated that fullerene molecules may serve as efficient electron acceptors in polymeric solar cells. The present paper includes the systematic studies on the effect of electrical, structural and sensor properties of polyaniline (PANI) matrix by the presence of C60. Polyaniline-fullerene (PANI/C60) composite is prepared by the introduction of fullerene during polymerization of aniline with ammonium persulfate and dodechyl benzene sulfonic acid as oxidant and dopant respectively. FTIR spectroscopy indicated the interaction between PANI and C60. X-ray diffraction proved the formation of a PANI/C60 complex. SEM image shows the highly branched chain structure of the PANI in the presence of C60. The conductivity of the PANI/C60 was found to be more than ten orders of magnitude over the pure PANI.

Keywords: conductivity, fullerene, nanocomposite, polyaniline

Procedia PDF Downloads 210
1060 Intelligent Technology for Real-Time Monitor and Data Analysis of the Aquaculture Toxic Water Concentration

Authors: Chin-Yuan Hsieh, Wei-Chun Lu, Yu-Hong Zeng

Abstract:

The situation of a group of fish die is frequently found due to the fish disease caused by the deterioration of aquaculture water quality. The toxic ammonia is produced by animals as a byproduct of protein. The system is designed by the smart sensor technology and developed by the mathematical model to monitor the water parameters 24 hours a day and predict the relationship among twelve water quality parameters for monitoring the water quality in aquaculture. All data measured are stored in cloud server. In productive ponds, the daytime pH may be high enough to be lethal to the fish. The sudden change of the aquaculture conditions often results in the increase of PH value of water, lack of oxygen dissolving content, water quality deterioration and yield reduction. From the real measurement, the system can send the message to user’s smartphone successfully on the bad conditions of water quality. From the data comparisons between measurement and model simulation in fish aquaculture site, the difference of parameters is less than 2% and the correlation coefficient is at least 98.34%. The solubility rate of oxygen decreases exponentially with the elevation of water temperature. The correlation coefficient is 98.98%.

Keywords: aquaculture, sensor, ammonia, dissolved oxygen

Procedia PDF Downloads 268
1059 Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide-3(4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode

Authors: Illyas Md Isa, Sharifah Norain Mohd Sharif, Norhayati Hashim

Abstract:

A mercury(II) sensor was developed by using multi-walled carbon nano tubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl) propionate nano composite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1 x 10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury.

Keywords: Cyclic voltammetry, Mercury(II), Modified carbon paste electrode, Nanocomposite

Procedia PDF Downloads 422
1058 Method for Auto-Calibrate Projector and Color-Depth Systems for Spatial Augmented Reality Applications

Authors: R. Estrada, A. Henriquez, R. Becerra, C. Laguna

Abstract:

Spatial Augmented Reality is a variation of Augmented Reality where the Head-Mounted Display is not required. This variation of Augmented Reality is useful in cases where the need for a Head-Mounted Display itself is a limitation. To achieve this, Spatial Augmented Reality techniques substitute the technological elements of Augmented Reality; the virtual world is projected onto a physical surface. To create an interactive spatial augmented experience, the application must be aware of the spatial relations that exist between its core elements. In this case, the core elements are referred to as a projection system and an input system, and the process to achieve this spatial awareness is called system calibration. The Spatial Augmented Reality system is considered calibrated if the projected virtual world scale is similar to the real-world scale, meaning that a virtual object will maintain its perceived dimensions when projected to the real world. Also, the input system is calibrated if the application knows the relative position of a point in the projection plane and the RGB-depth sensor origin point. Any kind of projection technology can be used, light-based projectors, close-range projectors, and screens, as long as it complies with the defined constraints; the method was tested on different configurations. The proposed procedure does not rely on a physical marker, minimizing the human intervention on the process. The tests are made using a Kinect V2 as an input sensor and several projection devices. In order to test the method, the constraints defined were applied to a variety of physical configurations; once the method was executed, some variables were obtained to measure the method performance. It was demonstrated that the method obtained can solve different arrangements, giving the user a wide range of setup possibilities.

Keywords: color depth sensor, human computer interface, interactive surface, spatial augmented reality

Procedia PDF Downloads 117
1057 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.

Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure

Procedia PDF Downloads 526
1056 A Cloud-Based Federated Identity Management in Europe

Authors: Jesus Carretero, Mario Vasile, Guillermo Izquierdo, Javier Garcia-Blas

Abstract:

Currently, there is a so called ‘identity crisis’ in cybersecurity caused by the substantial security, privacy and usability shortcomings encountered in existing systems for identity management. Federated Identity Management (FIM) could be solution for this crisis, as it is a method that facilitates management of identity processes and policies among collaborating entities without enforcing a global consistency, that is difficult to achieve when there are ID legacy systems. To cope with this problem, the Connecting Europe Facility (CEF) initiative proposed in 2014 a federated solution in anticipation of the adoption of the Regulation (EU) N°910/2014, the so-called eIDAS Regulation. At present, a network of eIDAS Nodes is being deployed at European level to allow that every citizen recognized by a member state is to be recognized within the trust network at European level, enabling the consumption of services in other member states that, until now were not allowed, or whose concession was tedious. This is a very ambitious approach, since it tends to enable cross-border authentication of Member States citizens without the need to unify the authentication method (eID Scheme) of the member state in question. However, this federation is currently managed by member states and it is initially applied only to citizens and public organizations. The goal of this paper is to present the results of a European Project, named eID@Cloud, that focuses on the integration of eID in 5 cloud platforms belonging to authentication service providers of different EU Member States to act as Service Providers (SP) for private entities. We propose an initiative based on a private eID Scheme both for natural and legal persons. The methodology followed in the eID@Cloud project is that each Identity Provider (IdP) is subscribed to an eIDAS Node Connector, requesting for authentication, that is subscribed to an eIDAS Node Proxy Service, issuing authentication assertions. To cope with high loads, load balancing is supported in the eIDAS Node. The eID@Cloud project is still going on, but we already have some important outcomes. First, we have deployed the federation identity nodes and tested it from the security and performance point of view. The pilot prototype has shown the feasibility of deploying this kind of systems, ensuring good performance due to the replication of the eIDAS nodes and the load balance mechanism. Second, our solution avoids the propagation of identity data out of the native domain of the user or entity being identified, which avoids problems well known in cybersecurity due to network interception, man in the middle attack, etc. Last, but not least, this system allows to connect any country or collectivity easily, providing incremental development of the network and avoiding difficult political negotiations to agree on a single authentication format (which would be a major stopper).

Keywords: cybersecurity, identity federation, trust, user authentication

Procedia PDF Downloads 160
1055 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor

Authors: Jinseon Song, Yongwan Park

Abstract:

In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.

Keywords: positioning, distance, camera, features, SURF(Speed-Up Robust Features), database, estimation

Procedia PDF Downloads 337
1054 Corrosion of Steel in Relation with Hydrogen Activity of Concentrated HClO4 Media: Realisation Sensor and Reference Electrode

Authors: B. Hammouti, H. Oudda, A. Benabdellah, A. Benayada, A. Aouniti

Abstract:

Corrosion behaviour of carbon steel was studied in various concentrated HClO4 solutions. To explain the acid attack in relation of H+ activity, new sensor was realised: two carbon paste electrodes (CPE) were constructed by incorporating ferrocene (Fc) and orthoquinone into the carbon paste matrix and crossed by weak current to stabilize potential difference. The potentiometric method at imposed weak current between these two electrodes permits the in situ determination of both concentration and acidity level of various concentrated HClO4 solutions. The different factors affecting the potential at imposed current as current intensity, temperature and H+ ion concentration are studied. The potentials measured between ferrocene and chloranil electrodes are directly linked to the acid concentration. The acidity Ri(H) function defined represents the determination of the H+ activity and constitutes the extend of pH is concentrated acid solutions. Ri(H) has been determined and compared to Strehlow Ro(H), Janata HGF and Hammett Ho functions. The collected data permit to give a scale of strength of mineral concentrated acids at a given concentration. Ri(H) is numerically equal to the thermodynamic Ro(H), but deviated from Hammett functions based on indicator determination. The CPE electrode with inserted ferrocene in presence of ferricinium (Fc+) ion in concentrated HClO4 at various concentrations is realized without junction potential and may plays the role of a practical reference electrode (FRE) in concentrated acids. Fc+ was easily prepared in biphasic medium HClO4-acid by the quantitative oxidation of ferrocene by the ortho-chloranil (oQ). Potential of FRE is stable with time. The variation of equilibrium potential of the interface Fc/ Fc+ at various concentrations of Fc+ (10-4 - 2 10-2 M) obeyed to the Nernst equation with a slope 0.059 Volt per decade. Corrosion rates obtained by weight loss and electrochemical techniques were then easily linked to acidity level.

Keywords: ferrocene, strehlow, concentrated acid, corrosion, Generalised pH, sensor carbon paste electrode

Procedia PDF Downloads 348
1053 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 186
1052 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.

Keywords: sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device

Procedia PDF Downloads 287
1051 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading

Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke

Abstract:

In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.

Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading

Procedia PDF Downloads 139
1050 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading

Procedia PDF Downloads 439
1049 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).

Keywords: process optimization, RGB models, thermal models, , UAV, workflow

Procedia PDF Downloads 131
1048 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: addressing, IoT, IPv6, network, nodes

Procedia PDF Downloads 281
1047 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 306
1046 A Numerical Model for Simulation of Blood Flow in Vascular Networks

Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia

Abstract:

An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.

Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system

Procedia PDF Downloads 261
1045 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques

Authors: Praveen Battula

Abstract:

Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.

Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics

Procedia PDF Downloads 440
1044 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge

Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio

Abstract:

Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.

Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction

Procedia PDF Downloads 320
1043 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab

Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco

Abstract:

Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.

Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus

Procedia PDF Downloads 58
1042 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation

Authors: Sherif D. El Wakil, John Rice

Abstract:

The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.

Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity

Procedia PDF Downloads 312