Search results for: selection criterion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2934

Search results for: selection criterion

2244 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: camera-based OCR, feature extraction, document, image processing, grocery products

Procedia PDF Downloads 405
2243 Citizens’ Satisfaction Causal Factors in E-Government Services

Authors: Abdullah Alshehab

Abstract:

Governments worldwide are intensely focused on digitizing public transactions to establish reliable e-government services. The advent of new digital technologies and ongoing advancements in ICT have profoundly transformed business operations. Citizen engagement and participation in e-government services are crucial for the system's success. However, it is essential to measure and enhance citizen satisfaction levels to effectively evaluate and improve these systems. Citizen satisfaction is a key criterion that allows government institutions to assess the quality of their services. There is a strong connection between information quality, service quality, and system quality, all of which directly impact user satisfaction. Additionally, both system quality and information quality have indirect effects on citizen satisfaction. A causal map, which is a network diagram representing causes and effects, can illustrate these relationships. According to the literature, the main factors influencing citizen satisfaction are trust, reliability, citizen support, convenience, and transparency. This paper investigates the causal relationships among these factors and identifies any interrelatedness between them.

Keywords: e-government services, e-satisfaction, citizen satisfaction, causal map.

Procedia PDF Downloads 23
2242 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 346
2241 Parallel Genetic Algorithms Clustering for Handling Recruitment Problem

Authors: Walid Moudani, Ahmad Shahin

Abstract:

This research presents a study to handle the recruitment services system. It aims to enhance a business intelligence system by embedding data mining in its core engine and to facilitate the link between job searchers and recruiters companies. The purpose of this study is to present an intelligent management system for supporting recruitment services based on data mining methods. It consists to apply segmentation on the extracted job postings offered by the different recruiters. The details of the job postings are associated to a set of relevant features that are extracted from the web and which are based on critical criterion in order to define consistent clusters. Thereafter, we assign the job searchers to the best cluster while providing a ranking according to the job postings of the selected cluster. The performance of the proposed model used is analyzed, based on a real case study, with the clustered job postings dataset and classified job searchers dataset by using some metrics.

Keywords: job postings, job searchers, clustering, genetic algorithms, business intelligence

Procedia PDF Downloads 326
2240 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation

Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony

Abstract:

Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.

Keywords: architecture, computation, evolution, standard deviation, urban

Procedia PDF Downloads 131
2239 Selection of a Potential Starter Culture for Milk Fermentation

Authors: Stephen Olusanmi Akintayo, Ilesanmi Fadahunsi

Abstract:

The ability of Lactic acid bacteria (LAB) to grow and survive in milk is being exploited in industrial and biotechnological applications. Although considerable studies have been reported on the fermentation of milk, however, not so much work has been documented on the selection of LAB strains from milk of the Nigerian local cattle breeds for their starter culture potentials. A total of 110 LAB were isolated from raw milk of Sokoto gudali cattle breed. The isolates were screened for their proteolytic activities on skimmed milk media with isolates A07, F06 and A01 showing the highest zone of clearance of 18.5mm, 18.5mm, and 18.0mm respectively and were selected for the studies of their growth in different constituents of milk. A01, F06, and A07 were identified as Pediococcus acidilactici, Lactococcus raffinolactis, and Leuconostoc mesenteriodes respectively using cultural, biochemical, physiological and molecular characterization techniques. Leuconostoc mesenteriodes showed the highest growth in all the milk components that were used in this study. The three LAB species selected showed a growth range of 6.46 log cfu/ml to 10.91 log cfu/ml in lactose with Leuconostoc mesenteriodes showing the highest growth of 10.91 log cfu/ml while Pediococcus acidilactici recorded the lowest growth of 9.78 log cfu/ml. In medium containing leucine as the only amino acid, the viable counts of Pediococcus acidilactici, Lactococcus raffinolactis and Leuconostoc mesenteriodes in log cfu/ml at zero hour were 6.39, 6.36 and 6.38 respectively which increased to 9.31 log cfu/ml, 9.21 log cfu/ml, 9.92 log cfu/ml respectively after 24 hours. Similarly, in all other substrates (casein, lysine, glutamic acid, aspartic acid, stearic acid and oleic acid ) tested in this study, Leuconostoc mesenteriodes showed the highest growth. It was observed that the highest quantity of lactic acid (15.31mg/ml) was produced by Leuconostoc mesenteriodes. The same trend was also observed in the production of diacetyl and hydrogen peroxide by the three tested microorganisms. Due to its ability to grow maximally in milk components, Leuconostoc mesenteriodes shows potential as starter culture for milk fermentation.

Keywords: Leuconostoc mesenteriodes, lactic acid bacteria, Sokoto gudali, starter culture

Procedia PDF Downloads 234
2238 A Convenient Part Library Based on SolidWorks Platform

Authors: Wei Liu, Xionghui Zhou, Qiang Niu, Yunhao Ni

Abstract:

3D part library is an ideal approach to reuse the existing design and thus facilitates the modeling process, which will enhance the efficiency. In this paper, we implemented the thought on the SolidWorks platform. The system supports the functions of type and parameter selection, 3D template driving and part assembly. Finally, BOM is exported in Excel format. Experiment shows that our method can satisfy the requirement of die and mold designers.

Keywords: part library, SolidWorks, automatic assembly, intelligent

Procedia PDF Downloads 386
2237 Economical Transformer Selection Implementing Service Lifetime Cost

Authors: Bonginkosi A. Thango, Jacobus A. Jordaan, Agha F. Nnachi

Abstract:

In this day and age, there is a proliferate concern from all governments across the globe to barricade the environment from greenhouse gases, which absorb infrared radiation. As a result, solar photovoltaic (PV) electricity has been an expeditiously growing renewable energy source and will eventually undertake a prominent role in the global energy generation. The selection and purchasing of energy-efficient transformers that meet the operational requirements of the solar photovoltaic energy generation plants then become a part of the Independent Power Producers (IPP’s) investment plan of action. Taking these into account, this paper proposes a procedure that put into effect the intricate financial analysis necessitated to precisely evaluate the transformer service lifetime no-load and load loss factors. This procedure correctly set forth the transformer service lifetime loss factors as a result of a solar PV plant’s sporadic generation profile and related levelized costs of electricity into the computation of the transformer’s total ownership cost. The results are then critically compared with the conventional transformer total ownership cost unaccompanied by the emission costs, and demonstrate the significance of the sporadic energy generation nature of the solar PV plant on the total ownership cost. The findings indicate that the latter play a crucial role for developers and Independent Power Producers (IPP’s) in making the purchase decision during a tender bid where competing offers from different transformer manufactures are evaluated. Additionally, the susceptibility analysis of different factors engrossed in the transformer service lifetime cost is carried out; factors including the levelized cost of electricity, solar PV plant’s generation modes, and the loading profile are examined.

Keywords: solar photovoltaic plant, transformer, total ownership cost, loss factors

Procedia PDF Downloads 128
2236 The Roles of Pay Satisfaction and Intent to Leave on Counterproductive Work Behavior among Non-Academic University Employees

Authors: Abiodun Musbau Lawal, Sunday Samson Babalola, Uzor Friday Ordu

Abstract:

Issue of employees counterproductive work behavior in government owned organization in emerging economies has continued to be a major concern. This study investigated the factors of pay satisfaction, intent to leave and age as predictors of counterproductive work behavior among non-academic employee in a Nigerian federal government owned university. A sample of 200 non-academic employees completed questionnaires. Hierarchical multiple regression was conducted to determine the contribution of each of the predictor variables on the criterion variable on counterproductive work behavior. Results indicate that age of participants (β = -.18; p < .05) significantly independently predicted CWB by accounting for 3% of the explained variance. Addition of pay satisfaction (β = -.14; p < .05) significantly accounted for 5% of the explained variance, while intent to leave (β = -.17; p < .05) further resulted in 8% of the explained variance in counterproductive work behavior. The importance of these findings with regards to reduction in counterproductive work behavior is highlighted.

Keywords: counterproductive, work behaviour, pay satisfaction, intent to leave

Procedia PDF Downloads 379
2235 Features of the Functional and Spatial Organization of Railway Hubs as a Part of the Urban Nodal Area

Authors: Khayrullina Yulia Sergeevna, Tokareva Goulsine Shavkatovna

Abstract:

The article analyzes the modern major railway hubs as a main part of the Urban Nodal Area (UNA). The term was introduced into the theory of urban planning at the end of the XX century. Tokareva G.S. jointly with Gutnov A.E. investigated the structure-forming elements of the city. UNA is the basic unit, the "cell" of the city structure. Specialization is depending on the position in the frame or the fabric of the city. This is related to feature of its organization. Spatial and functional features of UNA proposed to investigate in this paper. The base object for researching are railway hubs as connective nodes of inner and extern-city communications. Research used a stratified sampling type with the selection of typical objects. Research is being conducted on the 14 railway hubs of the native and foreign experience of the largest cities with a population over 1 million people located in one and close to the Russian climate zones. Features of the organization identified in the complex research of functional and spatial characteristics based on the hypothesis of the existence of dual characteristics of the organization of urban nodes. According to the analysis, there is using the approximation method that enable general conclusions of a representative selection of the entire population of railway hubs and it development’s area. Results of the research show specific ratio of functional and spatial organization of UNA based on railway hubs. Based on it there proposed typology of spaces and urban nodal areas. Identification of spatial diversity and functional organization’s features of the greatest railway hubs and it development’s area gives an indication of the different evolutionary stages of formation approaches. It help to identify new patterns for the complex and effective design as a prediction of the native hub’s development direction.

Keywords: urban nodal area, railway hubs, features of structural, functional organization

Procedia PDF Downloads 387
2234 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System

Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi

Abstract:

Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.

Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process

Procedia PDF Downloads 139
2233 Free Vibration Analysis of Pinned-Pinned and Clamped-Clamped Equal Strength Columns under Self-Weight and Tip Force Using Differential Quadrature Method

Authors: F. Waffo Tchuimmo, G. S. Kwandio Dongoua, C. U. Yves Mbono Samba, O. Dafounansou, L. Nana

Abstract:

The strength criterion is an important condition of great interest to guarantee the stability of the structural elements. The present work is based on the study of the free vibration of Euler’s Bernoulli column of equal strength in compression while considering its own weight and the axial load in compression and tension subjected to symmetrical boundary conditions. We use the differential quadrature method to investigate the first fifth naturals frequencies parameters of the column according to the different forms of geometrical sections. The results of this work give help in making a judicious choice of type of cross-section and a better boundary condition to guarantee good stability of this type of column in civil constructions.

Keywords: free vibration, equal strength, self-weight, tip force, differential quadrature method

Procedia PDF Downloads 131
2232 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 323
2231 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 149
2230 Genetic Variability and Heritability Among Indigenous Pearl Millet (Pennisetum Glaucum L. R. BR.) in Striga Infested Fields of Sudan Savanna, Nigeria

Authors: Adamu Usman, Grace Stanley Balami

Abstract:

Pearl millet (Pennisetum glaucum L. R. Br.) is a cereal cultivated in arid and semi-arid areas of the world. It supports more than 100 million people around the world. Parasitic weed (Striga hermonthica Del. Benth) is a major constraint to its production. Estimated yield losses are put at 10 - 95% depending on variety, ecology and cultural practices. Potentials in selection of traits in pearl millets for grain yield have been reported and it depends on genotypic variability and heritability among landraces. Variability and heritability among cultivars could offer opportunities for improvement. The study was conducted to determine the genetic variability among cultivars and estimate broad sense heritability among grain yield and related traits. F1 breeding populations were generated with 9 parental cultivars, viz; Ex-Gubio, Ex-Monguno, Ex-Baga as males and PEO 5984, Super-SOSAT, SOSAT-C88, Ex-Borno and LCIC9702 as females through Line × Tester mating during 2017 dry season at Lushi Irrigation Station, Bauchi Metropolitan in Bauchi State, Nigeria. The F1 population and the parents were evaluated during cropping season of 2018 at Bauchi and Maiduguri. Data collected were subjected to analysis of variance. Results showed significant difference among cultivars and among traits indicating variability. Number of plants at emergence, days to 50% flowering, days to 100% flowering, plant height, panicle length, number of plants at harvest, Striga count at 90 days after sowing, panicle weight and grain yield were significantly different. Significant variability offer opportunity for improvement as superior individuals can be isolated. Genotypic variance estimates of traits were largely greater than environmental variances except in plant height and 1000 seed weight. Environmental variances were low and in some cases negligible. The phenotypic variances of all traits were higher than genotypic variances. Similarly phenotypic coefficient of variation (PCV) was higher than genotypic coefficient of variation (GCV). High heritability was found in days to 50% flowering (90.27%), Striga count at 90 days after sowing (90.07%), number of plants at harvest (87.97%), days to 100% flowering (83.89%), number of plants at emergence (82.19%) and plant height (73.18%). Greater heritability estimates could be due to presence of additive gene. The result revealed wider variability among genotypes and traits. Traits having high heritability could easily respond to selection. High value of GCV, PCV and heritability estimates indicate that selection for these traits are possible and could be effective.

Keywords: variability, heritability, phenotypic, genotypic, striga

Procedia PDF Downloads 54
2229 Investigation of Static Stability of Soil Slopes Using Numerical Modeling

Authors: Seyed Abolhasan Naeini, Elham Ghanbari Alamooti

Abstract:

Static stability of soil slopes using numerical simulation by a finite element code, ABAQUS, has been investigated, and safety factors of the slopes achieved in the case of static load of a 10-storey building. The embankments have the same soil condition but different loading distance from the slope heel. The numerical method for estimating safety factors is 'Strength Reduction Method' (SRM). Mohr-Coulomb criterion used in the numerical simulations. Two steps used for measuring the safety factors of the slopes: first is under gravity loading, and the second is under static loading of a building near the slope heel. These safety factors measured from SRM, are compared with the values from Limit Equilibrium Method, LEM. Results show that there is good agreement between SRM and LEM. Also, it is seen that by increasing the distance from slope heel, safety factors increases.

Keywords: limit equilibrium method, static stability, soil slopes, strength reduction method

Procedia PDF Downloads 162
2228 Review and Evaluation of Viscose Damper on Structural Responses

Authors: Ehsan Sadie

Abstract:

Developments in the field of damping technology and advances in the area of dampers in equipping many structures have been the result of efforts and testing by researchers in this field. In this paper, a sample of a two-story building is simulated with the help of SAP2000 software, and the effect of a viscous damper on the performance of the structure is explained. The effect of dampers on the response of the structure is investigated. This response involves the horizontal displacement of floors. In this case, the structure is modeled once without a damper and again with a damper. In this regard, the results are presented in the form of tables and graphs. Since the seismic behavior of the structure is studied, the responses show the appropriate effect of viscous dampers in reducing the displacement of floors, and also the energy dissipation in the structure with dampers compared to structures without dampers is significant. Therefore, it is economical to use viscous dampers in areas that have a higher relative earthquake risk.

Keywords: bending frame, displacement criterion, dynamic response spectra, earthquake, non-linear history spectrum, SAP2000 software, structural response, viscous damper

Procedia PDF Downloads 112
2227 Reliability and Validity of a Portable Inertial Sensor and Pressure Mat System for Measuring Dynamic Balance Parameters during Stepping

Authors: Emily Rowe

Abstract:

Introduction: Balance assessments can be used to help evaluate a person’s risk of falls, determine causes of balance deficits and inform intervention decisions. It is widely accepted that instrumented quantitative analysis can be more reliable and specific than semi-qualitative ordinal scales or itemised scoring methods. However, the uptake of quantitative methods is hindered by expense, lack of portability, and set-up requirements. During stepping, foot placement is actively coordinated with the body centre of mass (COM) kinematics during pre-initiation. Based on this, the potential to use COM velocity just prior to foot off and foot placement error as an outcome measure of dynamic balance is currently being explored using complex 3D motion capture. Inertial sensors and pressure mats might be more practical technologies for measuring these parameters in clinical settings. Objective: The aim of this study was to test the criterion validity and test-retest reliability of a synchronised inertial sensor and pressure mat-based approach to measure foot placement error and COM velocity while stepping. Methods: Trials were held with 15 healthy participants who each attended for two sessions. The trial task was to step onto one of 4 targets (2 for each foot) multiple times in a random, unpredictable order. The stepping target was cued using an auditory prompt and electroluminescent panel illumination. Data was collected using 3D motion capture and a combined inertial sensor-pressure mat system simultaneously in both sessions. To assess the reliability of each system, ICC estimates and their 95% confident intervals were calculated based on a mean-rating (k = 2), absolute-agreement, 2-way mixed-effects model. To test the criterion validity of the combined inertial sensor-pressure mat system against the motion capture system multi-factorial two-way repeated measures ANOVAs were carried out. Results: It was found that foot placement error was not reliably measured between sessions by either system (ICC 95% CIs; motion capture: 0 to >0.87 and pressure mat: <0.53 to >0.90). This could be due to genuine within-subject variability given the nature of the stepping task and brings into question the suitability of average foot placement error as an outcome measure. Additionally, results suggest the pressure mat is not a valid measure of this parameter since it was statistically significantly different from and much less precise than the motion capture system (p=0.003). The inertial sensor was found to be a moderately reliable (ICC 95% CIs >0.46 to >0.95) but not valid measure for anteroposterior and mediolateral COM velocities (AP velocity: p=0.000, ML velocity target 1 to 4: p=0.734, 0.001, 0.000 & 0.376). However, it is thought that with further development, the COM velocity measure validity could be improved. Possible options which could be investigated include whether there is an effect of inertial sensor placement with respect to pelvic marker placement or implementing more complex methods of data processing to manage inherent accelerometer and gyroscope limitations. Conclusion: The pressure mat is not a suitable alternative for measuring foot placement errors. The inertial sensors have the potential for measuring COM velocity; however, further development work is needed.

Keywords: dynamic balance, inertial sensors, portable, pressure mat, reliability, stepping, validity, wearables

Procedia PDF Downloads 151
2226 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates

Authors: Selvam M., Vadthya Poornachandar, Surender Singh

Abstract:

These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.

Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design

Procedia PDF Downloads 158
2225 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
2224 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam

Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar

Abstract:

Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.

Keywords: FPZ, fracture, FRP, shear

Procedia PDF Downloads 533
2223 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins

Authors: Manju Kanu, Subrata Sinha, Surabhi Johari

Abstract:

Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.

Keywords: epitope, b cell, immunogenicity, ebola

Procedia PDF Downloads 312
2222 A Pedagogical Approach of Children’s Learning by Toys, Perspective: Bangladesh

Authors: Muktadir Ahmed, Sayed Akhlakur Rahaman, Mridha Shihab Mahmud

Abstract:

The parents of Bangladesh have scarcity of knowledge about children play. Most of them do not know which toys are perfect for their children. Appropriate toys for playing is one of the most significant parts of children development from early age, besides for proper amelioration of children’s mental growth and brain capacities, toys play an emergent role. So selection of proper toy for children is very important. A toy forms the sagacity of a child and instructs child’s attitude. In this era of globalization to keep pace with everything children toys are also going forward but in a deleterious way. Maximum toys are now battery-driven and for this psychological developments of children are not increasing in effective way; therefore, pedagogical toys are proper selection. This type of toy inspires the wisdom and helps a child to reveal himself/herself. Pedagogical toys are attractive to children and help to stimulate their imagination. Pedagogical toys help them to build senso-motoric skills and hand-eye coordination. In this study, some children divided into two groups, one group played with pedagogical toys and another group played with conventional toys. This study is going to exhibit the difference between pedagogical and conventional toys for kids. The main aim of this study is to reveal the potency of pedagogical toy for children. To implement this study two Daycare Centers (DCC) Projapoti 1 & 3 of Mymensingh city had chosen. Every DCC having 1.5-6 years old children but for this study 2-5 years old children had been selected. The children of Projapoti-1 played with pedagogical toys and the children of Projapoti-2 played with conventional toys. After 6 weeks of study, the children of Projapoti-1 proved that they have improved their skills more than those children of Projapoti-3 who were playing with conventional toys. The children of Projapoti-1 have developed their touch sensation, muscular movement, imitation power, hand-eye coordination whereas the children of Projapoti-3 have only developed their muscular movement fairly (while running after battery driven toys) which is not better than those children of Projapoti-1. They cannot imitate like the children of Projapoti-1. They just had fun from playing virtual games, battery driven toys, watching cartoons etc. Actually, it is not possible to develop a child’s brain without pedagogical toy.

Keywords: brain development, mental growth, pedagogical toys, play for children

Procedia PDF Downloads 324
2221 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles

Authors: Yihua Wang, Yunru Lai

Abstract:

Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.

Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring

Procedia PDF Downloads 459
2220 Optimal Peer-to-Peer On-Orbit Refueling Mission Planning with Complex Constraints

Authors: Jing Yu, Hongyang Liu, Dong Hao

Abstract:

On-Orbit Refueling is of great significance in extending space crafts' lifetime. The problem of minimum-fuel, time-fixed, Peer-to-Peer On-Orbit Refueling mission planning is addressed here with the particular aim of assigning fuel-insufficient satellites to the fuel-sufficient satellites and optimizing each rendezvous trajectory. Constraints including perturbation, communication link, sun illumination, hold points for different rendezvous phases, and sensor switching are considered. A planning model has established as well as a two-level solution method. The upper level deals with target assignment based on fuel equilibrium criterion, while the lower level solves constrained trajectory optimization using special maneuver strategies. Simulations show that the developed method could effectively resolve the Peer-to-Peer On-Orbit Refueling mission planning problem and deal with complex constraints.

Keywords: mission planning, orbital rendezvous, on-orbit refueling, space mission

Procedia PDF Downloads 224
2219 On the Study of All Waterloo Automaton Semilattices

Authors: Mikhail Abramyan, Boris Melnikov

Abstract:

The aim is to study the set of subsets of grids of the Waterloo automaton and the set of covering automata defined by the grid subsets. The study was carried out using the library for working with nondeterministic finite automata NFALib implemented by one of the authors (M. Abramyan) in C#. The results are regularities obtained when considering semilattices of covering automata for the Waterloo automaton. A complete description of the obtained semilattices from the point of view of equivalence of the covering automata to the original Waterloo automaton is given, the criterion of equivalence of the covering automaton to the Waterloo automaton in terms of properties of the subset of grids defining the covering automaton is formulated. The relevance of the subject area under consideration is due to the need to research a set of regular languages and, in particular, a description of their various subclasses. Also relevant are the problems that may arise in some subclasses. This will give, among other things, the possibility of describing new algorithms for the equivalent transformation of nondeterministic finite automata.

Keywords: nondeterministic finite automata, universal automaton, grid, covering automaton, equivalent transformation algorithms, the Waterloo automaton

Procedia PDF Downloads 84
2218 The Implementation of Character Education in Code Riverbanks, Special Region of Yogyakarta, Indonesia

Authors: Ulil Afidah, Muhamad Fathan Mubin, Firdha Aulia

Abstract:

Code riverbanks Yogyakarta is a settlement area with middle to lower social classes. Socio-economic situation is affecting the behavior of society. This research aimed to find and explain the implementation and the assessment of character education which were done in elementary schools in Code riverside, Yogyakarta region of Indonesia. This research is a qualitative research which the subjects were the kids of Code riverbanks, Yogyakarta. The data were collected through interviews and document studies and analyzed qualitatively using the technique of interactive analysis model of Miles and Huberman. The results show that: (1) The learning process of character education was done by integrating all aspects such as democratic and interactive learning session also introducing role model to the students. 2) The assessment of character education was done by teacher based on teaching and learning process and an activity in outside the classroom that was the criterion on three aspects: Cognitive, affective and psychomotor.

Keywords: character, Code riverbanks, education, Yogyakarta

Procedia PDF Downloads 247
2217 Shield Tunnel Excavation Simulation of a Case Study Using a So-Called 'Stress Relaxation' Method

Authors: Shengwei Zhu, Alireza Afshani, Hirokazu Akagi

Abstract:

Ground surface settlement induced by shield tunneling is addressing increasing attention as shield tunneling becomes a popular construction technique for tunnels in urban areas. This paper discusses a 2D longitudinal FEM simulation of a tunneling case study in Japan (Tokyo Metro Yurakucho Line). Tunneling-induced field data was already collected and is used here for comparison and evaluating purposes. In this model, earth pressure, face pressure, backfilling grouting, elastic tunnel lining, and Mohr-Coulomb failure criterion for soil elements are considered. A method called ‘stress relaxation’ is also exploited to simulate the gradual tunneling excavation. Ground surface settlements obtained from numerical results using the introduced method are then compared with the measurement data.

Keywords: 2D longitudinal FEM model, tunneling case study, stress relaxation, shield tunneling excavation

Procedia PDF Downloads 328
2216 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS

Authors: David A. Harness

Abstract:

Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.

Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks

Procedia PDF Downloads 179
2215 Multi-Criteria Goal Programming Model for Sustainable Development of India

Authors: Irfan Ali, Srikant Gupta, Aquil Ahmed

Abstract:

Every country needs a sustainable development (SD) for its economic growth by forming suitable policies and initiative programs for the development of different sectors of the country. This paper is comprised of modeling and optimization of different sectors of India that form a multi-criterion model. In this paper, we developed a fractional goal programming (FGP) model that helps in providing the efficient allocation of resources simultaneously by achieving the sustainable goals in gross domestic product (GDP), electricity consumption (EC) and greenhouse gasses (GHG) emission by the year 2030. Also, a weighted model of FGP is presented to obtain varying solution according to the priorities set by the policy maker for achieving future goals of GDP growth, EC, and GHG emission. The presented models provide a useful insight to the decision makers for implementing strategies in a different sector.

Keywords: sustainable and economic development, multi-objective fractional programming, fuzzy goal programming, weighted fuzzy goal programming

Procedia PDF Downloads 221