Search results for: pulsed electric field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9300

Search results for: pulsed electric field

8610 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials

Authors: Sunita Kumawat, Sumit Kumar Vishwakarma

Abstract:

The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.

Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection

Procedia PDF Downloads 105
8609 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery

Procedia PDF Downloads 242
8608 Foliation and the First Law of Thermodynamics for the Kerr Newman Black Hole

Authors: Syed M. Jawwad Riaz

Abstract:

There has been a lot of interest in exploring the thermodynamic properties at the horizon of a black hole geometry. Earlier, it has been shown, for different spacetimes, that the Einstein field equations at the horizon can be expressed as a first law of black hole thermodynamics. In this paper, considering r = constant slices, for the Kerr-Newman black hole, shown that the Einstein field equations for the induced 3-metric of the hypersurface is expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can only be written as a first law of black hole thermodynamics. It is to be mentioned here that the procedure adopted is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime.

Keywords: black hole space-times, Einstein's field equation, foliation, hyper-surfaces

Procedia PDF Downloads 338
8607 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors

Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira

Abstract:

The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.

Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance

Procedia PDF Downloads 343
8606 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 470
8605 Evaluation of Access to Finance for Local Oil Fields Companies in Ghana

Authors: Gordon Newlove Asamoah, Wendy Ama Oti

Abstract:

This study focused on evaluating access to finance for local oil field companies in Ghana. The study adopted a census survey design in evaluating access to finance for local oil field companies in Ghana. The respondents of this study were 30 management members of three oil field companies in Ghana. The data collected was analysed using Statistical Package for Social Scientists (SPSS) to generate tables and graphs for interpretation. The results show that most companies use equity financing in combination with other forms of financing to finance their business activities. This research has shown the various challenges bordering on the financing of local oil and gas projects, with emphasis on the challenges of raising funds by indigenous oil companies. Financing of the projects by indigenous oil field companies in Ghana is preferably achieved through equity finance mainly because it is the easiest to get compared to all the other forms of financing available. Other sources of financing available are debt financing, joint venture, and retained earnings from the profits generated from their operations. The study made recommendations to local oil field companies as to how they can make good use of the capital market to raise financing.

Keywords: access, financing, oil fields, Ghana

Procedia PDF Downloads 101
8604 Chaotic Response of Electrical Insulation System with Gaseous Dielectric under High AC and DC Voltages

Authors: Arijit Basuray

Abstract:

It is well known that if an electrical insulation system is stressed under high voltage then discharge may occur in various form and if the system is made of composite dielectric having interfaces of materials having different dielectric constant discharge may occur due to gross mismatch of dielectric constant causing intense local field in the interfaces. Here author has studied, firstly, behavior of discharges in gaseous dielectric circuit under AC and DC voltages. A gaseous dielectric circuit is made such that a pair of electrode of typical geometry is used to make the discharges occur under application of AC and DC voltages. Later on, composite insulation system with air gap is also studied. Discharge response of the dielectric circuit is measured across a typically designed impedance. The time evolution of the discharge characteristics showed some interesting chaotic behavior. Author here proposed some analysis of such behavior of the discharge pattern and discussed about the possibility of presence of such discharge circuit in lumped electric circuit.

Keywords: electrical insulation system, EIS, composite dielectric, discharge, chaos

Procedia PDF Downloads 171
8603 Tetrad field and torsion vectors in Schwarzschild solution

Authors: M.A.Bakry1, *, Aryn T. Shafeek1, +

Abstract:

In this article, absolute Parallelism geometry is used to study the torsional gravitational field. And discovered the tetrad fields, torsion vector, and torsion scalar of Schwarzschild space. The new solution of the torsional gravitational field is a generalization of Schwarzschild in the context of general relativity. The results are applied to the planetary orbits.

Keywords: absolute parallelism geometry, tetrad fields, torsion vectors, torsion scalar

Procedia PDF Downloads 137
8602 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids

Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout

Abstract:

Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.

Keywords: graphene, layered material, field emission, plasma, doping

Procedia PDF Downloads 359
8601 The Combined Effect of the Magnetic Field and Ammonium Chlorides on Deposits Zn-Ni Obtained in Different Conditions

Authors: N.Benachour, S. Chouchane, J. P. Chopart

Abstract:

The zinc-nickel deposition on stainless steel substrate was obtained in a chloride bath composed of ZnCl2 (1.8M), NiCl2.6H2O (1.1M), boric acid H3BO3 (1M) and NH4Cl (4M). One configuration was studied the amplitude or field B (0.5 et1T) is parallel to the surface of the working electrodes .the other share the study of various layer was carried out by XRD. The study of the effect of ammonium chloride in combination with the magnetohydrodynamic effect gave several deposits supposedly good physical properties.

Keywords: ammonium chloride, magnetic field, nickel-zinc alloys, co-deposition

Procedia PDF Downloads 268
8600 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 137
8599 A Dual-Polarized Wideband Probe for Near-Field Antenna Measurement

Authors: K. S. Sruthi

Abstract:

Antennas are one of the most important parts of a communication chain. They are used for both communication and calibration purposes. New developments in probe technologies have enabled near-field probes with much larger bandwidth. The objective of this paper is to design, simulate and fabricate a dual polarized wide band inverted quad ridged shape horn antenna which can be used as measurement probe for near field measurements. The inverted quad-ridged horn antenna probe not only provides measurement in the much wider range but also provides dual-polarization measurement thus enabling antenna developers to measure UWB, UHF, VHF antennas more precisely and at lower cost. The antenna is designed to meet the characteristics such as high gain, light weight, linearly polarized with suppressed side lobes for near-field measurement applications. The proposed antenna is simulated with commercially available packages such as Ansoft HFSS. The antenna gives a moderate gain over operating range while delivering a wide bandwidth.

Keywords: near-field antenna measurement, inverted quad-ridge horn antenna, wideband Antennas, dual polarized antennas, ansoft HFSS

Procedia PDF Downloads 418
8598 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: water wave, models, Wells turbine, MATLAB program

Procedia PDF Downloads 356
8597 Geoelectric Survey for Groundwater Potential in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria

Authors: Ibrahim Mohammed, Suleiman Taofiq, Muhammad Naziru Yahya

Abstract:

Geoelectrical measurements using Schlumberger Vertical Electrical Sounding (VES) method were carried out in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria, with the aim of determining the groundwater potential in the area. Twelve (12) Vertical Electric Sounding (VES) data were collected using Terrameter (ABEM SAS 300c) and analyzed using computer software (IPI2win), which gives an automatic interpretation of the apparent resistivity. The results of the interpretation of VES data were used in the characterization of three to five geo-electric layers from which the aquifer units were delineated. Data analysis indicated that water bearing formation exists in the third and fourth layers having resistivity range of 312 to 767 Ωm and 9.51 to 681 Ωm, respectively. The thickness of the formation ranges from 14.7 to 41.8 m, while the depth is from 8.22 to 53.7 m. Based on the result obtained from the interpretation of the data, five (5) VES stations were recommended as the most viable locations for groundwater exploration in the study area. The VES stations include VES A4, A5, A6, B1, and B2. The VES results of the entire area indicated that the water bearing formation occurs at maximum depth of 53.7 m at the time of this survey.

Keywords: aquifer, depth, groundwater, resistivity, Schlumberger

Procedia PDF Downloads 159
8596 Analysis and Identification of Trends in Electric Vehicle Crash Data

Authors: Cody Stolle, Mojdeh Asadollahipajouh, Khaleb Pafford, Jada Iwuoha, Samantha White, Becky Mueller

Abstract:

Battery-electric vehicles (BEVs) are growing in sales and popularity in the United States as an alternative to traditional internal combustion engine vehicles (ICEVs). BEVs are generally heavier than corresponding models of ICEVs, with large battery packs located beneath the vehicle floorpan, a “skateboard” chassis, and have front and rear crush space available in the trunk and “frunk” or front trunk. The geometrical and frame differences between the vehicles may lead to incompatibilities with gasoline vehicles during vehicle-to-vehicle crashes as well as run-off-road crashes with roadside barriers, which were designed to handle lighter ICEVs with higher centers-of-mass and with dedicated structural chasses. Crash data were collected from 10 states spanning a five-year period between 2017 and 2021. Vehicle Identification Number (VIN) codes were processed with the National Highway Traffic Safety Administration (NHTSA) VIN decoder to extract BEV models from ICEV models. Crashes were filtered to isolate only vehicles produced between 2010 and 2021, and the crash circumstances (weather, time of day, maximum injury) were compared between BEVs and ICEVs. In Washington, 436,613 crashes were identified, which satisfied the selection criteria, and 3,371 of these crashes (0.77%) involved a BEV. The number of crashes which noted a fire were comparable between BEVs and ICEVs of similar model years (0.3% and 0.33%, respectively), and no differences were discernable for the time of day, weather conditions, road geometry, or other prevailing factors (e.g., run-off-road). However, crashes involving BEVs rose rapidly; 31% of all BEV crashes occurred in just 2021. Results indicate that BEVs are performing comparably to ICEVs, and events surrounding BEV crashes are statistically indistinguishable from ICEV crashes.

Keywords: battery-electric vehicles, transportation safety, infrastructure crashworthiness, run-off-road crashes, ev crash data analysis

Procedia PDF Downloads 84
8595 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical

Authors: Nai-Chia Chao, Meng-Chi Shih

Abstract:

Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.

Keywords: arts integration, co-working, children's musical

Procedia PDF Downloads 292
8594 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: crystallinity, glow discharge, nitriding, sputtering

Procedia PDF Downloads 417
8593 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 160
8592 Productivity and Profitability of Field Pea as Influenced by Different Levels of Fertility and Bio-Fertilizers under Irrigated Condition

Authors: Akhilesh Mishra, Geeta Rai, Arvind Srivastava, Nalini Tiwari

Abstract:

A field experiment was conducted during two consecutive Rabi seasons of 2007 and 2008 to study the economics of different bio-fertilizer’s inoculations in fieldpea (cv. Jai) at Chandra Shekhar Azad University of Agriculture and Technology, Kanpur (India). Results indicated that the seed inoculation with Rhizobium + PSB + PGPR improved all the growth; yield attributes and yields of field pea. Fresh and dry weight plant-1, nodules number and dry weight plant-1 were found significantly maximum. Number of grains pod-1, number and weight of pods plant-1 at maturity attributed significantly in increasing the grain yield as well as net return. On pooled basis, maximum net income (Rs.22169 ha-1) was obtained with the use of Rhizobium + PSB + PGPR which was improved by a margin of Rs.1502 (6.77%), 2972 (13.40%), 2672 (12.05%), 5212 (23.51%), 6176 (27.85%), 4666 (21.04%) and 8842/ha (39.88%) over the inoculation of PSB + PGPR, Rhizobium + PGPR, Rhizobium + PSB, PGPR, PSB, Rhizobium and control, respectively. Thus, it can be recommended that to earn the maximum net profit from dwarf field pea, seed should be inoculated with Rhizobium + PSB + PGPR.

Keywords: rhizobium, phosphorus solubilizing bacteria, plant growth promoting rhizobacteria, field pea

Procedia PDF Downloads 404
8591 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures

Procedia PDF Downloads 218
8590 Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks

Authors: Stefano Zaninotto, Geoffrey Farrugia, Johan Debattista, Jason Gauci

Abstract:

The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness.

Keywords: air traffic control, electric taxiing, autonomous tow trucks, graphical user interface, ground operations, multi-agent, route optimization

Procedia PDF Downloads 122
8589 Audit of TPS photon beam dataset for small field output factors using OSLDs against RPC standard dataset

Authors: Asad Yousuf

Abstract:

Purpose: The aim of the present study was to audit treatment planning system beam dataset for small field output factors against standard dataset produced by radiological physics center (RPC) from a multicenter study. Such data are crucial for validity of special techniques, i.e., IMRT or stereotactic radiosurgery. Materials/Method: In this study, multiple small field size output factor datasets were measured and calculated for 6 to 18 MV x-ray beams using the RPC recommend methods. These beam datasets were measured at 10 cm depth for 10 × 10 cm2 to 2 × 2 cm2 field sizes, defined by collimator jaws at 100 cm. The measurements were made with a Landauer’s nanoDot OSLDs whose volume is small enough to gather a full ionization reading even for the 1×1 cm2 field size. At our institute the beam data including output factors have been commissioned at 5 cm depth with an SAD setup. For comparison with the RPC data, the output factors were converted to an SSD setup using tissue phantom ratios. SSD setup also enables coverage of the ion chamber in 2×2 cm2 field size. The measured output factors were also compared with those calculated by Eclipse™ treatment planning software. Result: The measured and calculated output factors are in agreement with RPC dataset within 1% and 4% respectively. The large discrepancies in TPS reflect the increased challenge in converting measured data into a commissioned beam model for very small fields. Conclusion: OSLDs are simple, durable, and accurate tool to verify doses that delivered using small photon beam fields down to a 1x1 cm2 field sizes. The study emphasizes that the treatment planning system should always be evaluated for small field out factors for the accurate dose delivery in clinical setting.

Keywords: small field dosimetry, optically stimulated luminescence, audit treatment, radiological physics center

Procedia PDF Downloads 320
8588 Slip Suppression Sliding Mode Control with Various Chattering Functions

Authors: Shun Horikoshi, Tohru Kawabe

Abstract:

This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.

Keywords: sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis

Procedia PDF Downloads 322
8587 Laser Keratoplasty in Human Eye Considering the Fluid Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this paper, conventional laser Keratoplasty surgeries in the human eye are studied. For this purpose, a validated 3D finite volume model of the human eye is introduced. In this model the fluid flow has also been considered. The discretized domain of the human eye incorporates a bio-heat transfer equation coupled with a Boussinesq equation. Both continuous and pulsed lasers have been modeled and the results are compared. Moreover, two different conventional surgical positions that are upright and recumbent are compared for these laser therapies. The simulation results show that in these conventional surgeries, the temperature rises above the critical values at the laser insertion areas. However, due to the short duration and the localized nature, the potential damages are restricted to very small regions and can be ignored. The conclusion is that the present day lasers are acceptably safe to the human eye.

Keywords: eye, heat-transfer, keratoplasty laser, surgery

Procedia PDF Downloads 265
8586 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 292
8585 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation

Authors: Meysam Abedinpour

Abstract:

Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.

Keywords: deficit irrigation, water use efficiency, yield, soybean

Procedia PDF Downloads 463
8584 Zinc Oxide Varistor Performance: A 3D Network Model

Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic

Abstract:

ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.

Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide

Procedia PDF Downloads 277
8583 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 209
8582 Finite Element Simulation for Preliminary Study on Microorganism Detection System

Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun

Abstract:

A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.

Keywords: microorganism, microfluidic, total internal reflection, lab on chip

Procedia PDF Downloads 270
8581 Numerical Investigation on the Interior Wind Noise of a Passenger Car

Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian

Abstract:

With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.

Keywords: wind noise, computational fluid dynamics, finite element method, passenger car

Procedia PDF Downloads 166