Search results for: planar traction force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2479

Search results for: planar traction force

1789 Project Time and Quality Management during Construction

Authors: Nahed Al-Hajeri

Abstract:

Time and cost is an integral part of every construction plan and can affect each party’s contractual obligations. The performance of both time and cost are usually important to the client and contractor during the project. Almost all construction projects are experiencing time overrun. These time overruns always contributed as expensive to both client and contractor. Construction of any project inside the gathering centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. It also involves many agencies interdependent on each other like the vendors, structural and functional designers including various types of specialized engineers and it includes support of contractors and specialized contractors. This paper mainly highlights the types of construction delays due to which project suffer time and cost overrun. This paper also speaks about the delay causes and factors that contribute to the construction sequence delay for the oil and gas projects. Construction delay is supposed to be one of the repeated problems in the construction projects and it has an opposing effect on project success in terms of time, cost and quality. Some effective methods are identified to minimize delays in construction projects such as: 1. Site management and supervision, 2. Effective strategic planning, 3. Clear information and communication channel. Our research paper studies the types of delay with some real examples with statistic results and suggests solutions to overcome this problem.

Keywords: non-compensable delay, delays caused by force majeure, compensable delay, delays caused by the owner or the owner’s representative, non-excusable delay, delay caused by the contractor or the contractor’s representative, concurrent delay, delays resulting from two separate causes at the same time

Procedia PDF Downloads 230
1788 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers

Authors: Pawel Martynowicz

Abstract:

Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.

Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines

Procedia PDF Downloads 108
1787 Research on the Optical Properties and Polymerization Environment of Broadband Reflective Films in the Visible Region

Authors: Z. Miao, Y. Chu, Y. Zhang

Abstract:

The unique cholesteric phase liquid crystals obtained by mixing nematic liquid crystals with chiral dopants have gained valuable applications in the display field for their selective reflection and circular dichroism properties. The periodic arrangement of the helical structure of cholesteric liquid crystals makes it possible to produce Bragg reflection of circularly polarized light irradiated perpendicularly to the liquid crystals and, therefore, to acquire semi- or fully reflective surfaces or films. If the polymer-liquid crystal composites are combined with polymeric monomers, commercialized reflective broadband films can be fabricated. In this study, the polymer-liquid crystal composites reflecting visible light region (wavelength centered at 550 nm) were studied to analyze the effects of AC electric field at different voltages and frequencies on the optical texture of the composites, as well as the effects of polymerization temperature and ultraviolet (UV) intensity on the polymerization reaction and reflection bandwidth. The optimal sample was finally obtained at 100Hz, 120V, 30℃, 1.00 mW/cm², which provides a research suggestion to solve the influencing factors of visible light reflection bandwidths.

Keywords: cholesteric liquid crystal, reflection bandwidths, negative dielectric anisotropy, planar texture

Procedia PDF Downloads 149
1786 Multi-objective Rationality Optimisation for Robotic-fabrication-oriented Free-form Timber Structure Morphology Design

Authors: Yiping Meng, Yiming Sun

Abstract:

The traditional construction industry is unable to meet the requirements for novel fabrication and construction. Automated construction and digital design have emerged as industry development trends that compensate for this shortcoming under the backdrop of Industrial Revolution 4.0. Benefitting from more flexible working space and more various end-effector tools compared to CNC methods, robot fabrication and construction techniques have been used in irregular architectural design. However, there is a lack of a systematic and comprehensive design and optimisation workflow considering geometric form, material, and fabrication methods. This paper aims to propose a design optimisation workflow for improving the rationality of a free-form timber structure fabricated by the robotic arm. Firstly, the free-form surface is described by NURBS, while its structure is calculated using the finite element analysis method. Then, by considering the characteristics and limiting factors of robotic timber fabrication, strain energy and robustness are set as optimisation objectives to optimise structural morphology by gradient descent method. As a result, an optimised structure with axial force as the main force and uniform stress distribution is generated after the structure morphology optimisation process. With the decreased strain energy and the improved robustness, the generated structure's bearing capacity and mechanical properties have been enhanced. The results prove the feasibility and effectiveness of the proposed optimisation workflow for free-form timber structure morphology design.

Keywords: robotic fabrication, free-form timber structure, Multi-objective optimisation, Structural morphology, rational design

Procedia PDF Downloads 178
1785 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar

Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.

Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation

Procedia PDF Downloads 220
1784 Study of the Polymer Elastic Behavior in the Displacement Oil Drops at Pore Scale

Authors: Luis Prada, Jose Gomez, Arlex Chaves, Julio Pedraza

Abstract:

Polymeric liquids have been used in the oil industry, especially at enhanced oil recovery (EOR). From the rheological point of view, polymers have the particularity of being viscoelastic liquids. One of the most common and useful models to describe that behavior is the Upper Convected Maxwell model (UCM). The main characteristic of the polymer used in EOR process is the increase in viscosity which pushes the oil outside of the reservoir. The elasticity could contribute in the drag of the oil that stays in the reservoir. Studying the elastic effect on the oil drop at the pore scale, bring an explanation if the addition of elastic force could mobilize the oil. This research explores if the contraction and expansion of the polymer in the pore scale may increase the elastic behavior of this kind of fluid. For that reason, this work simplified the pore geometry and build two simple geometries with micrometer lengths. Using source terms with the user define a function this work introduces the UCM model in the ANSYS fluent simulator with the purpose of evaluating the elastic effect of the polymer in a contraction and expansion geometry. Also, using the Eulerian multiphase model, this research considers the possibility that extra elastic force will show a deformation effect on the oil; for that reason, this work considers an oil drop on the upper wall of the geometry. Finally, all the simulations exhibit that at the pore scale conditions exist extra vortices at UCM model but is not possible to deform the oil completely and push it outside of the restrictions, also this research find the conditions for the oil displacement.

Keywords: ANSYS fluent, interfacial fluids mechanics, polymers, pore scale, viscoelasticity

Procedia PDF Downloads 117
1783 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows

Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar

Abstract:

In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.

Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF

Procedia PDF Downloads 343
1782 The Effects of Extracorporeal Shock Wave Therapy on Plantar Pressure in Patients with Calcaneal Spur

Authors: Zehra Betül Karakoç

Abstract:

Aim: The aim of our study is to determine the changement pf plantar pressure after extracorporeal shock wave therapy (ESWT) in a patient with calcaneal spur (CS). Method: Thirty patients with CS who received ESWT treatment at Kartal Yavuz Selim State Hospital between May 2020 and November 2022 participated in this study. Demographic information of the cases was obtained. Pain levels and plantar pressure were measured with Visuel Analog Scale (VAS) and pedobarography, respectively. Pedobarography measured the maximal strength, peak pressure level, and contact area values of the hind, middle, forefoot, and toes. The cases were re-evaluated 4 weeks after the application of 15 Hz, 2-3 bar, 2,000 beats ESWT for 3 sessions. 22 cases participated in the second evaluation. The data of all patients were evaluated bilaterally. Results: Pain intensity levels after treatment were statistically significantly decreased compared to before treatment (p=0.012). Maximum force and contact area values of total foot and forefoot increased significantly (p < 0.05). Conclusion: We consider that the increased max force value of total foot and forefoot area after ESWT is due to the normal walking rate gained related to decreased pain. ESWT treatment may have positive effects on foot pressure distribution and body biomechanics. In order to interpret the results of our study more clearly, randomized controlled studies with a larger number of cases were planned in the future.

Keywords: calcaneal spur, ESWT, plantar pressure, pain

Procedia PDF Downloads 60
1781 Mitigating Denial of Service Attacks in Information Centric Networking

Authors: Bander Alzahrani

Abstract:

Information-centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) is one of the promising candidates for a future Internet, has recently been under the spotlight by the research community to investigate the possibility of redesigning the current Internet architecture to solve many issues such as routing scalability, security, and quality of services issues.. The Bloom filter-based forwarding is a source-routing approach that is used in the PSIRP architecture. This mechanism is vulnerable to brute force attacks which may lead to denial-of-service (DoS) attacks. In this work, we present a new forwarding approach that keeps the advantages of Bloom filter-based forwarding while mitigates attacks on the forwarding mechanism. In practice, we introduce a special type of forwarding nodes called Edge-FW to be placed at the edge of the network. The role of these node is to add an extra security layer by validating and inspecting packets at the edge of the network against brute-force attacks and check whether the packet contains a legitimate forwarding identifier (FId) or not. We leverage Certificateless Aggregate Signature (CLAS) scheme with a small size of 64-bit which is used to sign the FId. Hence, this signature becomes bound to a specific FId. Therefore, malicious nodes that inject packets with random FIds will be easily detected and dropped at the Edge-FW node when the signature verification fails. Our preliminary security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DoS with very high probability.

Keywords: bloom filter, certificateless aggregate signature, denial-of-service, information centric network

Procedia PDF Downloads 187
1780 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid

Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee

Abstract:

The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.

Keywords: copper-CO2 nanofluid, molecular dynamics simulation, molecular interfacial layer, thermal conductivity

Procedia PDF Downloads 315
1779 Experimental and Theoretical Approach, Hirshfeld Surface, Reduced Density Gradient, Molecular Docking of a Thiourea Derivative

Authors: Noureddine Benharkat, Abdelkader Chouaih, Nourdine Boukabcha

Abstract:

A thiourea derivative compound was synthesized and subjected to structural analysis using single-crystal X-ray diffraction (XRD). The crystallographic data unveiled its crystallization in the P21/c space group within the monoclinic system. Examination of the dihedral angles indicated a notable non-planar structure. To support and interpret these resulats, density functional theory (DFT) calculations were conducted utilizing the B3LYP functional along with a 6–311 G (d, p) basis set. Additionally, to assess the contribution of intermolecular interactions, Hirshfeld surface analysis and 2D fingerprint plots were employed. Various types of interactions, whether weak intramolecular or intermolecular, within a molecule can significantly impact its stability. The distinctive signature of non-covalent interactions can be detected solely through electron density analysis. The NCI-RDG analysis was employed to investigate both repulsive and attractive van der Waals interactions while also calculating the energies associated with intermolecular interactions and their characteristics. Additionally, a molecular docking study was studied to explain the structure-activity relationship, revealing that the title compound exhibited an affinity energy of -6.8 kcal/mol when docked with B-DNA (1BNA).

Keywords: computational chemistry, density functional theory, crystallography, molecular docking, molecular structure, powder x-ray diffraction, single crystal x-ray diffraction

Procedia PDF Downloads 34
1778 Characterization of Nano Coefficient of Friction through Lfm of Superhydrophobic/Oleophobic Coatings Applied on 316l Ss

Authors: Hamza Shams, Sajid Saleem, Bilal A. Siddiqui

Abstract:

This paper investigates the coefficient of friction at nano-levels of commercially available superhydrophobic/oleophobic coatings when applied over 316L SS. 316L Stainless Steel or Marine Stainless Steel has been selected for its widespread uses in structures, marine and biomedical applications. The coatings were investigated in harsh sand-storm and sea water environments. The particle size of the sand during the procedure was carefully selected to simulate sand-storm conditions. Sand speed during the procedure was carefully modulated to simulate actual wind speed during a sand-storm. Sample preparation was carried out using prescribed methodology by the coating manufacturer. The coating’s adhesion and thickness was verified before and after the experiment with the use of Scanning Electron Microscopy (SEM). The value for nano-level coefficient of friction has been determined using Lateral Force Microscopy (LFM). The analysis has been used to formulate a value of friction coefficient which in turn is associative of the amount of wear the coating can bear before the exposure of the base substrate to the harsh environment. The analysis aims to validate the coefficient of friction value as marketed by the coating manufacturers and more importantly test the coating in real-life applications to justify its use. It is expected that the coating would resist exposure to the harsh environment for a considerable amount of time. Further, it would prevent the sample from getting corroded in the process.

Keywords: 316L SS, scanning electron microscopy, lateral force microscopy, marine stainless steel, oleophobic coating, superhydrophobic coating

Procedia PDF Downloads 472
1777 The Effect of Mechanical Stress on the Magnetic Structure and Properties of Ferromagnetic Microwires in Glass Insulation

Authors: N. N. Orlova, A. S. Aronin, Yu. P. Kabanov, S. I. Bozhko, V. S. Gornakov

Abstract:

We have investigated the change of the magnetic structure and the hysteresis properties of iron-based microwires after decreasing levels of internal mechanical stresses. The magnetic structure was investigated by the method of magneto-optical indicator film and the method of magnetic force microscopy. The hysteresis properties were studied by the vibrating sample magnetometer. The stresses were decreased by removing the glass coat and/or by low-temperature isothermal annealing. Previously, the authors carried out experimentally investigation of the magnetic structure of Fe-based microwire using these methods. According to the obtained results the domain structure of a microwire with a positive magnetostriction is composed of the inner cylindrical domains with the magnetization along the wire axis and the surface layer of the ring shape domains with the radial direction of magnetization. Surface ring domains with opposite magnetization direction (i.e., to the axis or from the axis) alternate with each other. For the first time the size of magnetic domains was determined experimentally. In this study it was found that in the iron-based microwires the value of the coercive force can be reduce more than twice by decreasing levels of internal mechanical stresses. Decrease of the internal stress value by the relaxation annealing influence on the magnetic structure. So in the as-prepared microwires observed local deviations of the magnetization of the magnetic core domains from the axis of the wire. After low-temperature annealing the local deviations of magnetization is not observed.

Keywords: amorphous microwire, magnetic structure, internal stress, hysteresis properties, ferromagnetic

Procedia PDF Downloads 558
1776 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia PDF Downloads 383
1775 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles

Authors: Emil F. Khisamutdinov

Abstract:

Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.

Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers

Procedia PDF Downloads 58
1774 Contribution of Upper Body Kinematics on Tennis Serve Performance

Authors: Ikram Hussain, Fuzail Ahmad, Tawseef Ahmad Bhat

Abstract:

Tennis serve is characterized as one of the most prominent techniques pertaining to the success of winning a point. The study was aimed to explore the contributions of the upper body kinematics on the tennis performance during Davis Cup (Oceania Group). Four Indian International tennis players who participated in the Davis Cup held at Indore, India were inducted as the subjects for this study, with mean age 27 ± 4.79 Years, mean weight 186 ± 6.03 cm, mean weight 81.25 ± 7.41kg, respectively. The tennis serve was bifurcated into three phases viz, preparatory phase, force generation phase and follow through phase. The kinematic data for the study was recorded through the high speed canon camcorder having a shuttle speed of 1/2000, at a frame rate of 50 Hz. The data was analysed with the motion analysis software. The descriptive statistics and F-test was employed through SPSS version 17.0 for the determination of the undertaken kinematic parameters of the study, and was computed at a 0.05 level of significance with 46 degrees of freedom. Mean, standard deviation and correlation coefficient also employed to find out the relationship among the upper body kinematic parameter and performance. In the preparatory phase, the analysis revealed that no significant difference exists among the kinematic parameters of the players on the performance. However, in force generation phase, wrist velocity (r= 0.47), torso velocity (r= -0.53), racket velocity r= 0.60), and in follow through phase, torso acceleration r= 0.43), elbow angle (r= -0.48) play a significant role on the performance of the tennis serve. Therefore, players should ponder upon the velocities of the above segments at the time of preparation for the competitions.

Keywords: Davis Cup, kinematics, motion analysis, tennis serve

Procedia PDF Downloads 281
1773 Design and Manufacture of a Hybrid Gearbox Reducer System

Authors: Ahmed Mozamel, Kemal Yildizli

Abstract:

Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.

Keywords: hybrid gearbox, mechanical gearboxes, magnetic gears, magnetic torque

Procedia PDF Downloads 136
1772 Cost Valuation Method for Development Concurrent, Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a non-negligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: research and development, technology and innovation, lithium-ion-battery production, load carrier development process, cost valuation method

Procedia PDF Downloads 572
1771 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology

Authors: Mouhamadou Diop, Mohamed I. Hassan

Abstract:

Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.

Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field

Procedia PDF Downloads 224
1770 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 524
1769 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper

Authors: Hossein Ramezani Ali-Akbari

Abstract:

This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.

Keywords: back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism

Procedia PDF Downloads 308
1768 Analysis of Slope in an Excavated Gneiss Rock Using Geological Strength Index (GSI) in Ilorin, Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

The study carried out analysis on slope stability in an excavated gneiss rock using geological strength index (GSI) in Ilorin, Kwara State, Nigeria. A kinematic analysis of planar discontinuity sets in a gneiss deposit was carried out to ascertain the degree of slope stability. Discontinuity orientations in the rock mass were mapped using compass clinometers. The average result of physical and mechanical properties such as specific gravity, unit weight, uniaxial compressive strength, point load index, and Schmidt rebound value are 2.64 g/m3, 25.95 kN/m3, 156 MPa, 6.5 MPa, and 53.12 respectively. Also, a statistical model equation relating the rock strength was developed. The analyses states that the rock face is susceptible to wedge failures having all the geometrical conditions associated with the occurrence of such failures were noticeable. It can be concluded that analyses of discontinuity orientation in relation to cut face direction in rock excavation is essential for mine planning to forestall mine accidents. Assessment of excavated slope methods was evident that one excavation method (blasting and/or use of hydraulic hammer) is applicable for the given rock strength, the ease of excavation decreases as the rock mass quality increases, thus blasting most suitable for such operation.

Keywords: slope stability, wedge failure, geological strength index (GSI), discontinuities and excavated slope

Procedia PDF Downloads 495
1767 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method

Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga

Abstract:

Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.

Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses

Procedia PDF Downloads 243
1766 Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure

Authors: M'Hamed Boulakroune, Mouloud Challal, Hassiba Louazene, Saida Fentiz

Abstract:

This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.

Keywords: defected ground structure, diode varactor, microstrip bandpass filter, multiple-mode resonator

Procedia PDF Downloads 282
1765 Effect of Species and Slaughtering Age on Quality Characteristics of Different Meat Cuts of Humped Cattle and Water Buffalo Bulls

Authors: Muhammad Kashif Yar, Muhammad Hayat Jaspal, Muawuz Ijaz, Zafar Hayat, Iftikhar Hussain Badar, Jamal Nasir

Abstract:

Meat quality characteristics such as ultimate pH (pHu), color, cooking loss and shear force of eight wholesale meat cuts of humped cattle (Bos indicus) and water buffalo (Bubalus bubalis) bulls at two age groups were evaluated. A total of 48 animals, 24 of each species and within species 12 from each 18 and 26 months age group were slaughtered. After 24h post-slaughter, eight meat cuts, i.e., tenderloin, sirloin, rump, cube roll, round, topside, silverside and blade were cut from the carcass. The pHu of tenderloin (5.65 vs 5.55), sirloin (5.67 vs 5.60), cube roll (5.68 vs 5.62) and blade (5.88 vs 5.72) was significantly higher (P<0.05) in buffalo than cattle. The tenderloin showed significantly higher (44.63 vs 42.23) and sirloin showed lower (P<0.05) mean L* value (42.28 vs 44.47) in cattle than buffalo whilst the mean L* value of the only tenderloin was affected by animal age. Species had a significant (P<0.05) effect on mean a*, b*, C, and h values of all meat cuts. The shear force of the majority of meat cuts, within species and age groups, varied considerably. The mean shear values of tenderloin, sirloin, cube roll and blade were higher (P<0.05) in buffalo than cattle. The shear values of rump, round, topside and silverside increased significantly (P<0.05) with animal age. In conclusion, primal cuts of cattle showed better meat quality especially tenderness than buffalo. Furthermore, calves should be raised at least up to 26 months of age to maximize profitability by providing better quality meat.

Keywords: buffalo, cattle, meat color, meat quality, slaughtering age, tenderness

Procedia PDF Downloads 124
1764 Triangulations via Iterated Largest Angle Bisection

Authors: Yeonjune Kang

Abstract:

A triangulation of a planar region is a partition of that region into triangles. In the finite element method, triangulations are often used as the grid underlying a computation. In order to be suitable as a finite element mesh, a triangulation must have well-shaped triangles, according to criteria that depend on the details of the particular problem. For instance, most methods require that all triangles be small and as close to the equilateral shape as possible. Stated differently, one wants to avoid having either thin or flat triangles in the triangulation. There are many triangulation procedures, a particular one being the one known as the longest edge bisection algorithm described below. Starting with a given triangle, locate the midpoint of the longest edge and join it to the opposite vertex of the triangle. Two smaller triangles are formed; apply the same bisection procedure to each of these triangles. Continuing in this manner after n steps one obtains a triangulation of the initial triangle into 2n smaller triangles. The longest edge algorithm was first considered in the late 70’s. It was shown by various authors that this triangulation has the desirable properties for the finite element method: independently of the number of iterations the angles of these triangles cannot get too small; moreover, the size of the triangles decays exponentially. In the present paper we consider a related triangulation algorithm we refer to as the largest angle bisection procedure. As the name suggests, rather than bisecting the longest edge, at each step we bisect the largest angle. We study the properties of the resulting triangulation and prove that, while the general behavior resembles the one in the longest edge bisection algorithm, there are several notable differences as well.

Keywords: angle bisectors, geometry, triangulation, applied mathematics

Procedia PDF Downloads 374
1763 Evaluation of the Energy Performance and Emissions of an Aircraft Engine: J69 Using Fuel Blends of Jet A1 and Biodiesel

Authors: Gabriel Fernando Talero Rojas, Vladimir Silva Leal, Camilo Bayona-Roa, Juan Pava, Mauricio Lopez Gomez

Abstract:

The substitution of conventional aviation fuels with biomass-derived alternative fuels is an emerging field of study in the aviation transport, mainly due to its energy consumption, the contribution to the global Greenhouse Gas - GHG emissions and the fossil fuel price fluctuations. Nevertheless, several challenges remain as the biofuel production cost and its degradative effect over the fuel systems that alter the operating safety. Moreover, experimentation on full-scale aeronautic turbines are expensive and complex, leading to most of the research to the testing of small-size turbojets with a major absence of information regarding the effects in the energy performance and the emissions. The main purpose of the current study is to present the results of experimentation in a full-scale military turbojet engine J69-T-25A (presented in Fig. 1) with 640 kW of power rating and using blends of Jet A1 with oil palm biodiesel. The main findings are related to the thrust specific fuel consumption – TSFC, the engine global efficiency – η, the air/fuel ratio – AFR and the volume fractions of O2, CO2, CO, and HC. Two fuels are used in the present study: a commercial Jet A1 and a Colombian palm oil biodiesel. The experimental plan is conducted using the biodiesel volume contents - w_BD from 0 % (B0) to 50 % (B50). The engine operating regimes are set to Idle, Cruise, and Take-off conditions. The turbojet engine J69 is used by the Colombian Air Force and it is installed in a testing bench with the instrumentation that corresponds to the technical manual of the engine. The increment of w_BD from 0 % to 50 % reduces the η near 3,3 % and the thrust force in a 26,6 % at Idle regime. These variations are related to the reduction of the 〖HHV〗_ad of the fuel blend. The evolved CO and HC tend to be reduced in all the operating conditions when increasing w_BD. Furthermore, a reduction of the atomization angle is presented in Fig. 2, indicating a poor atomization in the fuel nozzle injectors when using a higher biodiesel content as the viscosity of fuel blend increases. An evolution of cloudiness is also observed during the shutdown procedure as presented in Fig. 3a, particularly after 20 % of biodiesel content in the fuel blend. This promotes the contamination of some components of the combustion chamber of the J69 engine with soot and unburned matter (Fig. 3). Thus, the substitution of biodiesel content above 20 % is not recommended in order to avoid a significant decrease of η and the thrust force. A more detail examination of the mechanical wearing of the main components of the engine is advised in further studies.

Keywords: aviation, air to fuel ratio, biodiesel, energy performance, fuel atomization, gas turbine

Procedia PDF Downloads 93
1762 Investigation of the Drying Times of Blood under Different Environmental Conditions and on Different Fabrics and the Transfer of Blood at Different Times of the Drying Process

Authors: Peter Parkinson

Abstract:

The research investigates the effects of temperature, humidity, wind speed, and fabric composition on the drying times of blood and assesses the degree of blood transfer that can occur during the drying process. An assortment of fabrics, of different composition and thicknesses, were collected and stained using two blood volumes and exposed to varying environmental conditions. The conclusion reached was that temperature, humidity, wind speed, and fabric thickness do have an effect on drying times. An increase in temperature and wind speed results in a decrease in drying times while an increase in fabric thickness and humidity extended the drying times of blood under similar conditions. Transfer experimentation utilized three donor fabrics, 100% white cotton, 100% acrylic, and 100% cotton denim, which were bloodstained using two blood volumes. The fabrics were subjected to both full and low/light force contact from the donor fabrics onto the recipient fabric, under different environmental conditions. Transfer times onto the 100% white cotton (recipient fabric) from all donor fabrics were shorter than the drying times observed. The intensities of the bloodstains decreased from high to low with time during the drying process. The degree of transfer at high, medium, and low intensities varied significantly between different materials and is dependent on the environmental conditions, fabric compositions, blood volumes, the type of contact (full or light force), and the drying times observed for the respective donor fabrics. These factors should be considered collectively and conservatively when assessing the time frame of secondary transfer in casework.

Keywords: blood, drying time, blood stain transfer, different environmental conditions, fabrics

Procedia PDF Downloads 133
1761 Semi-Autonomous Surgical Robot for Pedicle Screw Insertion on ex vivo Bovine Bone: Improved Workflow and Real-Time Process Monitoring

Authors: Robnier Reyes, Andrew J. P. Marques, Joel Ramjist, Chris R. Pasarikovski, Victor X. D. Yang

Abstract:

Over the past three decades, surgical robotic systems have demonstrated their ability to improve surgical outcomes. The LBR Med is a collaborative robotic arm that is meant to work with a surgeon to streamline surgical workflow. It has 7 degrees of freedom and thus can be easily oriented. Position and torque sensors at each joint allow it to maintain a position accuracy of 150 µm with real-time force and torque feedback, making it ideal for complex surgical procedures. Spinal fusion procedures involve the placement of as many as 20 pedicle screws, requiring a great deal of accuracy due to proximity to the spinal canal and surrounding vessels. Any deviation from intended path can lead to major surgical complications. Assistive surgical robotic systems are meant to serve as collaborative devices easing the workload of the surgeon, thereby improving pedicle screw placement by mitigating fatigue related inaccuracies. Moreover, robotic spinal systems have shown marked improvements over conventional freehanded techniques in both screw placement accuracy and fusion quality and have greatly reduced the need for screw revision, intraoperatively and post-operatively. However, current assistive spinal fusion robots, such as the ROSA Spine, are limited in functionality to positioning surgical instruments. While they offer a small degree of improvement in pedicle screw placement accuracy, they do not alleviate surgeon fatigue, nor do they provide real-time force and torque feedback during screw insertion. We propose a semi-autonomous surgical robot workflow for spinal fusion where the surgeon guides the robot to its initial position and orientation, and the robot drives the pedicle screw accurately into the vertebra. Here, we demonstrate feasibility by inserting pedicle screws into ex-vivo bovine rib bone. The robot monitors position, force and torque with respect to predefined values selected by the surgeon to ensure the highest possible spinal fusion quality. The workflow alleviates the strain on the surgeon by having the robot perform the screw placement while the ability to monitor the process in real-time keeps the surgeon in the system loop. The approach we have taken in terms of level autonomy for the robot reflects its ability to safely collaborate with the surgeon in the operating room without external navigation systems.

Keywords: ex vivo bovine bone, pedicle screw, surgical robot, surgical workflow

Procedia PDF Downloads 154
1760 Analysis of Force Convection in Bandung Triga Reactor Core Plate Types Fueled Using Coolod-N2

Authors: K. A. Sudjatmi, Endiah Puji Hastuti, Surip Widodo, Reinaldy Nazar

Abstract:

Any pretensions to stop the production of TRIGA fuel elements by TRIGA reactor fuel elements manufacturer should be anticipated by the operating agency of TRIGA reactor to replace the cylinder type fuel element with plate type fuel element, that available on the market. This away was performed the calculation on U3Si2Al fuel with uranium enrichment of 19.75% and a load level of 2.96 gU/cm3. Maximum power that can be operated on free convection cooling mode at the BANDUNG TRIGA reactor fuel plate was 600 kW. This study has been conducted thermalhydraulic characteristic calculation model of the reactor core power 2MW. BANDUNG TRIGA reactor core fueled plate type is composed of 16 fuel elements, 4 control elements and one irradiation facility which is located right in the middle of the core. The reactor core is cooled using a pump which is already available with flow rate 900 gpm. Analysis on forced convection cooling mode with flow from the top down from 10%, 20%, 30% and so on up to a 100% rate of coolant flow. performed using the COOLOD-N2 code. The calculations result showed that the 2 MW power with inlet coolant temperature at 37 °C and cooling rate percentage of 50%, then the coolant temperature, maximum cladding and meat respectively 64.96 oC, 124.81 oC, and 125.08 oC, DNBR (departure from nucleate boiling ratio)=1.23 and OFIR (onset of flow instability ratio)=1:00. The results are expected to be used as a reference for determining the power and cooling rate level of the BANDUNG TRIGA reactor core plate types fueled.

Keywords: TRIGA, COOLOD-N2, plate type fuel element, force convection, thermal hydraulic characteristic

Procedia PDF Downloads 278