Search results for: multiple input multiple output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8064

Search results for: multiple input multiple output

7374 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data

Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal

Abstract:

Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.

Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer

Procedia PDF Downloads 89
7373 Performance Evaluation of MIMO-OFDM Communication Systems

Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO-OFDM communication system. MIMO system uses multiple transmitting and receiving antennas with different coding techniques to either enhance the transmission diversity or spatial multiplexing gain. Utilizing alamouti algorithm were the same information transmitted over multiple antennas at different time intervals and then collected again at the receivers to minimize the probability of error, combat fading and thus improve the received signal to noise ratio. While utilizing V-BLAST algorithm, the transmitted signals are divided into different transmitting channels and transferred over the channel to be received by different receiving antennas to increase the transmitted data rate and achieve higher throughput. The paper provides a study of different diversity gain coding schemes and spatial multiplexing coding for MIMO systems. A comparison of various channels' estimation and equalization techniques are given. The simulation is implemented using MATLAB, and the results had shown the performance of transmission models under different channel environments.

Keywords: MIMO communication, BER, space codes, channels, alamouti, V-BLAST

Procedia PDF Downloads 175
7372 Evaluating Factors Influencing Information Quality in Large Firms

Authors: B. E. Narkhede, S. K. Mahajan, B. T. Patil, R. D. Raut

Abstract:

Information quality is a major performance measure for an Enterprise Resource Planning (ERP) system of any firm. This study identifies various critical success factors of information quality. The effect of various critical success factors like project management, reengineering efforts and interdepartmental communications on information quality is analyzed using a multiple regression model. Here quantitative data are collected from respondents from various firms through structured questionnaire for assessment of the information quality, project management, reengineering efforts and interdepartmental communications. The validity and reliability of the data are ensured using techniques like factor analysis, computing of Cronbach’s alpha. This study gives relative importance of each of the critical success factors. The findings suggest that among the various factors influencing information quality careful reengineering efforts are the most influencing factor. This paper gives clear insight to managers and practitioners regarding the relative importance of critical success factors influencing information quality so that they can formulate a strategy at the beginning of ERP system implementation.

Keywords: Enterprise Resource Planning (ERP), information systems (IS), multiple regression, information quality

Procedia PDF Downloads 332
7371 Rest API Based System-level Test Automation for Mobile Applications

Authors: Jisoo Song

Abstract:

Today’s mobile applications are communicating with servers more and more in order to access external services or information. Also, server-side code changes are more frequent than client-side code changes in a mobile application. The frequent changes lead to an increase in testing cost increase. To reduce costs, UI based test automation can be one of the solutions. It is a common automation technique in system-level testing. However, it can be unsuitable for mobile applications. When you automate tests based on UI elements for mobile applications, there are some limitations such as the overhead of script maintenance or the difficulty of finding invisible defects that UI elements cannot represent. To overcome these limitations, we present a new automation technique based on Rest API. You can automate system-level tests through test scripts that you write. These scripts call a series of Rest API in a user’s action sequence. This technique does not require testers to know the internal implementation details, only input and expected output of Rest API. You can easily modify test cases by modifying Rest API input values and also find problems that might not be evident from the UI level by validating output values. For example, when an application receives price information from a payment server and user cannot see it at UI level, Rest API based scripts can check whether price information is correct or not. More than 10 mobile applications at our company are being tested automatically based on Rest API scripts whenever application source code, mostly server source code, is built. We are finding defects right away by setting a script as a build job in CI server. The build job starts when application code builds are completed. This presentation will also include field cases from our company.

Keywords: case studies at SK Planet, introduction of rest API based test automation, limitations of UI based test automation

Procedia PDF Downloads 448
7370 Evaluating Contextually Targeted Advertising with Attention Measurement

Authors: John Hawkins, Graham Burton

Abstract:

Contextual targeting is a common strategy for advertising that places marketing messages in media locations that are expected to be aligned with the target audience. There are multiple major challenges to contextual targeting: the ideal categorisation scheme needs to be known, as well as the most appropriate subsections of that scheme for a given campaign or creative. In addition, the campaign reach is typically limited when targeting becomes narrow, so a balance must be struck between requirements. Finally, refinement of the process is limited by the use of evaluation methods that are either rapid but non-specific (click through rates), or reliable but slow and costly (conversions or brand recall studies). In this study we evaluate the use of attention measurement as a technique for understanding the performance of targeting on the basis of specific contextual topics. We perform the analysis using a large scale dataset of impressions categorised using the iAB V2.0 taxonomy. We evaluate multiple levels of the categorisation hierarchy, using categories at different positions within an initial creative specific ranking. The results illustrate that measuring attention time is an affective signal for the performance of a specific creative within a specific context. Performance is sustained across a ranking of categories from one period to another.

Keywords: contextual targeting, digital advertising, attention measurement, marketing performance

Procedia PDF Downloads 104
7369 Gnss Aided Photogrammetry for Digital Mapping

Authors: Muhammad Usman Akram

Abstract:

This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.

Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry

Procedia PDF Downloads 30
7368 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 128
7367 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics

Procedia PDF Downloads 511
7366 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 210
7365 Natural User Interface Adapter: Enabling Natural User Interface for Non-Natural User Interface Applications

Authors: Vijay Kumar Kolagani, Yingcai Xiao

Abstract:

Adaptation of Natural User Interface (NUI) has been slow and limited. NUI devices like Microsoft’s Kinect and Ultraleap’s Leap Motion can only interact with a handful applications that were specifically designed and implemented for them. A NUI device just can’t be used to directly control millions of applications that are not designed to take NUI input. This is in the similar situation like the adaptation of color TVs. At the early days of color TV, the broadcasting format was in RGB, which was not viewable by blackand-white TVs. TV broadcasters were reluctant to produce color programs due to limited viewership. TV viewers were reluctant to buy color TVs because there were limited programs to watch. Color TV’s breakthrough moment came after the adaptation of NTSC standard which allowed color broadcasts to be compatible with the millions of existing black-and-white TVs. This research presents a framework to use NUI devices to control existing non-NUI applications without reprogramming them. The methodology is to create an adapter to convert input from NUI devices into input compatible with that generated by CLI (Command Line Input) and GUI (Graphical User Interface) devices. The CLI/GUI compatible input is then sent to the active application through the operating system just like any input from a CLI/GUI device to control the non-NUI program that the user is controlling. A sample adapter has been created to convert input from Kinect to keyboard strokes, so one can use the input from Kinect to control any applications that take keyboard input, such as Microsoft’s PowerPoint. When the users use the adapter to control their PowerPoint presentations, they can free themselves from standing behind a computer to use its keyboard and can roam around in front of the audience to use hand gestures to control the PowerPoint. It is hopeful such adapters can accelerate the adaptation of NUI devices.

Keywords: command line input, graphical user interface, human computer interaction, natural user interface, NUI adapter

Procedia PDF Downloads 14
7364 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 524
7363 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 473
7362 Phillips Curve Estimation in an Emerging Economy: Evidence from Sub-National Data of Indonesia

Authors: Harry Aginta

Abstract:

Using Phillips curve framework, this paper seeks for new empirical evidence on the relationship between inflation and output in a major emerging economy. By exploiting sub-national data, the contribution of this paper is threefold. First, it resolves the issue of using on-target national inflation rates that potentially causes weakening inflation-output nexus. This is very relevant for Indonesia as its central bank has been adopting inflation targeting framework based on national consumer price index (CPI) inflation. Second, the study tests the relevance of mining sector in output gap estimation. The test for mining sector is important to control for the effects of mining regulation and nominal effects of coal prices on real economic activities. Third, the paper applies panel econometric method by incorporating regional variation that help to improve model estimation. The results from this paper confirm the strong presence of Phillips curve in Indonesia. Positive output gap that reflects excess demand condition gives rise to the inflation rates. In addition, the elasticity of output gap is higher if the mining sector is excluded from output gap estimation. In addition to inflation adaptation, the dynamics of exchange rate and international commodity price are also found to affect inflation significantly. The results are robust to the alternative measurement of output gap

Keywords: Phillips curve, inflation, Indonesia, panel data

Procedia PDF Downloads 122
7361 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
7360 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 53
7359 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making

Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson

Abstract:

Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.

Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty

Procedia PDF Downloads 126
7358 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 153
7357 Motion-Based Detection and Tracking of Multiple Pedestrians

Authors: A. Harras, A. Tsuji, K. Terada

Abstract:

Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.

Keywords: automatic detection, tracking, pedestrians, counting

Procedia PDF Downloads 257
7356 Investigating the Dynamic Plantar Pressure Distribution in Individuals with Multiple Sclerosis

Authors: Hilal Keklicek, Baris Cetin, Yeliz Salci, Ayla Fil, Umut Altinkaynak, Kadriye Armutlu

Abstract:

Objectives and Goals: Spasticity is a common symptom characterized with a velocity dependent increase in tonic stretch reflexes (muscle tone) in patient with multiple sclerosis (MS). Hypertonic muscles affect the normal plantigrade contact by disturbing accommodation of foot to the ground while walking. It is important to know the differences between healthy and neurologic foot features for management of spasticity related deformities and/or determination of rehabilitation purposes and contents. This study was planned with the aim of investigating the dynamic plantar pressure distribution in individuals with MS and determining the differences between healthy individuals (HI). Methods: Fifty-five individuals with MS (108 foot with spasticity according to Modified Ashworth Scale) and 20 HI (40 foot) were the participants of the study. The dynamic pedobarograph was utilized for evaluation of dynamic loading parameters. Participants were informed to walk at their self-selected speed for seven times to eliminate learning effect. The parameters were divided into 2 categories including; maximum loading pressure (N/cm2) and time of maximum pressure (ms) were collected from heal medial, heal lateral, mid foot, heads of first, second, third, fourth and fifth metatarsal bones. Results: There were differences between the groups in maximum loading pressure of heal medial (p < .001), heal lateral (p < .001), midfoot (p=.041) and 5th metatarsal areas (p=.036). Also, there were differences between the groups the time of maximum pressure of all metatarsal areas, midfoot, heal medial and heal lateral (p < .001) in favor of HI. Conclusions: The study provided basic data about foot pressure distribution in individuals with MS. Results of the study primarily showed that spasticity of lower extremity muscle disrupted the posteromedial foot loading. Secondarily, according to the study result, spasticity lead to inappropriate timing during load transfer from hind foot to forefoot.

Keywords: multiple sclerosis, plantar pressure distribution, gait, norm values

Procedia PDF Downloads 320
7355 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: conduction, inverse problems, conjugated gradient method, laser

Procedia PDF Downloads 369
7354 Kelantan Malay Cultural Landscape: The Concept of Kota Bharu Islamic City

Authors: Mohammad Rusdi Mohd Nasir, Ismail Hafiz Salleh

Abstract:

Kota Bharu, as an Islamic City, represents a symbolic icon in the urban development of the Islamic state of Kelantan, Malaysia. This research seeks to provide a basis for new approaches to landscape planning that shows greater respect for the traditional vernacular landscape. In addition, this research also intends to distinguish the prospects for the future Kelantan Malay cultural landscape, building upon the multiple historical influences in the evolution of the cultural landscape using multiple methods including literature review, observation, document analysis and content analysis. The study of the Kelantan Malay cultural landscape is particularly important in view of its distinctive contribution to Malay heritage by identifying the elements, characteristics, history and their influences. As a result, this research recognizes the importance of incorporating the existing heritage alongside contemporary design as well as further research on the Kelantan Malay cultural landscape. Optimistically, there will be better landscape practices in the future to understand the past, the present and the future prospects of the vernacular tradition, in order to ensure that our architecture, landscape and urbanism practices express its values.

Keywords: Malay culture, Malay heritage, cultural landscape, Islamic concept

Procedia PDF Downloads 439
7353 Predictor Factors in Predictive Model of Soccer Talent Identification among Male Players Aged 14 to 17 Years

Authors: Muhamad Hafiz Ismail, Ahmad H., Nelfianty M. R.

Abstract:

The longitudinal study is conducted to identify predictive factors of soccer talent among male players aged 14 to 17 years. Convenience sampling involving elite respondents (n=20) and sub-elite respondents (n=20) male soccer players. Descriptive statistics were reported as frequencies and percentages. The inferential statistical analysis is used to report the status of reliability, independent samples t-test, paired samples t-test, and multiple regression analysis. Generally, there are differences in mean of height, muscular strength, muscular endurance, cardiovascular endurance, task orientation, cognitive anxiety, self-confidence, juggling skills, short pass skills, long pass skills, dribbling skills, and shooting skills for 20 elite players and sub-elite players. Accordingly, there was a significant difference between pre and post-test for thirteen variables of height, weight, fat percentage, muscle strength, muscle endurance, cardiovascular endurance, flexibility, BMI, task orientation, juggling skills, short pass skills, a long pass skills, and dribbling skills. Based on the first predictive factors (physical), second predictive factors (fitness), third predictive factors (psychological), and fourth predictive factors (skills in playing football) pledged to the soccer talent; four multiple regression models were produced. The first predictive factor (physical) contributed 53.5 percent, supported by height and percentage of fat in soccer talents. The second predictive factor (fitness) contributed 63.2 percent and the third predictive factors (psychology) contributed 66.4 percent of soccer talent. The fourth predictive factors (skills) contributed 59.0 percent of soccer talent. The four multiple regression models could be used as a guide for talent scouting for soccer players of the future.

Keywords: soccer talent identification, fitness and physical test, soccer skills test, psychological test

Procedia PDF Downloads 157
7352 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics

Authors: Hassan Wajid

Abstract:

We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.

Keywords: optimization, ecology, environment, sustainable solution

Procedia PDF Downloads 73
7351 Transient Signal Generator For Fault Indicator Testing

Authors: Mohamed Shaban, Ali Alfallah

Abstract:

This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signal

Keywords: signal generator-fault indicator, harmonic signal generator, voltage output

Procedia PDF Downloads 495
7350 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game

Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha

Abstract:

Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.

Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm

Procedia PDF Downloads 402
7349 Familial Exome Sequencing to Decipher the Complex Genetic Basis of Holoprosencephaly

Authors: Artem Kim, Clara Savary, Christele Dubourg, Wilfrid Carre, Houda Hamdi-Roze, Valerie Dupé, Sylvie Odent, Marie De Tayrac, Veronique David

Abstract:

Holoprosencephaly (HPE) is a rare congenital brain malformation resulting from the incomplete separation of the two cerebral hemispheres. It is characterized by a wide phenotypic spectrum and a high degree of locus heterogeneity. Genetic defects in 16 genes have already been implicated in HPE, but account for only 30% of cases, suggesting that a large part of genetic factors remains to be discovered. HPE has been recently redefined as a complex multigenic disorder, requiring the joint effect of multiple mutational events in genes belonging to one or several developmental pathways. The onset of HPE may result from accumulation of the effects of multiple rare variants in functionally-related genes, each conferring a moderate increase in the risk of HPE onset. In order to decipher the genetic basis of HPE, unconventional patterns of inheritance involving multiple genetic factors need to be considered. The primary objective of this study was to uncover possible disease causing combinations of multiple rare variants underlying HPE by performing trio-based Whole Exome Sequencing (WES) of familial cases where no molecular diagnosis could be established. 39 families were selected with no fully-penetrant causal mutation in known HPE gene, no chromosomic aberrations/copy number variants and without any implication of environmental factors. As the main challenge was to identify disease-related variants among a large number of nonpathogenic polymorphisms detected by WES classical scheme, a novel variant prioritization approach was established. It combined WES filtering with complementary gene-level approaches: transcriptome-driven (RNA-Seq data) and clinically-driven (public clinical data) strategies. Briefly, a filtering approach was performed to select variants compatible with disease segregation, population frequency and pathogenicity prediction to identify an exhaustive list of rare deleterious variants. The exome search space was then reduced by restricting the analysis to candidate genes identified by either transcriptome-driven strategy (genes sharing highly similar expression patterns with known HPE genes during cerebral development) or clinically-driven strategy (genes associated to phenotypes of interest overlapping with HPE). Deeper analyses of candidate variants were then performed on a family-by-family basis. These included the exploration of clinical information, expression studies, variant characteristics, recurrence of mutated genes and available biological knowledge. A novel bioinformatics pipeline was designed. Applied to the 39 families, this final integrated workflow identified an average of 11 candidate variants per family. Most of candidate variants were inherited from asymptomatic parents suggesting a multigenic inheritance pattern requiring the association of multiple mutational events. The manual analysis highlighted 5 new strong HPE candidate genes showing recurrences in distinct families. Functional validations of these genes are foreseen.

Keywords: complex genetic disorder, holoprosencephaly, multiple rare variants, whole exome sequencing

Procedia PDF Downloads 203
7348 Transient Simulation Using SPACE for ATLAS Facility to Investigate the Effect of Heat Loss on Major Parameters

Authors: Suhib A. Abu-Seini, Kyung-Doo Kim

Abstract:

A heat loss model for ATLAS facility was introduced using SPACE code predefined correlations and various dialing factors. As all previous simulations were carried out using a heat loss free input; the facility was considered to be completely insulated and the core power was reduced by the experimentally measured values of heat loss to compensate to the account for the loss of heat, this study will consider heat loss throughout the simulation. The new heat loss model will be affecting SPACE code simulation as heat being leaked out of the system throughout a transient will alter many parameters corresponding to temperature and temperature difference. For that, a Station Blackout followed by a multiple Steam Generator Tube Rupture accident will be simulated using both the insulated system approach and the newly introduced heat loss input of the steady state. Major parameters such as system temperatures, pressure values, and flow rates to be put into comparison and various analysis will be suggested upon it as the experimental values will not be the reference to validate the expected outcome. This study will not only show the significance of heat loss consideration in the processes of prevention and mitigation of various incidents, design basis and beyond accidents as it will give a detailed behavior of ATLAS facility during both processes of steady state and major transient, but will also present a verification of how credible the data acquired of ATLAS are; since heat loss values for steady state were already mismatched between SPACE simulation results and ATLAS data acquiring system. Acknowledgement- This work was supported by the Korean institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

Keywords: ATLAS, heat loss, simulation, SPACE, station blackout, steam generator tube rupture, verification

Procedia PDF Downloads 224
7347 Renewable Integration Algorithm to Compensate Photovoltaic Power Using Battery Energy Storage System

Authors: Hyung Joo Lee, Jin Young Choi, Gun Soo Park, Kyo Sun Oh, Dong Jun Won

Abstract:

The fluctuation of the output of the renewable generator caused by weather conditions must be mitigated because it imposes strain on the system and adversely affects power quality. In this paper, we focus on mitigating the output fluctuation of the photovoltaic (PV) using battery energy storage system (BESS). To satisfy tight conditions of system, proposed algorithm is developed. This algorithm focuses on adjusting the integrated output curve considering state of capacity (SOC) of the battery. In this paper, the simulation model is PSCAD / EMTDC software. SOC of the battery and the overall output curve are shown using the simulation results. We also considered losses and battery efficiency.

Keywords: photovoltaic generation, battery energy storage system, renewable integration, power smoothing

Procedia PDF Downloads 281
7346 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy

Procedia PDF Downloads 155
7345 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement

Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen

Abstract:

Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.

Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening

Procedia PDF Downloads 113