Search results for: data utilization
25729 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 18925728 Utilization of Two Kind of Recycling Greywater in Irrigation of Syngonium SP. Plants Grown Under Different Water Regime
Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien I.Abdel-Shafy
Abstract:
The work was carried out at the greenhouse of National Research Centre, Pot experiment was carried out during of 2020 and 2021 seasons aimed to study the effect of two types of water (two recycling gray water treatments((SMR (Sequencing Batch Reactor) and MBR(Membrane Biology Reactor) and three watering intervals 15, 20 and 25 days on Syangonium plants growth. Examination of data cleared that, (MBR) recorded increase in vegetative growth parameters, osmotic pressure, transpiration rate chlorophyll a,b,carotenoids and carbohydrate)in compared with SBR.As for water, intervalsthe highest values of most growth parameters were obtained from plants irrigated with after (20 days) compared with other treatments.15 days irrigation intervals recorded significantly increased in osmotic pressure, transpiration rate and photosynthetic pigments, while carbohydrate values recorded decreased. Interaction between water type and water intervals(SBR) recorded the highest values of most growth parameters by irrigation after 20 days. While the treatment (MBR)and irrigated after 25 days showed the highest values on leaf area and leaves fresh weight compared with other treatments.Keywords: grey water, water intervals, Syngonium plant, recycling water, vegetative growth
Procedia PDF Downloads 10825727 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24625726 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process
Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani
Abstract:
Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process
Procedia PDF Downloads 33825725 An Audit on Optimum Utilisation of Preoperative Clinic
Authors: Vidya Iyer, Suresh Babu Loganathan, Yuan Hwa Lee, Kwong Fah Koh
Abstract:
Introduction: It has been recommended that every patient undergoes careful preoperative evaluation in a preoperative clinic to improve theatre utilization, reduce bed occupancy and avoid unnecessary cancellation due to inadequate optimisation, communication and administrative errors. It also gives an opportunity to counsel patients regarding different aspects of anaesthesia. Methodology: A retrospective audit of all the patients seen in preoperative assessment clinic, referral letters of all the patients postponed / referred to other sub specialities in the perioperative period from June 2012 - June 2013 was done. In our clinic, we retrieved patient records who were awaiting surgery pending clearance by other sub specialities. Those patients, who could continue with their scheduled date of surgery after having been referred, were not included in the file. We also studied details of same day cancellations from the data base, during the same study period. The reasons for cancellation were examined and defined as avoidable and unavoidable. Results: Less than 0.5% was postponed from the scheduled day of surgery. Less than 0.5% was cancelled on the day of surgery. Conclusions: Patients who undergo pre anaesthetic evaluation in a well-established clinic results in adequate preoperative patient optimisation, avoids unnecessary preoperative admission, efficient theatre utilisation and greater patient satisfaction. The benefits are the result of guidelines and timely update of them which are used by the junior doctors and trainees who run the clinic and a dedicated specialist to supervise them.Keywords: preoperative assessment, clinic, referrals, cancellation
Procedia PDF Downloads 33125724 Production and Leftovers Usage Policies to Minimize Food Waste under Uncertain and Correlated Demand
Authors: Esma Birisci, Ronald McGarvey
Abstract:
One of the common problems in food service industry is demand uncertainty. This research presents a multi-criteria optimization approach to identify the efficient frontier of points lying between the minimum-waste and minimum-shortfall solutions within uncertain demand environment. It also addresses correlation across demands for items (e.g., hamburgers are often demanded with french fries). Reducing overproduction food waste (and its corresponding environmental impacts) and an aversion to shortfalls (leave some customer hungry) need to consider as two contradictory objectives in an all-you-care-to-eat environment food service operation. We identify optimal production adjustments relative to demand forecasts, demand thresholds for utilization of leftovers, and percentages of demand to be satisfied by leftovers, considering two alternative metrics for overproduction waste: mass; and greenhouse gas emissions. Demand uncertainty and demand correlations are addressed using a kernel density estimation approach. A statistical analysis of the changes in decision variable values across each of the efficient frontiers can then be performed to identify the key variables that could be modified to reduce the amount of wasted food at minimal increase in shortfalls. We illustrate our approach with an application to empirical data from Campus Dining Services operations at the University of Missouri.Keywords: environmental studies, food waste, production planning, uncertain and correlated demand
Procedia PDF Downloads 37225723 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 14325722 Optimising Leafy Indigenous Vegetables as Functional Foods: The Nigerian Case Study
Authors: John Olayinka Atoyebi
Abstract:
Developing countries like Nigeria are facing myriad problems, ranging from economic challenges, lack of no jobs, food insecurity, malnutrition, and poverty. However, tackling some of these menaces is not just a trivial issue neither do some of them require rocket science to fix, but rather the understanding of every individual citizen recognizing their respective roles that they have to play in making the country better, rather than putting all the blames on the Government. Tackling nutrition and food insecurity is a complex problem, but this work examines what an individual can do to improve nutrient consumption. Leafy indigenous vegetables can be termed as functional foods since they are very rich in nutrients, phytochemicals and other beneficial compounds to the body system. These functional foods are the class that provides necessary health benefits beyond basic nutrition. Usually functional foods often contain bioactive compounds, which help the body through the prevention and management of various diseases, as well as improving the overall health of human beings. The analysis carried out on some Nigerian leafy indigenous vegetables in home grown setting revealed, for example, the potential use of Iron (Fe) amount of 318.15ppm in Basella alba (red species) and that of Telfaria Occidentalis (Ugu) with 261.22ppm as being useful to stimulate heme, a necessary precursor and protein in the formation of blood in human being. Moreso, Virnonia amygdalina (ewuro) and water leaf possess anti-bacterial and anti-diabetic properties. They also provide digestive health benefits and support to the body system, including anti-inflammatory properties. Also, medicinal plant like Morinda citrifolia (Noni), which had been found to possess anti-cancer properties, has a Vitamin C amount of 528.85 mg/100g and a total carotenoids amount of 85.50 µg/g. However, despite all these results and potential utilization of these and other indigenous vegetables in Nigeria, there is a gross unawareness and/or non-cognizance of their utilization potentials, as some home garden lacks understanding of the immense nutrition benefits, thus hindering some of the populace to make proper use of these vegetables to enhance their health.Keywords: developing countries, optimising, leafy vegetables, functional foods
Procedia PDF Downloads 525721 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming
Authors: Milind Chaudhari, Suhail Balasinor
Abstract:
Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.Keywords: big data, IoT, vertical farming, indoor farming
Procedia PDF Downloads 17525720 The Experiences of Agency in the Utilization of Twitter for English Language Learning in a Saudi EFL Context
Authors: Fahd Hamad Alqasham
Abstract:
This longitudinal study investigates Saudi students’ use trajectory and experiences of Twitter as an innovative tool for in-class learning of the English language in a Saudi tertiary English as a foreign language (EFL) context for a 12-week semester. The study adopted van Lier’s agency theory (2008, 2010) as the analytical framework to obtain an in-depth analysis of how the learners’ could utilize Twitter to create innovative ways for them to engage in English learning inside the language classroom. The study implemented a mixed methods approach, including six data collection instruments consisting of a research log, observations, focus group participation, initial and post-project interviews, and a post-project questionnaire. The study was conducted at Qassim University, specifically at Preparatory Year Program (PYP) on the main campus. The sample included 25 male students studying in the first level of PYP. The findings results revealed that although Twitter’s affordances initially paled a crucial role in motivating the learners to initiate their agency inside the classroom to learn English, the contextual constraints, mainly anxiety, the university infrastructure, and the teacher’s role negatively influenced the sustainability of Twitter’s use past week nine of its implementation.Keywords: CALL, agency, innovation, EFL, language learning
Procedia PDF Downloads 7225719 Ethical Concerns in the Internet of Things and Smart Devices: Case Studies and Analysis
Authors: Mitchell Browe, Oriehi Destiny Anyaiwe, Zahraddeen Gwarzo
Abstract:
The Internet of Things (IoT) is a major evolution of technology and of the internet, which has the power to revolutionize the way people live. IoT has the power to change the way people interact with each other and with their homes; It has the ability to give people new ways to interact with and monitor their health; It can alter socioeconomic landscapes by providing new and efficient methods of resource management, saving time and money for both individuals and society as a whole; It even has the potential to save lives through autonomous vehicle technology and smart security measures. Unfortunately, nearly every revolution bears challenges which must be addressed to minimize harm by the new technology upon its adopters. IoT represents an internet technology revolution which has the potential to risk privacy, safety, and security of its users, should devices be developed, implemented, or utilized improperly. This article examines past and current examples of these ethical faults in an attempt to highlight the importance of consumer awareness of potential dangers of these technologies in making informed purchasing and utilization decisions, as well as to reveal how deficiencies and limitations of IoT devices should be better addressed by both companies and by regulatory bodies. Aspects such as consumer trust, corporate transparency, and misuse of individual data are all factors in the implementation of proper ethical boundaries in the IoT.Keywords: IoT, ethical concerns, privacy, safety, security, smart devices
Procedia PDF Downloads 8525718 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt
Authors: A. Anis, W. Bekheet, A. El Hakim
Abstract:
Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.Keywords: road safety management system, road crash, road fatality, road injury
Procedia PDF Downloads 14725717 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 49025716 Data Envelopment Analysis of Allocative Efficiency among Small-Scale Tuber Crop Farmers in North-Central, Nigeria
Authors: Akindele Ojo, Olanike Ojo, Agatha Oseghale
Abstract:
The empirical study examined the allocative efficiency of small holder tuber crop farmers in North central, Nigeria. Data used for the study were obtained from primary source using a multi-stage sampling technique with structured questionnaires administered to 300 randomly selected tuber crop farmers from the study area. Descriptive statistics, data envelopment analysis and Tobit regression model were used to analyze the data. The DEA result on the classification of the farmers into efficient and inefficient farmers showed that 17.67% of the sampled tuber crop farmers in the study area were operating at frontier and optimum level of production with mean allocative efficiency of 1.00. This shows that 82.33% of the farmers in the study area can still improve on their level of efficiency through better utilization of available resources, given the current state of technology. The results of the Tobit model for factors influencing allocative inefficiency in the study area showed that as the year of farming experience, level of education, cooperative society membership, extension contacts, credit access and farm size increased in the study area, the allocative inefficiency of the farmers decreased. The results on effects of the significant determinants of allocative inefficiency at various distribution levels revealed that allocative efficiency increased from 22% to 34% as the farmer acquired more farming experience. The allocative efficiency index of farmers that belonged to cooperative society was 0.23 while their counterparts without cooperative society had index value of 0.21. The result also showed that allocative efficiency increased from 0.43 as farmer acquired high formal education and decreased to 0.16 with farmers with non-formal education. The efficiency level in the allocation of resources increased with more contact with extension services as the allocative efficeincy index increased from 0.16 to 0.31 with frequency of extension contact increasing from zero contact to maximum of twenty contacts per annum. These results confirm that increase in year of farming experience, level of education, cooperative society membership, extension contacts, credit access and farm size leads to increases efficiency. The results further show that the age of the farmers had 32% input to the efficiency but reduces to an average of 15%, as the farmer grows old. It is therefore recommended that enhanced research, extension delivery and farm advisory services should be put in place for farmers who did not attain optimum frontier level to learn how to attain the remaining 74.39% level of allocative efficiency through a better production practices from the robustly efficient farms. This will go a long way to increase the efficiency level of the farmers in the study area.Keywords: allocative efficiency, DEA, Tobit regression, tuber crop
Procedia PDF Downloads 28925715 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products
Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis
Abstract:
About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products
Procedia PDF Downloads 42725714 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 30825713 Investigating the Impact of Migration Background on Pregnancy Outcomes During the End of Period of COVID-19 Pandemic: A Mixed-Method Study
Authors: Charlotte Bach, Albrecht Jahn, Mahnaz Motamedi, Maryam Karimi-Ghahfarokhi
Abstract:
Background: Maternal and infant deaths are most prevalent in the first month after birth, emphasizing the critical need for quality healthcare services during this period. Immigrant women, who are more susceptible to adverse pregnancy outcomes, often face neglect in accessing proper healthcare. The lack of adequate postpartum care significantly contributes to mortality rates. Therefore, utilizing maternal health care services and implementing postpartum care is crucial in reducing maternal and child mortality. Aims: This study aims to evaluate the assessment of pre- and postnatal care among women with and without migration background. In addition, the study explores the impact of COVID-19 procedures on women's experiences during pregnancy, birth, and the postpartum period. Methods: This research employs a cross-sectional Mixed-Method design. Data collection was facilitated through structured questionnaires administered to participants, alongside the utilization of patient bases, including Maternity and child medical records. Following the assumption that the investigator aimed to gain comprehensive insights, qualitative sampling focused on individuals with substantial experiences related to COVID-19, regarded as rich cases. Results: our study highlighted the influence of educational level, marital status, and consensual partnerships on the likelihood of Cesarean deliveries. Regarding breastfeeding practices, migrant women exhibited higher rates of breastfeeding initiation and continuation. Contraception utilization revealed interesting patterns, with non-migrants displaying higher odds of contraceptive use. The qualitative component of our research adds depth to the exploration of women's experiences during the COVID-19 pandemic, revealing nuanced challenges related to anxiety, hospital restrictions, breastfeeding support, and postnatal ward routines. Conclusion: Dissimilarity among studies toward cesarean rate between migrants and non-migrants underscores the importance of targeted interventions considering the diverse needs of distinct population groups. It also acknowledges potential cultural, contextual, and healthcare system influences on the association between mode of delivery and infant feeding practices. Studies acknowledge the influence of contextual variables on contraceptive preferences among migrants and non-migrants, emphasizing the need for tailored healthcare policies. The findings contribute to existing research, highlighting the need for a nuanced understanding of the impact of birth preparation courses on maternal and infant outcomes. Furthermore, they emphasize the universality of certain maternity care experiences, regardless of pandemic contexts, reinforcing the importance of patient-centred approaches in healthcare delivery.Keywords: migration background, pregnancy outcome, covid-19, postpartum
Procedia PDF Downloads 5525712 Solving the Transportation Problem for Warehouses and Dealers in Bangalore City
Authors: S. Aditya, K. T. Nideesh, N. Guruprasad
Abstract:
Being a subclass of linear programing problem, the Transportation Problem is a classic Operations Research problem where the objective is to determine the schedule for transporting goods from source to destination in a way that minimizes the shipping cost while satisfying supply and demand constraints. In this paper, we are representing the transportation problem for various warehouses along with various dealers situated in Bangalore city to reduce the transportation cost incurred by them as of now. The problem is solved by obtaining the Initial Basic feasible Solution through various methods and further proceeding to obtain optimal cost.Keywords: NW method, optimum utilization, transportation problem, Vogel’s approximation method
Procedia PDF Downloads 43825711 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40225710 Chemical Synthesis of a cDNA and Its Expression Analysis
Authors: Salman Akrokayan
Abstract:
Synthetic cDNA (ScDNA) of granulocyte colony-stimulating factor (G-CSF) was constructed using a DNA synthesizer with the aim to increase its expression level. 5' end of the ScDNA of G-CSF coding region was modified by decreasing the GC content without altering the predicted amino acids sequence. The identity of the resulting protein from ScDNA was confirmed by the highly specific enzyme-linked immunosorbent assay. In conclusion, a synthetic G-CSF cDNA in combination with the recombinant DNA protocol offers a rapid and reliable strategy for synthesizing the target protein. However, the commercial utilization of this methodology requires rigorous validation and quality control.Keywords: synthetic cDNA, recombinant G-CSF, cloning, gene expression
Procedia PDF Downloads 28425709 Efficacy of Coconut Shell Pyrolytic Oil Distillate in Protecting Wood Against Bio-Deterioration
Authors: K. S. Shiny, R. Sundararaj
Abstract:
Coconut trees (Cocos nucifera L.) are grown in many parts of India and world because of its multiple utilities. During pyrolysis, coconut shells yield oil, which is a dark thick liquid. Upon simple distillation it produces a more or less colourless liquid, termed coconut shell pyrolytic oil distillate (CSPOD). This manuscript reports and discusses the use of coconut shell pyrolytic oil distillate as a potential wood protectant against bio-deterioration. Since botanical products as ecofriendly wood protectant is being tested worldwide, the utilization of CPSOD as wood protectant is of great importance. The efficacy of CSPOD as wood protectant was evaluated as per Bureau of Indian Standards (BIS) in terms of its antifungal, antiborer, and termiticidal activities. Specimens of Rubber wood (Hevea brasiliensis) in six replicate each for two treatment methods namely spraying and dipping (48hrs) were employed. CSPOD was found to impart total protection against termites for six months compared to control under field conditions. For assessing the efficacy of CSPOD against fungi, the treated blocks were subjected to the attack of two white rot fungi Tyromyces versicolor (L.) Fr. and Polyporus sanguineus (L.) G. Mey and two brown rot fungi, Polyporus meliae (Undrew.) Murrill. and Oligoporus placenta (Fr.) Gilb. & Ryvarden. Results indicated that treatment with CSPOD significantly protected wood from the damage caused by the decay fungi. Efficacy of CSPOD against wood borer Lyctus africanus Lesne was carried out using six pairs of male and female beetles and it gave promising results in protecting the treated wood blocks when compared to control blocks. As far as the treatment methods were concerned, dip treatment was found to be more effective when compared to spraying. The results of the present investigation indicated that CSPOD is a promising botanical compound which has the potential to replace synthetic wood protectants. As coconut shell, pyrolytic oil is a waste byproduct of coconut shell charcoal industry, its utilization as a wood preservative will expand the economic returns from such industries.Keywords: coconut shell pyrolytic oil distillate, eco-friendly wood protection, termites, wood borers, wood decay fungi
Procedia PDF Downloads 37125708 An Empirical Study of the Impacts of Big Data on Firm Performance
Authors: Thuan Nguyen
Abstract:
In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient
Procedia PDF Downloads 24525707 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 40525706 Integrated Livestock and Cropping System and Sustainable Rural Development in India: A Case Study
Authors: Nizamuddin Khan
Abstract:
Integrated livestock and cropping system is very old agricultural practice since antiquity. It is an eco-friendly and sustainable farming system in which both the resources are optimally and rationally utilized through the recycling and re-utilization of their by-products. Indian farmers follow in- farm integrated farming system unlike in developed countries where both farm and off-farm system prevailed. The data on different components of the integrated farming system is very limited and that too is not widely available in published form. The primary source is the only option for understanding the mechanism, process, evaluation and performance of integrated livestock cropping system. Researcher generated data through the field survey of sampled respondents from sampled villages from Bulandshahr district of Uttar Pradesh. The present paper aims to understand the component group of system, degree, and level of integration, level of generation of employment, income, improvement in farm ecology, the economic viability of farmers and check in rural-urban migration. The study revealed that area witnessed intra farm integration in which both livestock and cultivation of crops take place on the same farm. Buffalo, goat, and poultry are common components of integration. Wheat, paddy, sugarcane and horticulture are among the crops. The farmers are getting 25% benefit more than those who do not follow the integrated system. Livestock husbandry provides employment and income through the year, especially during agriculture offseason. 80% of farmers viewed that approximately 35% of the total expenditure incurred is met from the livestock sector. Landless, marginal and small farmers are highly benefited from agricultural integration. About 70% of farmers acknowledged that using wastes of animals and crops the soil ecology is significantly maintained. Further, the integrated farming system is helpful in reducing rural to urban migration. An incentive with credit facilities, assured marketing, technological aid and government support is urgently needed for sustainable development of agriculture and farmers.Keywords: integrated, recycle, employment, soil ecology, sustainability
Procedia PDF Downloads 17225705 Challenges and Opportunities for M-Government Implementation in Saudi Arabia
Authors: A. Alssbaiheen, S. Love
Abstract:
Mobile government (m-government) is one of the promising technologies for developing the governance of developing countries. While developing countries often have less advanced internet infrastructure compared to the developed world, mobile phone penetration is very high in the Gulf Cooperation Council (GCC) countries and mobile internet use offers a means to transcend traditional logistical barriers to accessing government services. The study explores the challenges and opportunities of the mobile government in Saudi Arabia. Semi-structured interviews were conducted with a diverse cohort of Saudi mobile users. A total of 77 semi-structured interviews were collected and subsequently analysed using open, axial, and selective coding. The participants’ responses revealed that many opportunities exist for the development of m-government in Saudi Arabia, including high popular awareness of government initiatives in e-government, and willingness to use such services, largely due to the time-saving and convenience aspects it offers compared with traditional bureaucratic services. However, numerous barriers were identified, including the low quality and speed of the internet, service customization, and concerns about privacy data security. It was also felt that in addition to infrastructure challenges, the traditional bureaucratic attitude of government department would itself hinder the effective deployment and utilization of m-government services.Keywords: awareness, barriers, challenges, government services, mobile government, m-government, opportunities
Procedia PDF Downloads 46325704 Malignancy in Venous Thromboembolism
Authors: Naser Shagerdi Esmaeli, Mohsen Hamidpour
Abstract:
Purposes: The activation of coagulation in patients with cancer contributes significantly to morbidity and mortality rates and may play a fundamental role in the host response to growing tumor’s. Patients with cancer are clearly at high risk for the development of venous thromboembolism (VTE), particularly during chemotherapy and surgery. This situation is aggravated by the use of venous access catheters and possibly growth factors. Methods: Data derived from large, randomized, controlled trials have been used to determine the true incidence of this complication of cancer and its treatment. The incidence based on the analyses of these randomized controlled trials varies from 1% for limited stage patients with breast cancer treated with tamoxifen to 60% for patients with any type of cancer who are subjected to orthopedic surgery and do not receive prophylactic therapy. Results: In view of the morbidity and mortality attributable to VTE in cancer, widespread utilization of prophylactic anticoagulation therapy, which has proven safe and effective in a variety of situations, should be considered. While migratory thrombophlebitis is a clear indicator of an underlying neoplasm, the risk of cancer in patients with the more typical form of VTE has been the subject of intense debate over recent years. Conclusion: Some investigators have suggested that the relative risk of being diagnosed with occult cancer within six months of an episode of VTE (particularly recurrent VTE) could be up to 10-fold. However, the cost-effectiveness of aggressive screening for cancer in patients with VTE has not yet been defined adequately.Keywords: venous thromboembolism, malignancy, cancer, tumor, heparin
Procedia PDF Downloads 9425703 The Perspective on Data Collection Instruments for Younger Learners
Authors: Hatice Kübra Koç
Abstract:
For academia, collecting reliable and valid data is one of the most significant issues for researchers. However, it is not the same procedure for all different target groups; meanwhile, during data collection from teenagers, young adults, or adults, researchers can use common data collection tools such as questionnaires, interviews, and semi-structured interviews; yet, for young learners and very young ones, these reliable and valid data collection tools cannot be easily designed or applied by the researchers. In this study, firstly, common data collection tools are examined for ‘very young’ and ‘young learners’ participant groups since it is thought that the quality and efficiency of an academic study is mainly based on its valid and correct data collection and data analysis procedure. Secondly, two different data collection instruments for very young and young learners are stated as discussing the efficacy of them. Finally, a suggested data collection tool – a performance-based questionnaire- which is specifically developed for ‘very young’ and ‘young learners’ participant groups in the field of teaching English to young learners as a foreign language is presented in this current study. The designing procedure and suggested items/factors for the suggested data collection tool are accordingly revealed at the end of the study to help researchers have studied with young and very learners.Keywords: data collection instruments, performance-based questionnaire, young learners, very young learners
Procedia PDF Downloads 9225702 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 3225701 Atlantic Sailfish (Istiophorus albicans) Distribution off the East Coast of Florida from 2003 to 2018 in Response to Sea Surface Temperature
Authors: Meredith M. Pratt
Abstract:
The Atlantic sailfish (Istiophorus albicans) ranges from 40°N to 40°S in the Western Atlantic Ocean and has great economic and recreational value for sport fishers. Off the eastern coast of Florida, charter boats often target this species. Stuart, Florida, bills itself as the sailfish capital of the world. Sailfish tag data from The Billfish Foundation and NOAA was used to determine the relationship between sea surface temperature (SST) and the distribution of Atlantic sailfish caught and released over a fifteen-year period (2003 to 2018). Tagging information was collected from local sports fishermen in Florida. Using the time and location of each landed sailfish, a satellite-derived SST value was obtained for each point. The purpose of this study was to determine if sea surface warming was associated with changes in sailfish distribution. On average, sailfish were caught at 26.16 ± 1.70°C (x̄ ± s.d.) over the fifteen-year period. The most sailfish catches occurred at temperatures ranging from 25.2°C to 25.5°C. Over the fifteen-year period, sailfish catches decreased at lower temperatures (~23°C and ~24°C) and at 31°C. At ~25°C and ~30°C there was no change in catch numbers of sailfish. From 26°C to 29°C, there was an increase in the number of sailfish. Based on these results, increasing ocean temperatures will have an impact on the distribution and habitat utilization of sailfish. Warming sea surface temperatures create a need for more policy and regulation to protect the Atlantic sailfish and related highly migratory billfish species.Keywords: atlantic sailfish, Billfish, istiophorus albicans, sea surface temperature
Procedia PDF Downloads 14325700 Role of Male Partners in Postpartum Family Planning
Authors: Stephen Rulisa, Aimee Nyiramahirwe
Abstract:
Background: Strategies to increase the uptake of contraception services have been adopted in Rwanda, but the unmet need for family planning remains high. Women in the postpartum period are at higher risk for unintended pregnancy due to the silent conversion from lactational amenorrhea to reactivation of ovulatory cycles. The purpose of this study was to explore the role of male partners in the uptake of postpartum contraception. Methods: A prospective cross-sectional study was conducted among women who delivered at the University Teaching Hospital of Kigali for a period of 3 months with random sampling. A questionnaire was used to collect socio-demographic and antenatal data, information on male companionship, and intent to use postpartum contraception at admission. Participants were contacted six weeks later to collect data on contraceptive use. The outcome variables were uptake of postpartum contraception and types of contraceptives taken (long-acting vs. short-acting), controlling for male companionship during the antenatal period. A Chi-square test was used and a p-value ≤0.05 was considered significant. Results: A total of 209 women were recruited with a mean age of 30.8±5.2 years. The majority (60.9%) were multigravida, and 66.5% were multiparous. More than half (55%) had male partner companionship, 18.3% had companionship for four antenatal visits, and 28.2% had education on contraception with their male partner. Factors significantly associated with uptake of postpartum contraception were: age above 30 years, owning or heading a business, multigravidity, multiparity, antenatal care at a health center or district hospital, cesarean delivery, and previous utilization of contraception. Male companionship significantly increased the intent to use contraception, uptake of modern contraception in general, and uptake of long active contraceptives but did not predict the uptake of short-acting contraceptives. Conclusions: Our study demonstrates a positive association between male companionship during antenatal care, labor and delivery with the uptake of postpartum family planning. Our study suggests more sensitization to involve the male partners, improving the education on contraception during antenatal care and further research to assess the sustained uptake of contraception beyond the postpartum period.Keywords: postpartum, family planning, contraception, male partner, uptake
Procedia PDF Downloads 110