Search results for: José Luis Bermúdez Alcocer
64 Stainless Steel Degradation by Sulphide Mining
Authors: Aguasanta M. Sarmiento, Jose Miguel Davila, Juan Carlos Fortes, Maria Luisa de la Torre
Abstract:
Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz) and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyze the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components but also because of the implications for human safety.Keywords: Acid mine drainage, Corrosion, Mechanical properties, Stainless steel
Procedia PDF Downloads 763 Foreseen the Future: Human Factors Integration in European Horizon Projects
Authors: José Manuel Palma, Paula Pereira, Margarida Tomás
Abstract:
Foreseen the future: Human factors integration in European Horizon Projects The development of new technology as artificial intelligence, smart sensing, robotics, cobotics or intelligent machinery must integrate human factors to address the need to optimize systems and processes, thereby contributing to the creation of a safe and accident-free work environment. Human Factors Integration (HFI) consistently pose a challenge for organizations when applied to daily operations. AGILEHAND and FORTIS projects are grounded in the development of cutting-edge technology - industry 4.0 and 5.0. AGILEHAND aims to create advanced technologies for autonomously sort, handle, and package soft and deformable products, whereas FORTIS focuses on developing a comprehensive Human-Robot Interaction (HRI) solution. Both projects employ different approaches to explore HFI. AGILEHAND is mainly empirical, involving a comparison between the current and future work conditions reality, coupled with an understanding of best practices and the enhancement of safety aspects, primarily through management. FORTIS applies HFI throughout the project, developing a human-centric approach that includes understanding human behavior, perceiving activities, and facilitating contextual human-robot information exchange. it intervention is holistic, merging technology with the physical and social contexts, based on a total safety culture model. In AGILEHAND we will identify safety emergent risks, challenges, their causes and how to overcome them by resorting to interviews, questionnaires, literature review and case studies. Findings and results will be presented in “Strategies for Workers’ Skills Development, Health and Safety, Communication and Engagement” Handbook. The FORTIS project will implement continuous monitoring and guidance of activities, with a critical focus on early detection and elimination (or mitigation) of risks associated with the new technology, as well as guidance to adhere correctly with European Union safety and privacy regulations, ensuring HFI, thereby contributing to an optimized safe work environment. To achieve this, we will embed safety by design, and apply questionnaires, perform site visits, provide risk assessments, and closely track progress while suggesting and recommending best practices. The outcomes of these measures will be compiled in the project deliverable titled “Human Safety and Privacy Measures”. These projects received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND) and No 101135707 (FORTIS).Keywords: human factors integration, automation, digitalization, human robot interaction, industry 4.0 and 5.0
Procedia PDF Downloads 6462 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture
Procedia PDF Downloads 19461 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses
Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig
Abstract:
Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.Keywords: phosphate glass, erbium, luminescence, glass system
Procedia PDF Downloads 51060 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology
Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa
Abstract:
Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.Keywords: network, mixing, hydrates, continuous process, carbon dioxide
Procedia PDF Downloads 5259 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications
Authors: Gema M. Rodado, Jose M. Olavarrieta
Abstract:
Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests
Procedia PDF Downloads 11758 Assessing Mycotoxin Exposure from Processed Cereal-Based Foods for Children
Authors: Soraia V. M. de Sá, Miguel A. Faria, José O. Fernandes, Sara C. Cunha
Abstract:
Cereals play a vital role in fulfilling the nutritional needs of children, supplying essential nutrients crucial for their growth and development. However, concerns arise due to children's heightened vulnerability due to their unique physiology, specific dietary requirements, and relatively higher intake in relation to their body weight. This vulnerability exposes them to harmful food contaminants, particularly mycotoxins, prevalent in cereals. Because of the thermal stability of mycotoxins, conventional industrial food processing often falls short of eliminating them. Children, especially those aged 4 months to 12 years, frequently encounter mycotoxins through the consumption of specialized food products, such as instant foods, breakfast cereals, bars, cookie snacks, fruit puree, and various dairy items. A close monitoring of this demographic group's exposure to mycotoxins is essential, as toxins ingestion may weaken children’s immune systems, reduce their resistance to infectious diseases, and potentially lead to cognitive impairments. The severe toxicity of mycotoxins, some of which are classified as carcinogenic, has spurred the establishment and ongoing revision of legislative limits on mycotoxin levels in food and feed globally. While EU Commission Regulation 1881/2006 addresses well-known mycotoxins in processed cereal-based foods and infant foods, the absence of regulations specifically addressing emerging mycotoxins underscores a glaring gap in the regulatory framework, necessitating immediate attention. Emerging mycotoxins have gained mounting scrutiny in recent years due to their pervasive presence in various foodstuffs, notably cereals and cereal-based products. Alarmingly, exposure to multiple mycotoxins is hypothesized to exhibit higher toxicity than isolated effects, raising particular concerns for products primarily aimed at children. This study scrutinizes the presence of 22 mycotoxins of the diverse range of chemical classes in 148 processed cereal-based foods, including 39 breakfast cereals, 25 infant formulas, 27 snacks, 25 cereal bars, and 32 cookies commercially available in Portugal. The analytical approach employed a modified QuEChERS procedure followed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Given the paucity of information on the risk assessment of children to multiple mycotoxins in cereal and cereal-based products consumed by children of Portugal pioneers the evaluation of this critical aspect. Overall, aflatoxin B1 (AFB1) and aflatoxin G2 (AFG2) emerged as the most prevalent regulated mycotoxins, while enniatin B (ENNB) and sterigmatocystin (STG) were the most frequently detected emerging mycotoxins.Keywords: cereal-based products, children´s nutrition, food safety, UPLC-MS/MS analysis
Procedia PDF Downloads 7157 Investigating the Key Success Factors of Supplier Collaboration Governance in the Aerospace Industry
Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz
Abstract:
In the industrial sector collaboration with suppliers is key to the development of innovations in the field of processes. Access to resources and expertise that are not available in the business, obtaining a cost advantage, or the reduction of the time needed to carry out innovation are some of the benefits associated with the process. However, the success of this collaborative process is compromised, when from the beginning not clearly rules have been established that govern the relationship. Abundant studies developed in the field of innovation emphasize the strategic importance of the concept of “Governance”. Despite this, there have been few papers that have analyzed how the governance process of the relationship must be designed and managed to ensure the success of the collaboration process. The lack of literature in this area responds to the wide diversity of contexts where collaborative processes to innovate take place. Thus, in sectors such as the car industry there is a strong collaborative tradition between manufacturers and suppliers being part of the value chain. In this case, it is common to establish mechanisms and procedures that fix formal and clear objectives to regulate the relationship, and establishes the rights and obligations of each of the parties involved. By contrast, in other sectors, collaborative relationships to innovate are not a common way of working, particularly when their aim is the development of process improvements. It is in this case, it is when the lack of mechanisms to establish and regulate the behavior of those involved, can give rise to conflicts, and the failure of the cooperative relationship. Because of this the present paper analyzes the similarities and differences in the processes of governance in collaboration with suppliers in the European aerospace industry With these ideas in mind, we present research is twofold: Understand the importance of governance as a key element of the success of the collaboration in the development of product and process innovations, Establish the mechanisms and procedures to ensure the proper management of the processes of collaboration. Following the methodology of the case study, we analyze the way in which manufacturers and suppliers cooperate in the development of new products and processes in two industries with different levels of technological intensity and collaborative tradition: the automotive and aerospace. The identification of those elements playing a key role to establish a successful governance and relationship management and the compression of the mechanisms of regulation and control in place at the automotive sector can be use to propose solutions to some of the conflicts that currently arise in aerospace industry. The paper concludes by analyzing the strategic implications for the aerospace industry entails the adoption of some of the practices traditionally used in other industrial sectors. Finally, it is important to highlight that in this paper are presented the first results of a research project currently in progress describing a model of governance that explains the way to manage outsourced services to suppliers in the European aerospace industry, through the analysis of companies in the sector located in Germany, France and Spain.Keywords: supplier collaboration, supplier relationship governance, innovation management, product innovation, process innovation
Procedia PDF Downloads 45956 Mycotoxin Bioavailability in Sparus Aurata Muscle After Human Digestion and Intestinal Transport (Caco-2/HT-29 Cells) Simulation
Authors: Cheila Pereira, Sara C. Cunha, Miguel A. Faria, José O. Fernandes
Abstract:
The increasing world population brings several concerns, one of which is food security and sustainability. To meet this challenge, aquaculture, the farming of aquatic animals and plants, including fish, mollusks, bivalves, and algae, has experienced sustained growth and development in recent years. Recent advances in this industry have focused on reducing its economic and environmental costs, for example, the substitution of protein sources in fish feed. Plant-based proteins are now a common approach, and while it is a greener alternative to animal-based proteins, there are some disadvantages, such as their putative content and intoxicants such as mycotoxins. These are naturally occurring plant contaminants, and their exposure in fish can cause health problems, stunted growth or even death, resulting in economic losses for the producers and health concerns for the consumers. Different works have demonstrated the presence of both AFB1 (aflatoxin B1) and ENNB1 (enniatin B1) in fish feed and their capacity to be absorbed and bioaccumulate in the fish organism after digestion, further reaching humans through fish ingestion. The aim of this work was to evaluate the bioaccessibility of both mycotoxins in samples of Sparus aurata muscle using a static digestion model based on the INFOGEST protocol. The samples were subjected to different cooking procedures – raw, grilled and fried – and different seasonings – none, thyme and ginger – in order to evaluate their potential reduction effect on mycotoxins bioaccessibility, followed by the evaluation of the intestinal transport of both compounds with an in vitro cell model composed of Caco-2/HT-29 co-culture monolayers, simulating the human intestinal epithelium. The bioaccessible fractions obtained in the digestion studies were used in the transport studies for a more realistic approach to bioavailability evaluation. Results demonstrated the effect of the use of different cooking procedures and seasoning on the toxin's bioavailability. Sparus aurata was chosen in this study for its large production in aquaculture and high consumption in Europe. Also, with the continued evolution of fish farming practices and more common usage of novel feed ingredients based on plants, there is a growing concern about less studied contaminants in aquaculture and their consequences for human health. In pair with greener advances in this industry, there is a convergence towards alternative research methods, such as in vitro applications. In the case of bioavailability studies, both in vitro digestion protocols and intestinal transport assessment are excellent alternatives to in vivo studies. These methods provide fast, reliable and comparable results without ethical restraints.Keywords: AFB1, aquaculture, bioaccessibility, ENNB1, intestinal transport.
Procedia PDF Downloads 6655 Methodology to Assess the Circularity of Industrial Processes
Authors: Bruna F. Oliveira, Teresa I. Gonçalves, Marcelo M. Sousa, Sandra M. Pimenta, Octávio F. Ramalho, José B. Cruz, Flávia V. Barbosa
Abstract:
The EU Circular Economy action plan, launched in 2020, is one of the major initiatives to promote the transition into a more sustainable industry. The circular economy is a popular concept used by many companies nowadays. Some industries are better forwarded to this reality than others, and the tannery industry is a sector that needs more attention due to its strong environmental impact caused by its dimension, intensive resources consumption, lack of recyclability, and second use of its products, as well as the industrial effluents generated by the manufacturing processes. For these reasons, the zero-waste goal and the European objectives are further being achieved. In this context, a need arises to provide an effective methodology that allows to determine the level of circularity of tannery companies. Regarding the complexity of the circular economy concept, few factories have a specialist in sustainability to assess the company’s circularity or have the ability to implement circular strategies that could benefit the manufacturing processes. Although there are several methodologies to assess circularity in specific industrial sectors, there is not an easy go-to methodology applied in factories aiming for cleaner production. Therefore, a straightforward methodology to assess the level of circularity, in this case of a tannery industry, is presented and discussed in this work, allowing any company to measure the impact of its activities. The methodology developed consists in calculating the Overall Circular Index (OCI) by evaluating the circularity of four key areas -energy, material, economy and social- in a specific factory. The index is a value between 0 and 1, where 0 means a linear economy, and 1 is a complete circular economy. Each key area has a sub-index, obtained through key performance indicators (KPIs) regarding each theme, and the OCI reflects the average of the four sub-indexes. Some fieldwork in the appointed company was required in order to obtain all the necessary data. By having separate sub-indexes, one can observe which areas are more linear than others. Thus, it is possible to work on the most critical areas by implementing strategies to increase the OCI. After these strategies are implemented, the OCI is recalculated to check the improvements made and any other changes in the remaining sub-indexes. As such, the methodology in discussion works through continuous improvement, constantly reevaluating and improving the circularity of the factory. The methodology is also flexible enough to be implemented in any industrial sector by adapting the KPIs. This methodology was implemented in a selected Portuguese small and medium-sized enterprises (SME) tannery industry and proved to be a relevant tool to measure the circularity level of the factory. It was witnessed that it is easier for non-specialists to evaluate circularity and identify possible solutions to increase its value, as well as learn how one action can impact their environment. In the end, energetic and environmental inefficiencies were identified and corrected, increasing the sustainability and circularity of the company. Through this work, important contributions were provided, helping the Portuguese SMEs to achieve the European and UN 2030 sustainable goals.Keywords: circular economy, circularity index, sustainability, tannery industry, zero-waste
Procedia PDF Downloads 6854 Investigating the Governance of Engineering Services in the Aerospace and Automotive Industries
Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz
Abstract:
In the industrial sector collaboration with suppliers is key to the development of innovations in the field of processes. Access to resources and expertise that are not available in the business, obtaining a cost advantage, or the reduction of the time needed to carry out innovation are some of the benefits associated with the process. However, the success of this collaborative process is compromised, when from the beginning not clearly rules have been established that govern the relationship. Abundant studies developed in the field of innovation emphasize the strategic importance of the concept of “Goverance”. Despite this, there have been few papers that have analyzed how the governance process of the relationship must be designed and managed to ensure the success of the cooperation process. The lack of literature in this area responds to the wide diversity of contexts where collaborative processes to innovate take place. Thus, in sectors such as the car industry there is a strong collaborative tradition between manufacturers and suppliers being part of the value chain. In this case, it is common to establish mechanisms and procedures that fix formal and clear objectives to regulate the relationship, and establishes the rights and obligations of each of the parties involved. By contrast, in other sectors, collaborative relationships to innovate are not a common way of working, particularly when their aim is the development of process improvements. It is in this case, it is when the lack of mechanisms to establish and regulate the behavior of those involved, can give rise to conflicts, and the failure of the cooperative relationship. Because of this the present paper analyzes the similarities and differences in the processes of governance in collaboration with service providers in engineering R & D in the European aerospace industry. With these ideas in mind, we present research is twofold: - Understand the importance of governance as a key element of the success of the cooperation in the development of process innovations, - Establish the mechanisms and procedures to ensure the proper management of the processes of cooperation. Following the methodology of the case study, we analyze the way in which manufacturers and suppliers cooperate in the development of new processes in two industries with different levels of technological intensity and collaborative tradition: the automotive and aerospace. The identification of those elements playing a key role to establish a successful governance and relationship management and the compression of the mechanisms of regulation and control in place at the automotive sector can be use to propose solutions to some of the conflicts that currently arise in aerospace industry. The paper concludes by analyzing the strategic implications for the aerospace industry entails the adoption of some of the practices traditionally used in other industrial sectors. Finally, it is important to highlight that in this paper are presented the first results of a research project currently in progress describing a model of governance that explains the way to manage outsourced engineering services to suppliers in the European aerospace industry, through the analysis of companies in the sector located in Germany, France and Spain.Keywords: innovation management, innovation governance, managing collaborative innovation, process innovation
Procedia PDF Downloads 30053 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function
Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio
Abstract:
Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).Keywords: algorithm, diabetes, laboratory medicine, non-invasive
Procedia PDF Downloads 3252 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods
Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla
Abstract:
Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range
Procedia PDF Downloads 10851 Procedure for Monitoring the Process of Behavior of Thermal Cracking in Concrete Gravity Dams: A Case Study
Authors: Adriana de Paula Lacerda Santos, Bruna Godke, Mauro Lacerda Santos Filho
Abstract:
Several dams in the world have already collapsed, causing environmental, social and economic damage. The concern to avoid future disasters has stimulated the creation of a great number of laws and rules in many countries. In Brazil, Law 12.334/2010 was created, which establishes the National Policy on Dam Safety. Overall, this policy requires the dam owners to invest in the maintenance of their structures and to improve its monitoring systems in order to provide faster and straightforward responses in the case of an increase of risks. As monitoring tools, visual inspections has provides comprehensive assessment of the structures performance, while auscultation’s instrumentation has added specific information on operational or behavioral changes, providing an alarm when a performance indicator exceeds the acceptable limits. These limits can be set using statistical methods based on the relationship between instruments measures and other variables, such as reservoir level, time of the year or others instruments measuring. Besides the design parameters (uplift of the foundation, displacements, etc.) the dam instrumentation can also be used to monitor the behavior of defects and damage manifestations. Specifically in concrete gravity dams, one of the main causes for the appearance of cracks, are the concrete volumetric changes generated by the thermal origin phenomena, which are associated with the construction process of these structures. Based on this, the goal of this research is to propose a monitoring process of the thermal cracking behavior in concrete gravity dams, through the instrumentation data analysis and the establishment of control values. Therefore, as a case study was selected the Block B-11 of José Richa Governor Dam Power Plant, that presents a cracking process, which was identified even before filling the reservoir in August’ 1998, and where crack meters and surface thermometers were installed for its monitoring. Although these instruments were installed in May 2004, the research was restricted to study the last 4.5 years (June 2010 to November 2014), when all the instruments were calibrated and producing reliable data. The adopted method is based on simple linear correlations procedures to understand the interactions among the instruments time series, verifying the response times between them. The scatter plots were drafted from the best correlations, which supported the definition of the limit control values. Among the conclusions, it is shown that there is a strong or very strong correlation between ambient temperature and the crack meters and flowmeters measurements. Based on the results of the statistical analysis, it was possible to develop a tool for monitoring the behavior of the case study cracks. Thus it was fulfilled the goal of the research to develop a proposal for a monitoring process of the behavior of thermal cracking in concrete gravity dams.Keywords: concrete gravity dam, dams safety, instrumentation, simple linear correlation
Procedia PDF Downloads 29250 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 7149 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic
Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez
Abstract:
The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis
Procedia PDF Downloads 34148 Climate Change Law and Transnational Corporations
Authors: Manuel Jose Oyson
Abstract:
The Intergovernmental Panel on Climate Change (IPCC) warned in its most recent report for the entire world “to both mitigate and adapt to climate change if it is to effectively avoid harmful climate impacts.” The IPCC observed “with high confidence” a more rapid rise in total anthropogenic greenhouse gas emissions (GHG) emissions from 2000 to 2010 than in the past three decades that “were the highest in human history”, which if left unchecked will entail a continuing process of global warming and can alter the climate system. Current efforts, however, to respond to the threat of global warming, such as the United Nations Framework Convention on Climate Change and the Kyoto Protocol, have focused on states, and fail to involve Transnational Corporations (TNCs) which are responsible for a vast amount of GHG emissions. Involving TNCs in the search for solutions to climate change is consistent with an acknowledgment by contemporary international law that there is an international role for other international persons, including TNCs, and departs from the traditional “state-centric” response to climate change. Putting the focus of GHG emissions away from states recognises that the activities of TNCs “are not bound by national borders” and that the international movement of goods meets the needs of consumers worldwide. Although there is no legally-binding instrument that covers TNC activities or legal responsibilities generally, TNCs have increasingly been made legally responsible under international law for violations of human rights, exploitation of workers and environmental damage, but not for climate change damage. Imposing on TNCs a legally-binding obligation to reduce their GHG emissions or a legal liability for climate change damage is arguably formidable and unlikely in the absence a recognisable source of obligation in international law or municipal law. Instead a recourse to “soft law” and non-legally binding instruments may be a way forward for TNCs to reduce their GHG emissions and help in addressing climate change. Positive effects have been noted by various studies to voluntary approaches. TNCs have also in recent decades voluntarily committed to “soft law” international agreements. This development reflects a growing recognition among corporations in general and TNCs in particular of their corporate social responsibility (CSR). While CSR used to be the domain of “small, offbeat companies”, it has now become part of mainstream organization. The paper argues that TNCs must voluntarily commit to reducing their GHG emissions and helping address climate change as part of their CSR. One, as a serious “global commons problem”, climate change requires international cooperation from multiple actors, including TNCs. Two, TNCs are not innocent bystanders but are responsible for a large part of GHG emissions across their vast global operations. Three, TNCs have the capability to help solve the problem of climate change. Assuming arguendo that TNCs did not strongly contribute to the problem of climate change, society would have valid expectations for them to use their capabilities, knowledge-base and advanced technologies to help address the problem. It would seem unthinkable for TNCs to do nothing while the global environment fractures.Keywords: climate change law, corporate social responsibility, greenhouse gas emissions, transnational corporations
Procedia PDF Downloads 35047 Planning Railway Assets Renewal with a Multiobjective Approach
Authors: João Coutinho-Rodrigues, Nuno Sousa, Luís Alçada-Almeida
Abstract:
Transportation infrastructure systems are fundamental in modern society and economy. However, they need modernizing, maintaining, and reinforcing interventions which require large investments. In many countries, accumulated intervention delays arise from aging and intense use, being magnified by financial constraints of the past. The decision problem of managing the renewal of large backlogs is common to several types of important transportation infrastructures (e.g., railways, roads). This problem requires considering financial aspects as well as operational constraints under a multidimensional framework. The present research introduces a linear programming multiobjective model for managing railway infrastructure asset renewal. The model aims at minimizing three objectives: (i) yearly investment peak, by evenly spreading investment throughout multiple years; (ii) total cost, which includes extra maintenance costs incurred from renewal backlogs; (iii) priority delays related to work start postponements on the higher priority railway sections. Operational constraints ensure that passenger and freight services are not excessively delayed from having railway line sections under intervention. Achieving a balanced annual investment plan, without compromising the total financial effort or excessively postponing the execution of the priority works, was the motivation for pursuing the research which is now presented. The methodology, inspired by a real case study and tested with real data, reflects aspects of the practice of an infrastructure management company and is generalizable to different types of infrastructure (e.g., railways, highways). It was conceived for treating renewal interventions in infrastructure assets, which is a railway network may be rails, ballasts, sleepers, etc.; while a section is under intervention, trains must run at reduced speed, causing delays in services. The model cannot, therefore, allow for an accumulation of works on the same line, which may cause excessively large delays. Similarly, the lines do not all have the same socio-economic importance or service intensity, making it is necessary to prioritize the sections to be renewed. The model takes these issues into account, and its output is an optimized works schedule for the renewal project translatable in Gantt charts The infrastructure management company provided all the data for the first test case study and validated the parameterization. This case consists of several sections to be renewed, over 5 years and belonging to 17 lines. A large instance was also generated, reflecting a problem of a size similar to the USA railway network (considered the largest one in the world), so it is not expected that considerably larger problems appear in real life; an average of 25 years backlog and ten years of project horizon was considered. Despite the very large increase in the number of decision variables (200 times as large), the computational time cost did not increase very significantly. It is thus expectable that just about any real-life problem can be treated in a modern computer, regardless of size. The trade-off analysis shows that if the decision maker allows some increase in max yearly investment (i.e., degradation of objective ii), solutions improve considerably in the remaining two objectives.Keywords: transport infrastructure, asset renewal, railway maintenance, multiobjective modeling
Procedia PDF Downloads 14546 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 4145 Kinetic Evaluation of Sterically Hindered Amines under Partial Oxy-Combustion Conditions
Authors: Sara Camino, Fernando Vega, Mercedes Cano, Benito Navarrete, José A. Camino
Abstract:
Carbon capture and storage (CCS) technologies should play a relevant role towards low-carbon systems in the European Union by 2030. Partial oxy-combustion emerges as a promising CCS approach to mitigate anthropogenic CO₂ emissions. Its advantages respect to other CCS technologies rely on the production of a higher CO₂ concentrated flue gas than these provided by conventional air-firing processes. The presence of more CO₂ in the flue gas increases the driving force in the separation process and hence it might lead to further reductions of the energy requirements of the overall CO₂ capture process. A higher CO₂ concentrated flue gas should enhance the CO₂ capture by chemical absorption in solvent kinetic and CO₂ cyclic capacity. They have impact on the performance of the overall CO₂ absorption process by reducing the solvent flow-rate required for a specific CO₂ removal efficiency. Lower solvent flow-rates decreases the reboiler duty during the regeneration stage and also reduces the equipment size and pumping costs. Moreover, R&D activities in this field are focused on novel solvents and blends that provide lower CO₂ absorption enthalpies and therefore lower energy penalties associated to the solvent regeneration. In this respect, sterically hindered amines are considered potential solvents for CO₂ capture. They provide a low energy requirement during the regeneration process due to its molecular structure. However, its absorption kinetics are slow and they must be promoted by blending with faster solvents such as monoethanolamine (MEA) and piperazine (PZ). In this work, the kinetic behavior of two sterically hindered amines were studied under partial oxy-combustion conditions and compared with MEA. A lab-scale semi-batch reactor was used. The CO₂ composition of the synthetic flue gas varied from 15%v/v – conventional coal combustion – to 60%v/v – maximum CO₂ concentration allowable for an optimal partial oxy-combustion operation. Firstly, 2-amino-2-methyl-1-propanol (AMP) showed a hybrid behavior with fast kinetics and a low enthalpy of CO₂ absorption. The second solvent was Isophrondiamine (IF), which has a steric hindrance in one of the amino groups. Its free amino group increases its cyclic capacity. In general, the presence of higher CO₂ concentration in the flue gas accelerated the CO₂ absorption phenomena, producing higher CO₂ absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO₂ concentrated flue gas. The steric hindrance causes a hybrid behavior in this solvent, between both fast and slow kinetic solvents. The kinetics rates observed in all the experiments carried out using AMP were higher than MEA, but lower than the IF. The kinetic enhancement experienced by AMP at a high CO2 concentration is slightly over 60%, instead of 70% – 80% for IF. AMP also improved its CO₂ absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost double the improvements achieved by MEA. In IF experiments, the CO₂ loading increased around 10% from 15%v/v to 60%v/v CO₂ and it changed from 1.10 to 1.34 mole CO₂ per mole solvent, more than 20% of increase. This hybrid kinetic behavior makes AMP and IF promising solvents for partial oxy–combustion applications.Keywords: absorption, carbon capture, partial oxy-combustion, solvent
Procedia PDF Downloads 19044 Analysis of the Potential of Biomass Residues for Energy Production and Applications in New Materials
Authors: Sibele A. F. Leite, Bernno S. Leite, José Vicente H. D´Angelo, Ana Teresa P. Dell’Isola, Julio CéSar Souza
Abstract:
The generation of bioenergy is one of the oldest and simplest biomass applications and is one of the safest options for minimizing emissions of greenhouse gasses and replace the use of fossil fuels. In addition, the increasing development of technologies for energy biomass conversion parallel to the advancement of research in biotechnology and engineering has enabled new opportunities for exploitation of biomass. Agricultural residues offer great potential for energy use, and Brazil is in a prominent position in the production and export of agricultural products such as banana and rice. Despite the economic importance of the growth prospects of these activities and the increasing of the agricultural waste, they are rarely explored for energy and production of new materials. Brazil products almost 10.5 million tons/year of rice husk and 26.8 million tons/year of banana stem. Thereby, the aim of this study was to analysis the potential of biomass residues for energy production and applications in new materials. Rice husk (specify the type) and banana stem (specify the type) were characterized by physicochemical analyses using the following parameters: organic carbon, nitrogen (NTK), proximate analyses, FT-IR spectroscopy, thermogravimetric analyses (TG), calorific values and silica content. Rice husk and banana stem presented attractive superior calorific (from 11.5 to 13.7MJ/kg), and they may be compared to vegetal coal (21.25 MJ/kg). These results are due to the high organic matter content. According to the proximate analysis, biomass has high carbon content (fixed and volatile) and low moisture and ash content. In addition, data obtained by Walkley–Black method point out that most of the carbon present in the rice husk (50.5 wt%) and in banana stalk (35.5 wt%) should be understood as organic carbon (readily oxidizable). Organic matter was also detected by Kjeldahl method which gives the values of nitrogen (especially on the organic form) for both residues: 3.8 and 4.7 g/kg of rice husk and banana stem respectively. TG and DSC analyses support the previous results, as they can provide information about the thermal stability of the samples allowing a correlation between thermal behavior and chemical composition. According to the thermogravimetric curves, there were two main stages of mass-losses. The first and smaller one occurred below 100 °C, which was suitable for water losses and the second event occurred between 200 and 500 °C which indicates decomposition of the organic matter. At this broad peak, the main loss was between 250-350 °C, and it is because of sugar decomposition (components readily oxidizable). Above 350 °C, mass loss of the biomass may be associated with lignin decomposition. Spectroscopic characterization just provided qualitative information about the organic matter, but spectra have shown absorption bands around 1030 cm-1 which may be identified as species containing silicon. This result is expected for the rice husk and deserves further investigation to the stalk of banana, as it can bring a different perspective for this biomass residue.Keywords: rice husk, banana stem, bioenergy, renewable feedstock
Procedia PDF Downloads 27943 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia
Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla
Abstract:
Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus
Procedia PDF Downloads 11442 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models
Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado
Abstract:
In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.Keywords: numerical models, parametric study, segmental tunnels, structural response
Procedia PDF Downloads 22841 Enhancing Engineering Students Educational Experience: Studying Hydrostatic Pumps Association System in Fluid Mechanics Laboratories
Authors: Alexandre Daliberto Frugoli, Pedro Jose Gabriel Ferreira, Pedro Americo Frugoli, Lucio Leonardo, Thais Cavalheri Santos
Abstract:
Laboratory classes in Engineering courses are essential for students to be able to integrate theory with practical reality, by handling equipment and observing experiments. In the researches of physical phenomena, students can learn about the complexities of science. Over the past years, universities in developing countries have been reducing the course load of engineering courses, in accordance with cutting cost agendas. Quality education is the object of study for researchers and requires educators and educational administrators able to demonstrate that the institutions are able to provide great learning opportunities at reasonable costs. Didactic test benches are indispensable equipment in educational activities related to turbo hydraulic pumps and pumping facilities study, which have a high cost and require long class time due to measurements and equipment adjustment time. In order to overcome the aforementioned obstacles, aligned with the professional objectives of an engineer, GruPEFE - UNIP (Research Group in Physics Education for Engineering - Universidade Paulista) has developed a multi-purpose stand for the discipline of fluid mechanics which allows the study of velocity and flow meters, loads losses and pump association. In this work, results obtained by the association in series and in parallel of hydraulic pumps will be presented and discussed, mainly analyzing the repeatability of experimental procedures and their agreement with the theory. For the association in series two identical pumps were used, consisting of the connection of the discharge of a pump to the suction of the next one, allowing the fluid to receive the power of all machines in the association. The characteristic curve of the set is obtained from the curves of each of the pumps, by adding the heads corresponding to the same flow rates. The same pumps were associated in parallel. In this association, the discharge piping is common to the two machines together. The characteristic curve of the set was obtained by adding to each value of H (head height), the flow rates of each pump. For the tests, the input and output pressure of each pump were measured. For each set there were three sets of measurements, varying the flow rate in range from 6.0 to 8.5 m 3 / h. For the two associations, the results showed an excellent repeatability with variations of less than 10% between sets of measurements and also a good agreement with the theory. This variation agrees with the instrumental uncertainty. Thus, the results validate the use of the fluids bench designed for didactic purposes. As a future work, a digital acquisition system is being developed, using differential sensors of extremely low pressures (2 to 2000 Pa approximately) for the microcontroller Arduino.Keywords: engineering education, fluid mechanics, hydrostatic pumps association, multi-purpose stand
Procedia PDF Downloads 22040 Accuracy of Fitbit Charge 4 for Measuring Heart Rate in Parkinson’s Patients During Intense Exercise
Authors: Giulia Colonna, Jocelyn Hoye, Bart de Laat, Gelsina Stanley, Jose Key, Alaaddin Ibrahimy, Sule Tinaz, Evan D. Morris
Abstract:
Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 1% of the world’s population. Increasing evidence suggests that aerobic physical exercise can be beneficial in mitigating both motor and non-motor symptoms of the disease. In a recent pilot study of the role of exercise on PD, we sought to confirm exercise intensity by monitoring heart rate (HR). For this purpose, we asked participants to wear a chest strap heart rate monitor (Polar Electro Oy, Kempele). The device sometimes proved uncomfortable. Looking forward to larger clinical trials, it would be convenient to employ a more comfortable and user friendly device. The Fitbit Charge 4 (Fitbit Inc) is a potentially comfortable, user-friendly solution since it is a wrist-worn heart rate monitor. Polar H10 has been used in large trials, and for our purposes, we treated it as the gold standard for the beat-to-beat period (R-R interval) assessment. In previous literature, it has been shown that Fitbit Charge 4 has comparable accuracy to Polar H10 in healthy subjects. It has yet to be determined if the Fitbit is as accurate as the Polar H10 in subjects with PD or in clinical populations, generally. Goal: To compare the Fitbit Charge 4 to the Polar H10 for monitoring HR in PD subjects engaging in an intensive exercise program. Methods: A total of 596 exercise sessions from 11 subjects (6 males) were collected simultaneously by both devices. Subjects with early-stage PD (Hoehn & Yahr <=2) were enrolled in a 6 months exercise training program designed for PD patients. Subjects participated in 3 one-hour exercise sessions per week. They wore both Fitbit and Polar H10 during each session. Sessions included rest, warm-up, intensive exercise, and cool-down periods. We calculated the bias in the HR via Fitbit under rest (5min) and intensive exercise (20min) by comparing the mean HR during each of the periods to the respective means measured by the Polar (HRFitbit – HRPolar). We also measured the sensitivity and specificity of Fitbit for detecting HRs that exceed the threshold for intensive exercise, defined as 70% of an individual’s theoretical maximum HR. Different types of correlation between the two devices were investigated. Results: The mean bias was 1.68 bpm at rest and 6.29 bpm during high intensity exercise, with an overestimation by Fitbit in both conditions. The mean bias of Fitbit across both rest and intensive exercise periods was 3.98 bpm. The sensitivity of the device in identifying high intensity exercise sessions was 97.14 %. The correlation between the two devices was non-linear, suggesting a saturation tendency of Fitbit to saturate at high values of HR. Conclusion: The performance of Fitbit Charge 4 is comparable to Polar H10 for assessing exercise intensity in a cohort of PD subjects. The device should be considered a reasonable replacement for the more cumbersome chest strap technology in future similar studies of clinical populations.Keywords: fitbit, heart rate measurements, parkinson’s disease, wrist-wearable devices
Procedia PDF Downloads 10839 Advocating for Indigenous Music in Latin American Music Education
Authors: Francisco Luis Reyes
Abstract:
European colonization had a profound impact on Latin America. The influence of the old continent can be perceived in the culture, religion, and language of the region as well as the beliefs and attitudes of the population. Music education is not an exception to this phenomenon. With Europeans controlling cultural life and erecting educational institutions across the continent for several centuries, Western European Art Music (WEAM) has polarized music learning in formal spaces. In contrast, the musics from the indigenous population, the African slaves, and the ones that emerged as a result of the cultural mélanges have largely been excluded from primary and secondary schooling. The purpose of this paper is to suggest the inclusion of indigenous music education in primary and secondary music education. The paper employs a philosophical inquiry in order to achieve this aim. Philosophical inquiry seeks to uncover and examine individuals' unconscious beliefs, principles, values, and assumptions to envision potential possibilities. This involves identifying and describing issues within current music teaching and learning practices. High-quality philosophical research tackles problems that are sufficiently narrow (addressing a specific aspect of a single complex topic), realistic (reflecting the experiences of music education), and significant (addressing a widespread and timely issue). Consequently, this methodological approach fits this topic, as the research addresses the omnipresence of WEAM in Latin American music education, the exclusion of indigenous music, and argues about the transformational impact said artistic expressions can have on practices in the region. The paper initially addresses how WEAM became ubiquitous in the region by recounting historical events, and adressing the issues other types of music face entering higher education. According to Shifres and Rosabal-Coto (2017) Latin America still upholds the musical heritage of their colonial period, and its formal music education institutions promote the European ontology instilled during European expansion. In accordance, the work of Reyes and Lorenzo-Quiles (2024), and Soler, Lorenzo-Quiles, and Hargreaves (2014), demonstrate how music institutions in the region uphold foreign narratives. Their studies show that music programs in Puerto Rico and Colombia instruct students in WEAM as well as require skills in said art form to enter the profession, just like other authors have argued (Cain & Walden, 2019, Walden, 2016). Subsequently, the research explains the issues faced by prospective music educators that do not practice WEAM. Roberts (1991a, 1991b, 1993), Green (2012) have found that music education students that do not adhere to the musical culture of their institution, are less likely to finish their degrees. Hence, practicioners of tradional musics might feel out of place in the environment. The ubiquity of WEAM and the exclusion of traditional musics of the region, provide the primary challenges to the inclusion of indigenous musics in formal spaces in primary and secondary education. The presentation then laids the framework for the inclusion indigenous music, and conclusively offers examples of how the musical expressions from the continent can improove the music education practices of the region. As an ending, the article highlights the benefits of these musics that are lacking in current practices.Keywords: indigenous music education, postmodern music education, decolonization in music education, music education practice, Latin American music education
Procedia PDF Downloads 3338 Anajaa-Visual Substitution System: A Navigation Assistive Device for the Visually Impaired
Authors: Juan Pablo Botero Torres, Alba Avila, Luis Felipe Giraldo
Abstract:
Independent navigation and mobility through unknown spaces pose a challenge for the autonomy of visually impaired people (VIP), who have relied on the use of traditional assistive tools like the white cane and trained dogs. However, emerging visually assistive technologies (VAT) have proposed several human-machine interfaces (HMIs) that could improve VIP’s ability for self-guidance. Hereby, we introduce the design and implementation of a visually assistive device, Anajaa – Visual Substitution System (AVSS). This system integrates ultrasonic sensors with custom electronics, and computer vision models (convolutional neural networks), in order to achieve a robust system that acquires information of the surrounding space and transmits it to the user in an intuitive and efficient manner. AVSS consists of two modules: the sensing and the actuation module, which are fitted to a chest mount and belt that communicate via Bluetooth. The sensing module was designed for the acquisition and processing of proximity signals provided by an array of ultrasonic sensors. The distribution of these within the chest mount allows an accurate representation of the surrounding space, discretized in three different levels of proximity, ranging from 0 to 6 meters. Additionally, this module is fitted with an RGB-D camera used to detect potentially threatening obstacles, like staircases, using a convolutional neural network specifically trained for this purpose. Posteriorly, the depth data is used to estimate the distance between the stairs and the user. The information gathered from this module is then sent to the actuation module that creates an HMI, by the means of a 3x2 array of vibration motors that make up the tactile display and allow the system to deliver haptic feedback. The actuation module uses vibrational messages (tactones); changing both in amplitude and frequency to deliver different awareness levels according to the proximity of the obstacle. This enables the system to deliver an intuitive interface. Both modules were tested under lab conditions, and the HMI was additionally tested with a focal group of VIP. The lab testing was conducted in order to establish the processing speed of the computer vision algorithms. This experimentation determined that the model can process 0.59 frames per second (FPS); this is considered as an adequate processing speed taking into account that the walking speed of VIP is 1.439 m/s. In order to test the HMI, we conducted a focal group composed of two females and two males between the ages of 35-65 years. The subject selection was aided by the Colombian Cooperative of Work and Services for the Sightless (COOTRASIN). We analyzed the learning process of the haptic messages throughout five experimentation sessions using two metrics: message discrimination and localization success. These correspond to the ability of the subjects to recognize different tactones and locate them within the tactile display. Both were calculated as the mean across all subjects. Results show that the focal group achieved message discrimination of 70% and a localization success of 80%, demonstrating how the proposed HMI leads to the appropriation and understanding of the feedback messages, enabling the user’s awareness of its surrounding space.Keywords: computer vision on embedded systems, electronic trave aids, human-machine interface, haptic feedback, visual assistive technologies, vision substitution systems
Procedia PDF Downloads 8037 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis
Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos
Abstract:
Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent
Procedia PDF Downloads 27836 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico
Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos
Abstract:
Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis
Procedia PDF Downloads 15135 Inclusion Advances of Disabled People in Higher Education: Possible Alignment with the Brazilian Statute of the Person with Disabilities
Authors: Maria Cristina Tommaso, Maria Das Graças L. Silva, Carlos Jose Pacheco
Abstract:
Have the advances of the Brazilian legislation reflected or have been consonant with the inclusion of PwD in higher education? In 1990 the World Declaration on Education for All, a document organized by the United Nations Educational, Scientific and Cultural Organization (UNESCO), stated that the basic learning needs of people with disabilities, as they were called, required special attention. Since then, legislation in signatory countries such as Brazil has made considerable progress in guaranteeing, in a gradual and increasing manner, the rights of persons with disabilities to education. Principles, policies, and practices of special educational needs were created and guided action at the regional, national and international levels on the structure of action in Special Education such as administration, recruitment of educators and community involvement. Brazilian Education Law No. 3.284 of 2003 ensures inclusion of people with disabilities in Brazilian higher education institutions and also in 2015 the Law 13,146/2015 - Brazilian Law on the Inclusion of Persons with Disabilities (Statute of the Person with Disabilities) regulates the inclusion of PwD by the guarantee of their rights. This study analyses data related to people with disability inclusion in High Education in the south region of Rio de Janeiro State - Brazil during the period between 2008 and 2018, based in its correlation with the changes in the Brazilian legislation in the last ten years that were subjected by PwD inclusion processes in the Brazilian High Education Systems. The region studied is composed by sixteen cities and this research refers to the largest one, Volta Redonda that represents 25 percent of the total regional population. The PwD reception process had the dicing data at the Volta Redonda University Center with 35 percent of high education students in this territorial area. The research methodology analyzed the changes occurring in the legislation about the inclusion of people with disability in High Education in the last ten years and its impacts on the samples of this study during the period between 2008 and 2018. It was verified an expressive increasing of the number of PwD students, from two in 2008 to 190 PwD students in 2018. The data conclusions are presented in quantitative terms and the aim of this study was to verify the effectiveness of the PwD inclusion in High Education, allowing visibility of this social group. This study verified that the fundamental human rights guarantees have a strong relation to the advances of legislation and the State as a guarantor instance of the rights of the people with disability and must be considered a mean of consolidation of their education opportunities isonomy. The recognition of full rights and the inclusion of people with disabilities requires the efforts of those who have decision-making power. This study aimed to demonstrate that legislative evolution is an effective instrument in the social integration of people with disabilities. The study confirms the fundamental role of the state in guaranteeing human rights and demonstrates that legislation not only protects the interests of vulnerable social groups, but can also, and this is perhaps its main mission, to change behavior patterns and provoke the social transformation necessary to the reduction of inequality of opportunity.Keywords: high education, inclusion, legislation, people with disability
Procedia PDF Downloads 152