Search results for: teaching and learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22673

Search results for: teaching and learning model

15653 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 119
15652 A Practical Model for Managing Beach Safety Focusing on Tourist Drownings in Koh Samui, Thailand

Authors: Siyathorn Khunon, Thanawit Buafai

Abstract:

This paper aims to investigate management of beach safety with a focus on tourist drownings in Samui. The data collected in this investigation will then lead to the proposal of a practical management model suitable for use in Samui. Qualitative research was conducted in the following manner: nine stakeholders from local government organizations and tourism businesses were interviewed in-depth. Additionally, a best practice case study from Phuket was applied to analyze beach safety. Twelve foreign tourists were also interviewed. Then, a focus group comprised of 32 people was used to determine practical solutions for enhancing tourists’ safety on the beach in Samui. A steering committee to coordinate between public and private organizations was proposed to manage and enhance tourists’ safety. A practical model is proposed to increase the safety level of tourists in Samui

Keywords: beach safety, drowning, tourist, Samui

Procedia PDF Downloads 255
15651 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques

Authors: Praveen Battula

Abstract:

Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.

Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics

Procedia PDF Downloads 436
15650 Study of the Persian Gulf’s and Oman Sea’s Numerical Tidal Currents

Authors: Fatemeh Sadat Sharifi

Abstract:

In this research, a barotropic model was employed to consider the tidal studies in the Persian Gulf and Oman Sea, where the only sufficient force was the tidal force. To do that, a finite-difference, free-surface model called Regional Ocean Modeling System (ROMS), was employed on the data over the Persian Gulf and Oman Sea. To analyze flow patterns of the region, the results of limited size model of The Finite Volume Community Ocean Model (FVCOM) were appropriated. The two points were determined since both are one of the most critical water body in case of the economy, biology, fishery, Shipping, navigation, and petroleum extraction. The OSU Tidal Prediction Software (OTPS) tide and observation data validated the modeled result. Next, tidal elevation and speed, and tidal analysis were interpreted. Preliminary results determine a significant accuracy in the tidal height compared with observation and OTPS data, declaring that tidal currents are highest in Hormuz Strait and the narrow and shallow region between Iranian coasts and Islands. Furthermore, tidal analysis clarifies that the M_2 component has the most significant value. Finally, the Persian Gulf tidal currents are divided into two branches: the first branch converts from south to Qatar and via United Arab Emirate rotates to Hormuz Strait. The secondary branch, in north and west, extends up to the highest point in the Persian Gulf and in the head of Gulf turns counterclockwise.

Keywords: numerical model, barotropic tide, tidal currents, OSU tidal prediction software, OTPS

Procedia PDF Downloads 118
15649 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System

Authors: Nicholas Pearce, Eun-jin Kim

Abstract:

Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.

Keywords: cardiovascular system, left atrium, numerical model, MEF

Procedia PDF Downloads 102
15648 Mathematical Modelling of the Effect of Glucose on Pancreatic Alpha-Cell Activity

Authors: Karen K. Perez-Ramirez, Genevieve Dupont, Virginia Gonzalez-Velez

Abstract:

Pancreatic alpha-cells participate on glucose regulation together with beta cells. They release glucagon hormone when glucose level is low to stimulate gluconeogenesis from the liver. As other excitable cells, alpha cells generate Ca2+ and metabolic oscillations when they are stimulated. It is known that the glucose level can trigger or silence this activity although it is not clear how this occurs in normal and diabetic people. In this work, we propose an electric-metabolic mathematical model implemented in Matlab to study the effect of different glucose levels on the electrical response and Ca2+ oscillations of an alpha cell. Our results show that Ca2+ oscillations appear in opposite phase with metabolic oscillations in a window of glucose values. The model also predicts a direct relationship between the level of glucose and the intracellular adenine nucleotides showing a self-regulating pathway for the alpha cell.

Keywords: Ca2+ oscillations, mathematical model, metabolic oscillations, pancreatic alpha cell

Procedia PDF Downloads 166
15647 Socio-Cultural Factors to Support Knowledge Management and Organizational Innovation: A Study of Small and Medium-Sized Enterprises in Latvia

Authors: Madara Apsalone

Abstract:

Knowledge management and innovation is key to competitive advantage and sustainable business development in advanced economies. Small and medium-sized enterprises (SMEs) have lower capacity and more constrained resources for long-term and high-uncertainty research and development investments. At the same time, SMEs can implement organizational innovation to improve their performance and further foster other types of innovation. The purpose of this study is to analyze, how socio-cultural factors such as shared values, organizational behaviors, work organization and decision making processes can influence knowledge management and help to develop organizational innovation via an empirical study. Surveying 600 SMEs in Latvia, the author explores the contribution of different socio-cultural factors to organizational innovation and the role of knowledge management and organizational learning in this process. A conceptual model, explaining the impact of organizational team, development, result-orientation and structure is created. The study also proposes insights that contribute to theoretical and practical discussions on fostering innovation of small businesses in small economies.

Keywords: knowledge management, organizational innovation, small and medium-sized enterprises, socio-cultural factors

Procedia PDF Downloads 373
15646 Method of Successive Approximations for Modeling of Distributed Systems

Authors: A. Torokhti

Abstract:

A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.

Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center

Procedia PDF Downloads 370
15645 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics

Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh

Abstract:

Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.

Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse

Procedia PDF Downloads 135
15644 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk

Procedia PDF Downloads 421
15643 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce

Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.

Abstract:

One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.

Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies

Procedia PDF Downloads 8
15642 Numerical Study of Pressure Losses of Turbulence Drilling Fluid Flow in the Oil Wellbore

Authors: Alireza Mehdizadeh, Ghanbarali Sheikhzadeh

Abstract:

In this paper the pressure loss of drilling fluid flow in the annulus is investigated. On this purpose the domains between two concentric and two eccentric cylinders are considered as computational domains. In this research foam is used as drilling fluid. Firstly simulation results for laminar flow and non Newtonian fluid and different density like 100, 200, 300 kg/m3 and different inner cylinder rotational velocity like 100, 200, 300 RPM is presented. These results are compared and matched with references results. The power law and Herschel Bulkly methods are used for non Newtonian fluid modeling. After that computations are repeated with turbulence flow considering. K- Model is used for turbulence modeling. Results show that in laminar flow Herschel bulkly model has best result in comparison with power law model. And pressure loss in turbulence flow is higher than laminar flow.

Keywords: simulation, concentric cylinders, drilling, non Newtonian

Procedia PDF Downloads 551
15641 Control of a Quadcopter Using Genetic Algorithm Methods

Authors: Mostafa Mjahed

Abstract:

This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.

Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system

Procedia PDF Downloads 413
15640 On Bianchi Type Cosmological Models in Lyra’s Geometry

Authors: R. K. Dubey

Abstract:

Bianchi type cosmological models have been studied on the basis of Lyra’s geometry. Exact solution has been obtained by considering a time dependent displacement field for constant deceleration parameter and varying cosmological term of the universe. The physical behavior of the different models has been examined for different cases.

Keywords: Bianchi type-I cosmological model, variable gravitational coupling, cosmological constant term, Lyra's model

Procedia PDF Downloads 340
15639 Teachers' Beliefs About the Environment: The Case of Azerbaijan

Authors: Aysel Mehdiyeva

Abstract:

As a driving force of society, the role of teachers is important in inspiring, motivating, and encouraging the younger generation to protect the environment. In light of these, the study aims to explore teachers’ beliefs to understand teachers’ engagement with teaching about the environment. Though teachers’ beliefs about the environment have been explored by a number of researchers, the influence of these beliefs in their professional lives and in shaping their classroom instructions has not been widely investigated in Azerbaijan. To this end, this study aims to reveal the beliefs of secondary school geography teachers about the environment and find out the ways teachers’ beliefs of the environment are enacted in their classroom practice in Azerbaijan. Different frameworks have been suggested for measuring environmental beliefs stemming from well-known anthropocentric and biocentric worldviews. The study addresses New Ecological Paradigm (NEP) by Dunlap to formulate the interview questions as discussion with teachers around these questions aligns with the research aims serving to well-capture the beliefs of teachers about the environment. Despite the extensive applicability of the NEP scale, it has not been used to explore in-service teachers’ beliefs about the environment. Besides, it has been used as a tool for quantitative measurement; however, the study addresses the scale within the framework of the qualitative study. The research population for semi-structured interviews and observations was recruited via purposeful sampling. Teachers’ being a unit of analysis is related to the gap in the literature as to how teachers’ beliefs are related to their classroom instructions within the environmental context, as well as teachers’ beliefs about the environment in Azerbaijan have not been well researched. 6 geography teachers from 4 different schools were involved in the research process. The schools are located in one of the most polluted parts of the capital city Baku where the first oil well in the world was drilled in 1848 and is called “Black City” due to the black smoke and smell that covered that part of the city. Semi-structured interviews were conducted with the teachers to reveal their stated beliefs. Later, teachers were observed during geography classes to understand the overlap between teachers’ ideas presented during the interview and their teaching practice. Research findings aim to indicate teachers’ ecological beliefs and practice, as well as elaborate on possible causes of compatibility/incompatibility between teachers’ stated and observed beliefs.

Keywords: environmental education, anthropocentric beliefs, biocentric beliefs, new ecological paradigm

Procedia PDF Downloads 89
15638 Technical Games Using ICT as a Preparation for Teaching about Technology in Pre-School Age

Authors: Pavlína Částková, Jiří Kropáč, Jan Kubrický

Abstract:

The paper deals with the current issue of Information and Communication Technologies and their implementation into the educational activities of preschool children. The issue is addressed in the context of technical education and the specifics of its implementation in a kindergarten. One of the main topics of this paper is a technical game activity of a preschool child, and its possibilities, benefits and risks. The paper presents games/toys as one of the means of exploring and understanding technology as an essential part of human culture.

Keywords: ICT, technical education, pre-school age, technical games

Procedia PDF Downloads 416
15637 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers

Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin

Abstract:

Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.

Keywords: anxiety, emotional valence, childhood, lexical access

Procedia PDF Downloads 277
15636 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window

Authors: Emin Z. Mahmud

Abstract:

Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz.

Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening

Procedia PDF Downloads 108
15635 The Impact of Gender and Residential Background on Racial Integration: Evidence from a South African University

Authors: Morolake Josephine Adeagbo

Abstract:

South Africa is one of those countries that openly rejected racism, and this is entrenched in its Bill of Rights. Despite the acceptance and incorporation of racial integration into the South Africa Constitution, the implementation within some sectors, most especially the educational sector, seems difficult. Recent occurrences of racism in some higher institutions of learning in South Africa are indications that racial integration / racial transformation is still farfetched in the country’s higher educational sector. It is against this background that this study was conducted to understand how gender and residential background influence racial integration in a South African university which was predominantly a white Afrikaner institution. Using a quantitative method to test the attitude of different categories of undergraduate students at the university, this study found that the factors- residential background and gender- used in measuring student’s attitude do not necessarily have a significant relationship towards racial integration. However, this study concludes with a call for more research with a range of other factors in order to better understand how racial integration can be promoted in South African institutions of higher learning.

Keywords: racial integration, gender, residential background, transformation

Procedia PDF Downloads 430
15634 Modeling Approach to Better Control Fouling in a Submerged Membrane Bioreactor for Wastewater Treatment: Development of Analytical Expressions in Steady-State Using ASM1

Authors: Benaliouche Hana, Abdessemed Djamal, Meniai Abdessalem, Lesage Geoffroy, Heran Marc

Abstract:

This paper presents a dynamic mathematical model of activated sludge which is able to predict the formation and degradation kinetics of SMP (Soluble microbial products) in membrane bioreactor systems. The model is based on a calibrated version of ASM1 with the theory of production and degradation of SMP. The model was calibrated on the experimental data from MBR (Mathematical modeling Membrane bioreactor) pilot plant. Analytical expressions have been developed, describing the concentrations of the main state variables present in the sludge matrix, with the inclusion of only six additional linear differential equations. The objective is to present a new dynamic mathematical model of activated sludge capable of predicting the formation and degradation kinetics of SMP (UAP and BAP) from the submerged membrane bioreactor (BRMI), operating at low organic load (C / N = 3.5), for two sludge retention times (SRT) fixed at 40 days and 60 days, to study their impact on membrane fouling, The modeling study was carried out under the steady-state condition. Analytical expressions were then validated by comparing their results with those obtained by simulations using GPS-X-Hydromantis software. These equations made it possible, by means of modeling approaches (ASM1), to identify the operating and kinetic parameters and help to predict membrane fouling.

Keywords: Activated Sludge Model No. 1 (ASM1), mathematical modeling membrane bioreactor, soluble microbial products, UAP, BAP, Modeling SMP, MBR, heterotrophic biomass

Procedia PDF Downloads 271
15633 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model

Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady

Abstract:

The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.

Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle

Procedia PDF Downloads 347
15632 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression

Authors: Keisuke Takahata, Hiroshi Suetsugu

Abstract:

Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.

Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification

Procedia PDF Downloads 162
15631 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Authors: Snehal R. Pathak, Sachin S. Munnoli

Abstract:

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Keywords: earth pressure, earthquake, 2-DOF model, Plaxis, retaining walls, wall movement

Procedia PDF Downloads 522
15630 Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace

Authors: Junhai Liao, Yansong Shen, Aibing Yu

Abstract:

A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF.

Keywords: blast furnace, numerical study, pulverized coal injection, Victorian brown coal

Procedia PDF Downloads 231
15629 Threat Analysis: A Technical Review on Risk Assessment and Management of National Testing Service (NTS)

Authors: Beenish Urooj, Ubaid Ullah, Sidra Riasat

Abstract:

National Testing Service-Pakistan (NTS) is an agency in Pakistan that conducts student success appraisal examinations. In this research paper, we must present a security model for the NTS organization. The security model will depict certain security countermeasures for a better defense against certain types of breaches and system malware. We will provide a security roadmap, which will help the company to execute its further goals to maintain security standards and policies. We also covered multiple aspects in securing the environment of the organization. We introduced the processes, architecture, data classification, auditing approaches, survey responses, data handling, and also training and awareness of risk for the company. The primary contribution is the Risk Survey, based on the maturity model meant to assess and examine employee training and knowledge of risks in the company's activities.

Keywords: NTS, risk assessment, threat factors, security, services

Procedia PDF Downloads 59
15628 Damage Mesomodel Based Low-Velocity Impact Damage Analysis of Laminated Composite Structures

Authors: Semayat Fanta, P.M. Mohite, C.S. Upadhyay

Abstract:

Damage meso-model for laminates is one of the most widely applicable approaches for the analysis of damage induced in laminated fiber-reinforced polymeric composites. Damage meso-model for laminates has been developed over the last three decades by many researchers in experimental, theoretical, and analytical methods that have been carried out in micromechanics as well as meso-mechanics analysis approaches. It has been fundamentally developed based on the micromechanical description that aims to predict the damage initiation and evolution until the failure of structure in various loading conditions. The current damage meso-model for laminates aimed to act as a bridge between micromechanics and macro-mechanics of the laminated composite structure. This model considers two meso-constituents for the analysis of damage in ply and interface that imparted from low-velocity impact. The damages considered in this study include fiber breakage, matrix cracking, and diffused damage of the lamina, and delamination of the interface. The damage initiation and evolution in laminae can be modeled in terms of damaged strain energy density using damage parameters and the thermodynamic irreversible forces. Interface damage can be modeled with a new concept of spherical micro-void in the resin-rich zone of interface material. The damage evolution is controlled by the damage parameter (d) and the radius of micro-void (r) from the point of damage nucleation to its saturation. The constitutive martial model for meso-constituents is defined in a user material subroutine VUMAT and implemented in ABAQUS/Explicit finite element modeling tool. The model predicts the damages in the meso-constituents level very accurately and is considered the most effective technique of modeling low-velocity impact simulation for laminated composite structures.

Keywords: mesomodel, laminate, low-energy impact, micromechanics

Procedia PDF Downloads 209
15627 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 393
15626 Fuel Economy of Electrical Energy in the City Bus during Japanese Test Procedure

Authors: Piotr Kacejko, Lukasz Grabowski, Zdzislaw Kaminski

Abstract:

This paper discusses a model of fuel consumption and on-board electricity generation. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the on-board electricity generation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show that driving dynamics has an impact on a consumption of fuel to drive alternators.

Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, power generation

Procedia PDF Downloads 200
15625 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 322
15624 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions

Authors: Mikhail O. Eremin

Abstract:

Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.

Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault

Procedia PDF Downloads 127