Search results for: organizational challenges
127 Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre of Visual Arts in the Context of Agile, Lean and Hybrid Project Management Approaches
Authors: Maria Ledinskaya
Abstract:
This paper examines the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts in the context of Agile, Lean, and Hybrid project management. It is part case study and part literature review. To date, relatively little has been written about non-traditional project management approaches in heritage conservation. This paper seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation, by referencing their practical application on a recent museum-based conservation project. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre for Visual Arts by private collectors Michael and Joyce Morris. The first part introduces the chronological timeline and key elements of the project. It describes a medium-size conservation project of moderate complexity, which was planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown condition and materials, unconfirmed budget. The project was also impacted by the unknown unknowns of the COVID-19 pandemic, such as indeterminate lockdowns, and the need to accommodate social distancing and remote communications. The author, a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Collection Conservation Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. Subsequent sections examine the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment, due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Collection Conservation Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, as well as the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics, particularly with respect to change management, bespoke ethics, shared decision-making, and value-based cost-benefit conservation strategy. The author concludes that the Morris Collection Conservation Project had multiple Agile and Lean features which were instrumental to the successful delivery of the project. These key features are identified as distributed decision making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point largely in favour of a Hybrid model which combines traditional and alternative project processes and tools to suit the specific needs of the project.Keywords: project management, conservation, waterfall, agile, lean, hybrid
Procedia PDF Downloads 99126 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model
Authors: Ichiro Takahashi
Abstract:
One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability
Procedia PDF Downloads 210125 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories
Authors: Berna Çalışkan
Abstract:
The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.Keywords: water resources management, hydro tool, water protection, transportation
Procedia PDF Downloads 56124 Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment
Authors: Safa Ladhari, Alireza Saidi, Phuong Nguyen-Tri
Abstract:
During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method.Keywords: protective equipment, antibacterial textile materials, biodegradable polymer, electrospinning, hybrid antibacterial nanoparticles
Procedia PDF Downloads 80123 Transformation of Bangladesh Society: The Role of Religion
Authors: Abdul Wohab
Abstract:
Context: The role of religion in the transformation of Bangladesh society has been significant since 1975. There has been a rise in religious presence, particularly Islam, in both private and public spheres supported by the state apparatuses. In 2009, a 'secular' political party came into power for the second time since independence and initiated the modernization of religious education systems. This research focuses on the transformation observed among the educated middle class who now prefer their children to attend modern, English medium madrasas that offer both religion-based and secular education. Research Aim: This research aims to investigate two main questions: a) what motivates the educated middle class to send their children to madrasa education? b) To what extent can it be argued that Bangladeshi society is transforming from its secular nature to being more religious?Methodology: The research applies a combination of primary and secondary methods. Case studies serve as the primary method, allowing for an in-depth exploration of the motivations of the educated middle class. The secondary method involves analyzing published news articles, op-eds, and websites related to madrasa education, as well as studying the reading syllabus of Aliya and Qwami madrasas in Bangladesh. Findings: Preliminary findings indicate that the educated middle class chooses madrasa education for reasons such as remembering and praying for their departed relatives, keeping their children away from substance abuse, fostering moral and ethical values, and instilling respect for seniors and relatives. The research also reveals that religious education is believed to help children remain morally correct according to the Quran and Hadith. Additionally, the establishment of madrasas in Bangladesh is attributed to economic factors, with demand and supply mechanisms playing a significant role. Furthermore, the findings suggest that government-run primary education institutions in rural areas face more challenges in enrollment compared to religious educational institutions like madrasas. Theoretical Importance: This research contributes to the understanding of societal transformation and the role of religion in this process. By examining the case of Bangladesh, it provides insights into how religion influences education choices and societal values. Data Collection and Analysis Procedures: Data for this research is collected through case studies, including interviews and observations of educated middle-class families who send their children to madrasas. In addition, analysis is conducted on relevant published materials such as news articles, op-eds, and websites. The reading syllabus of Aliya and Qwami madrasas is also analyzed to gain a comprehensive understanding of the education system. Questions Addressed: The research addresses two questions: a) what motivates the educated middle class to choose madrasa education for their children? b) To what extent can it be argued that Bangladeshi society is transforming from its secular nature to being more religious?Conclusion: The preliminary findings of this research highlight the motivations of the educated middle class in opting for madrasa education, including the desire to maintain religious traditions, promote moral values, and provide a strong foundation for their children. It also suggests that Bangladeshi society is experiencing a transformation towards a more religious orientation. This research contributes to the understanding of societal changes and the role of religion within Bangladesh, shedding light on the complex dynamics between religion and education.Keywords: madrasa education, transformation, Bangladesh, religion and society, education
Procedia PDF Downloads 64122 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses
Authors: David Philpott, Karen Kennedy
Abstract:
In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis
Procedia PDF Downloads 292121 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution
Authors: S. Sharma, Gaballa Aqeelah, Tawfig Alghbaili, Ali Elmessmari
Abstract:
There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths.Keywords: well logging, seismic data acquisition, sesimic data processing, up-holes
Procedia PDF Downloads 85120 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus
Authors: Sweta Rout-Hoolash
Abstract:
Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad
Procedia PDF Downloads 327119 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance
Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher
Abstract:
The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis
Procedia PDF Downloads 45118 About the State of Students’ Career Guidance in the Conditions of Inclusive Education in the Republic of Kazakhstan
Authors: Laura Butabayeva, Svetlana Ismagulova, Gulbarshin Nogaibayeva, Maiya Temirbayeva, Aidana Zhussip
Abstract:
Over the years of independence, Kazakhstan has not only ratified international documents regulating the rights of children to Inclusive education, but also developed its own inclusive educational policy. Along with this, the state pays particular attention to high school students' preparedness for professional self-determination. However, a number of problematic issues in this field have been revealed, such as the lack of systemic mechanisms coordinating stakeholders’ actions in preparing schoolchildren for a conscious choice of in-demand profession, meeting their individual capabilities and special educational needs (SEN). The analysis of the state’s current situation indicates school graduates’ adaptation to the labor market does not meet existing demands of the society. According to the Ministry of Labor and Social Protection of the Population of the Republic of Kazakhstan, about 70 % of Kazakhstani school graduates find themselves difficult to choose a profession, 87 % of schoolchildren make their career choice under the influence of parents and school teachers, 90 % of schoolchildren and their parents have no idea about the most popular professions on the market. The results of the study conducted by KorlanSyzdykova in 2016 indicated the urgent need of Kazakhstani school graduates in obtaining extensive information about in- demand professions and receiving professional assistance in choosing a profession in accordance with their individual skills, abilities, and preferences. The results of the survey, conducted by Information and Analytical Center among heads of colleges in 2020, showed that despite significant steps in creating conditions for students with SEN, they face challenges in studying because of poor career guidance provided to them in schools. The results of the study, conducted by the Center for Inclusive Education of the National Academy of Education named after Y. Altynsarin in the state’s general education schools in 2021, demonstrated the lack of career guidance, pedagogical and psychological support for children with SEN. To investigate these issues, the further study was conducted to examine the state of students’ career guidance and socialization, taking into account their SEN. The hypothesis of this study proposed that to prepare school graduates for a conscious career choice, school teachers and specialists need to develop their competencies in early identification of students' interests, inclinations, SEN and ensure necessary support for them. The state’s 5 regions were involved in the study according to the geographical location. The triangulation approach was utilized to ensure the credibility and validity of research findings, including both theoretical (analysis of existing statistical data, legal documents, results of previous research) and empirical (school survey for students, interviews with parents, teachers, representatives of school administration) methods. The data were analyzed independently and compared to each other. The survey included questions related to provision of pedagogical support for school students in making their career choice. Ethical principles were observed in the process of developing the methodology, collecting, analyzing the data and distributing the results. Based on the results, methodological recommendations on students’ career guidance for school teachers and specialists were developed, taking into account the former’s individual capabilities and SEN.Keywords: career guidance, children with special educational needs, inclusive education, Kazakhstan
Procedia PDF Downloads 172117 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities
Authors: Shoba Rathilal
Abstract:
High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development
Procedia PDF Downloads 77116 Isolation and Probiotic Characterization of Lactobacillus plantarum and Lactococcus lactis from Gut Microbiome of Rohu (Labeo rohita)
Authors: Prem Kumar, Anuj Tyagi, Harsh Panwar, Vaneet Inder Kaur
Abstract:
Though aquaculture started as an occupation for poor and weak farmers for livelihood, it has now acquired the shape of one of the biggest industry to grow live protein in the form of aquatic organisms. Industrialization of the aquaculture sector has led to intensification resulting in stress on aquatic organisms and frequent disease outbreaks leading to huge economic impacts. Indiscriminate use of antibiotics as growth promoter and prophylactic agent in aquaculture has resulted in rapid emergence and spread of antibiotic resistance in bacterial pathogens. Over the past few years, use of probiotics (as an alternative of antibiotics) in aquaculture has gained attention due to their immunostimulant and growth promoting properties. It has now well known that after administration, a probiotic bacterium has to compete and establish itself against native microbiota to show its eventual beneficial properties. Due to their non-fish origin, commercial probiotics sometimes may display poor probiotic functionalities and antagonistic effects. Thus, isolation and characterization of probiotic bacteria from same fish host is very much necessary. In this study, attempts were made to isolate potent probiotic lactic acid bacteria (LAB) from intestinal microflora of rohu fish. Twenty-five experimental rohu fishes (mean weight 400 ± 20gm, mean standard length 20 ± 3cm) were used in the study to collect fish gut after dissection in a sterile condition. A total of 150 tentative LAB isolates from selective agar media (de Man-Rogosa-Sharpe (MRS)) were screened for their antimicrobial activity against Aeromonas hydrophila and Microccocus leuteus. A total of 17 isolates, identified as Lactobacillus plantarum and Lactococcus lactis, identified by biochemical tests and PCR amplification and sequencing of 16S rRNA gene fragment, displayed promising antimicrobial activity against both the pathogens. Two isolates from each species (FLB1, FLB2 from L. plantarum; and FLC1, FLC2 from L. lactis) were subjected to downstream probiotic potential characterization. These isolates were compared in vitro for their hemolytic activity, acid and bile tolerance for growth kinetics, auto-aggregation, cell-surface hydrophobicity against xylene, and chloroform, tolerance to phenol, cell adhesion, and safety parameters (by intraperitoneal and intramuscular injections). None of the tested isolates showed any hemolytic activity indicating their potential safety. Moreover, these isolates were tolerant to 0.3% bile (75-82% survival), phenol stress (96-99% survival) with 100% viability at pH 3 over a period of 3 h. Antibiotic sensitivity test revealed that all the tested LAB isolates were resistant to vancomycin, gentamicin, streptomycin, and erythromycin and sensitive to Erythromycin, Chloramphenicol, Ampicillin, Trimethoprim, and Nitrofurantoin. Tetracycline resistance was found in L. plantarum (FLB1 and FLB2 isolates), whereas L. lactis were susceptible to it. Intramuscular and intraperitoneal challenges to fingerlings of rohu fish (5 ± 1gm weight) with FLB1 showed no pathogenicity and occurrence of disease symptoms in fishes over an observation period of 7 days. The results revealed FLB1 as a potential probiotic candidate for aquaculture application among other isolates.Keywords: aquaculture, Lactobacillus plantarum, Lactococcus lactis, probiotics
Procedia PDF Downloads 136115 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing
Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May
Abstract:
Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models
Procedia PDF Downloads 274114 SWOT Analysis on the Prospects of Carob Use in Human Nutrition: Crete, Greece
Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki
Abstract:
Research: Within the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region, with collaboration of Crete University and Hellenic Mediterranean University, a SWOT (strengths, weaknesses, opportunities, threats) survey was carried out, to evaluate the prospects of carob in human nutrition, in Crete. Results and conclusions: 1). Strengths: There exists a local production of carob for human consumption, based on international reports, and local-product reports. The data on products in the market (over 100 brands of carob food), indicates a sufficiency of carob materials offered in Crete. The variety of carob food products retailed in Crete indicates a strong demand-production-consumption trend. There is a stable number (core) of businesses that invest significantly (Creta carob, Cretan mills, etc.). The great majority of the relevant food stores (bakery, confectionary etc.) do offer carob products. The presence of carob products produced in Crete is strong on the internet (over 20 main professionally designed websites). The promotion of the carob food-products is based on their variety and on a few historical elements connected with the Cretan diet. 2). Weaknesses: The international prices for carob seed affect the sector; the seed had an international price of €20 per kg in 2021-22 and fell to €8 in 2022, causing losses to carob traders. The local producers do not sort the carobs they deliver for processing, causing 30-40% losses of the product in the industry. The occasional high price triggers the collection of degraded raw material; large losses may emerge due to the action of insects. There are many carob trees whose fruits are not collected, e.g. in Apokoronas, Chania. The nutritional and commercial value of the wild carob fruits is very low. Carob trees-production is recorded by Greek statistical services as "other cultures" in combination with prickly pear i.e., creating difficulties in retrieving data. The percentage of carob used for human nutrition, in contrast to animal feeding, is not known. The exact imports of carob are not closely monitored. We have no data on the recycling of carob by-products in Crete. 3). Opportunities: The development of a culture of respect for carob trade may improve professional relations in the sector. Monitoring carob market and connecting production with retailing-industry needs may allow better market-stability. Raw material evaluation procedures may be implemented to maintain carob value-chain. The state agricultural services may be further involved in carob-health protection. The education of farmers on carob cultivation/management, can improve the quality of the product. The selection of local productive varieties, may improve the sustainability of the culture. Connecting the consumption of carob with health-food products, may create added value in the sector. The presence and extent of wild carob threes in Crete, represents, potentially, a target for grafting. 4). Threats: The annual fluctuation of carob yield challenges the programming of local food industry activities. Carob is a forest species also - there is danger of wrong classification of crops as forest areas, where land ownership is not clear.Keywords: human nutrition, carob food, SWOT analysis, crete, greece
Procedia PDF Downloads 91113 Design Challenges for Severely Skewed Steel Bridges
Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju
Abstract:
There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint
Procedia PDF Downloads 193112 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control
Authors: Marco Frieslaar, Bing Chu, Eric Rogers
Abstract:
Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation
Procedia PDF Downloads 264111 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification
Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan
Abstract:
The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification
Procedia PDF Downloads 69110 Shared Versus Pooled Automated Vehicles: Exploring Behavioral Intentions Towards On-Demand Automated Vehicles
Authors: Samira Hamiditehrani
Abstract:
Automated vehicles (AVs) are emerging technologies that could potentially offer a wide range of opportunities and challenges for the transportation sector. The advent of AV technology has also resulted in new business models in shared mobility services where many ride hailing and car sharing companies are developing on-demand AVs including shared automated vehicles (SAVs) and pooled automated vehicles (Pooled AVs). SAVs and Pooled AVs could provide alternative shared mobility services which encourage sustainable transport systems, mitigate traffic congestion, and reduce automobile dependency. However, the success of on-demand AVs in addressing major transportation policy issues depends on whether and how the public adopts them as regular travel modes. To identify conditions under which individuals may adopt on-demand AVs, previous studies have applied human behavior and technology acceptance theories, where Theory of Planned Behavior (TPB) has been validated and is among the most tested in on-demand AV research. In this respect, this study has three objectives: (a) to propose and validate a theoretical model for behavioral intention to use SAVs and Pooled AVs by extending the original TPB model; (b) to identify the characteristics of early adopters of SAVs, who prefer to have a shorter and private ride, versus prospective users of Pooled AVs, who choose more affordable but longer and shared trips; and (c) to investigate Canadians’ intentions to adopt on-demand AVs for regular trips. Toward this end, this study uses data from an online survey (n = 3,622) of workers or adult students (18 to 75 years old) conducted in October and November 2021 for six major Canadian metropolitan areas: Toronto, Vancouver, Ottawa, Montreal, Calgary, and Hamilton. To accomplish the goals of this study, a base bivariate ordered probit model, in which both SAV and Pooled AV adoptions are estimated as ordered dependent variables, alongside a full structural equation modeling (SEM) system are estimated. The findings of this study indicate that affective motivations such as attitude towards AV technology, perceived privacy, and subjective norms, matter more than sociodemographic and travel behavior characteristic in adopting on-demand AVs. Also, the results of second objective provide evidence that although there are a few affective motivations, such as subjective norms and having ample knowledge, that are common between early adopters of SAVs and PooledAVs, many examined motivations differ among SAV and Pooled AV adoption factors. In other words, motivations influencing intention to use on-demand AVs differ among the service types. Likewise, depending on the types of on-demand AVs, the sociodemographic characteristics of early adopters differ significantly. In general, findings paint a complex picture with respect to the application of constructs from common technology adoption models to the study of on-demand AVs. Findings from the final objective suggest that policymakers, planners, the vehicle and technology industries, and the public at large should moderate their expectations that on-demand AVs may suddenly transform the entire transportation sector. Instead, this study suggests that SAVs and Pooled AVs (when they entire the Canadian market) are likely to be adopted as supplementary mobility tools rather than substitutions for current travel modesKeywords: automated vehicles, Canadian perception, theory of planned behavior, on-demand AVs
Procedia PDF Downloads 72109 Geotechnical Challenges for the Use of Sand-sludge Mixtures in Covers for the Rehabilitation of Acid-Generating Mine Sites
Authors: Mamert Mbonimpa, Ousseynou Kanteye, Élysée Tshibangu Ngabu, Rachid Amrou, Abdelkabir Maqsoud, Tikou Belem
Abstract:
The management of mine wastes (waste rocks and tailings) containing sulphide minerals such as pyrite and pyrrhotite represents the main environmental challenge for the mining industry. Indeed, acid mine drainage (AMD) can be generated when these wastes are exposed to water and air. AMD is characterized by low pH and high concentrations of heavy metals, which are toxic to plants, animals, and humans. It affects the quality of the ecosystem through water and soil pollution. Different techniques involving soil materials can be used to control AMD generation, including impermeable covers (compacted clays) and oxygen barriers. The latter group includes covers with capillary barrier effects (CCBE), a multilayered cover that include the moisture retention layer playing the role of an oxygen barrier. Once AMD is produced at a mine site, it must be treated so that the final effluent at the mine site complies with regulations and can be discharged into the environment. Active neutralization with lime is one of the treatment methods used. This treatment produces sludge that is usually stored in sedimentation ponds. Other sludge management alternatives have been examined in recent years, including sludge co-disposal with tailings or waste rocks, disposal in underground mine excavations, and storage in technical landfill sites. Considering the ability of AMD neutralization sludge to maintain an alkaline to neutral pH for decades or even centuries, due to the excess alkalinity induced by residual lime within the sludge, valorization of sludge in specific applications could be an interesting management option. If done efficiently, the reuse of sludge could free up storage ponds and thus reduce the environmental impact. It should be noted that mixtures of sludge and soils could potentially constitute usable materials in CCBE for the rehabilitation of acid-generating mine sites, while sludge alone is not suitable for this purpose. The high sludge water content (up to 300%), even after sedimentation, can, however, constitute a geotechnical challenge. Adding lime to the mixtures can reduce the water content and improve the geotechnical properties. The objective of this paper is to investigate the impact of the sludge content (30, 40 and 50%) in sand-sludge mixtures (SSM) on their hydrogeotechnical properties (compaction, shrinkage behaviour, saturated hydraulic conductivity, and water retention curve). The impact of lime addition (dosages from 2% to 6%) on the moisture content, dry density after compaction and saturated hydraulic conductivity of SSM was also investigated. Results showed that sludge adding to sand significantly improves the saturated hydraulic conductivity and water retention capacity, but the shrinkage increased with sludge content. The dry density after compaction of lime-treated SSM increases with the lime dosage but remains lower than the optimal dry density of the untreated mixtures. The saturated hydraulic conductivity of lime-treated SSM after 24 hours of cure decreases by 3 orders of magnitude. Considering the hydrogeotechnical properties obtained with these mixtures, it would be possible to design CCBE whose moisture retention layer is made of SSM. Physical laboratory models confirmed the performance of such CCBE.Keywords: mine waste, AMD neutralization sludge, sand-sludge mixture, hydrogeotechnical properties, mine site reclamation, CCBE
Procedia PDF Downloads 53108 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials
Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries
Abstract:
Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring
Procedia PDF Downloads 106107 Two Houses in the Arabian Desert: Assessing the Built Work of RCR Architects in the UAE
Authors: Igor Peraza Curiel, Suzanne Strum
Abstract:
Today, when many foreign architects are receiving commissions in the United Arab Emirates, it is essential to analyze how their designs are influenced by the region's culture, environment, and building traditions. This study examines the approach to siting, geometry, construction methods, and material choices in two private homes for a family in Dubai, a project being constructed on adjacent sites by the acclaimed Spanish team of RCR Architects. Their third project in Dubai, the houses mark a turning point in their design approach to the desert. The Pritzker Prize-winning architects of RCR gained renown for building works deeply responsive to the history, landscape, and customs of their hometown in a volcanic area of the Catalonia region of Spain. Key formative projects and their entry to practice in UAE will be analyzed according to the concepts of place identity, the poetics of construction, and material imagination. The poetics of construction, a theoretical position with a long practical tradition, was revived by the British critic Kenneth Frampton. The idea of architecture as a constructional craft is related to the concepts of material imagination and place identity--phenomenological concerns with the creative engagement with local matter and topography that are at the very essence of RCR's way of designing, detailing, and making. Our study situates RCR within the challenges of building in the region, where western forms and means have largely replaced the ingenious responsiveness of indigenous architecture to the climate and material scarcity. The dwellings, iterations of the same steel and concrete vaulting system, highlight the conceptual framework of RCR's design approach to offer a study in contemporary critical regionalism. The Kama House evokes Bedouin tents, while the Alwah House takes the form of desert dunes in response to the temporality of the winds. Metal mesh screens designed to capture the shifting sands will complete the forms. The original research draws on interviews with the architects and unique documentation provided by them and collected by the authors during on-site visits. By examining the two houses in-depth, this paper foregrounds a series of timely questions: 1) What is the impact of the local climatic, cultural, and material conditions on their project in the UAE? 2) How does this work further their experiences in the region? 3) How has RCR adapted their construction techniques as their work expands beyond familiar settings? The investigation seeks to understand how the design methodology developed for more than 20 years and enmeshed in the regional milieu of their hometown can transform as the architects encounter unique characteristics and values in the Middle East. By focusing on the contemporary interpretation of Arabic geometry and elements, the houses reveal the role of geometry, tectonics, and material specificity in the realization from conceptual sketches to built form. In emphasizing the importance of regional responsiveness, the dynamics of international construction practice, and detailing this study highlights essential issues for professionals and students looking to practice in an increasingly global market.Keywords: material imagination, regional responsiveness, place identity, poetics of construction
Procedia PDF Downloads 145106 Improving the Utility of Social Media in Pharmacovigilance: A Mixed Methods Study
Authors: Amber Dhoot, Tarush Gupta, Andrea Gurr, William Jenkins, Sandro Pietrunti, Alexis Tang
Abstract:
Background: The COVID-19 pandemic has driven pharmacovigilance towards a new paradigm. Nowadays, more people than ever before are recognising and reporting adverse reactions from medications, treatments, and vaccines. In the modern era, with over 3.8 billion users, social media has become the most accessible medium for people to voice their opinions and so provides an opportunity to engage with more patient-centric and accessible pharmacovigilance. However, the pharmaceutical industry has been slow to incorporate social media into its modern pharmacovigilance strategy. This project aims to make social media a more effective tool in pharmacovigilance, and so reduce drug costs, improve drug safety and improve patient outcomes. This will be achieved by firstly uncovering and categorising the barriers facing the widespread adoption of social media in pharmacovigilance. Following this, the potential opportunities of social media will be explored. We will then propose realistic, practical recommendations to make social media a more effective tool for pharmacovigilance. Methodology: A comprehensive systematic literature review was conducted to produce a categorised summary of these barriers. This was followed by conducting 11 semi-structured interviews with pharmacovigilance experts to confirm the literature review findings whilst also exploring the unpublished and real-life challenges faced by those in the pharmaceutical industry. Finally, a survey of the general public (n = 112) ascertained public knowledge, perception, and opinion regarding the use of their social media data for pharmacovigilance purposes. This project stands out by offering perspectives from the public and pharmaceutical industry that fill the research gaps identified in the literature review. Results: Our results gave rise to several key analysis points. Firstly, inadequacies of current Natural Language Processing algorithms hinder effective pharmacovigilance data extraction from social media, and where data extraction is possible, there are significant questions over its quality. Social media also contains a variety of biases towards common drugs, mild adverse drug reactions, and the younger generation. Additionally, outdated regulations for social media pharmacovigilance do not align with new, modern General Data Protection Regulations (GDPR), creating ethical ambiguity about data privacy and level of access. This leads to an underlying mindset of avoidance within the pharmaceutical industry, as firms are disincentivised by the legal, financial, and reputational risks associated with breaking ambiguous regulations. Conclusion: Our project uncovered several barriers that prevent effective pharmacovigilance on social media. As such, social media should be used to complement traditional sources of pharmacovigilance rather than as a sole source of pharmacovigilance data. However, this project adds further value by proposing five practical recommendations that improve the effectiveness of social media pharmacovigilance. These include: prioritising health-orientated social media; improving technical capabilities through investment and strategic partnerships; setting clear regulatory guidelines using multi-stakeholder processes; creating an adverse drug reaction reporting interface inbuilt into social media platforms; and, finally, developing educational campaigns to raise awareness of the use of social media in pharmacovigilance. Implementation of these recommendations would speed up the efficient, ethical, and systematic adoption of social media in pharmacovigilance.Keywords: adverse drug reaction, drug safety, pharmacovigilance, social media
Procedia PDF Downloads 81105 Religion and Risk: Unmasking Noah's Narratives in the Pacific Islands
Authors: A. Kolendo
Abstract:
Pacific Islands are one of the most vulnerable areas to climate change. Sea level rise and accelerating storm surge continuously threaten the communities' habitats on low-lying atolls. With scientific predictions of encroaching tides on their land, the Islanders have been informed about the need for future relocation planning. However, some communities oppose such retreat strategies through the reasoning that comprehends current climatic changes through the lenses of the biblical ark of Noah. This parable states God's promise never to flood the Earth again and never deprive people of their land and habitats. Several interpretations of this parable emerged in Oceania, prompting either climate action or denial. Resistance to relocation planning expressed through Christian thoughts led religion to be perceived as a barrier to dialogue between the Islanders and scientists. Since climate change concerns natural processes, the attitudes towards environmental stewardship prompt the communities' responses to it; some Christian teachings indicate humanity's responsibility over the environment, whereas others ascertain the people's dominion, which prompts resistance and sometimes denial. With church denominations and their various environmental standpoints, competing responses to climate change emerged in Oceania. Before miss-ionization, traditional knowledge had guided the environmental sphere, influencing current Christian teachings. Each atoll characterizes a distinctive manner of traditional knowledge; however, the unique relationship with nature unites all islands. The interconnectedness between the land, sea and people indicates the integrity between the communities and their environments. Such a factor influences the comprehension of Noah's story in the context of climate change that threatens their habitats. Pacific Islanders experience climate change through the slow disappearance of their homelands. However, the Western world perceives it as a global issue that will affect the population in the long-term perspective. Therefore, the Islanders seek to comprehend this global phenomenon in a local context that reads climate change as the Great Deluge. Accordingly, the safety measures that this parable promotes compensate for the danger of climate change. The rainbow covenant gives hope in God's promise never to flood the Earth again. At the same time, Noah's survival relates to the Islanders' current situation. Since these communities have the lowest carbon emissions rate, their contribution to anthropogenic climate change is scarce. Therefore, the lack of environmental sin would contextualize them as contemporary Noah with the ultimate survival of sea level rise. This study aims to defy religion constituting a barrier through secondary data analysis from a risk compensation perspective. Instead, religion is portrayed as a source of knowledge that enables comprehension of the communities' situation. By demonstrating that the Pacific Islanders utilize Noah's story as a vessel for coping with the danger of climate change, the study argues that religion provides safety measures that compensate for the future projections of land's disappearance. The purpose is to build a bridge between religious communities and scientific bodies and ultimately bring an understanding of two diverse perspectives. By addressing the practical challenges of interdisciplinary research with faith-based systems, this study uplifts the voices of communities and portrays their experiences expressed through Christian thoughts.Keywords: Christianity, climate change, existential threat, Pacific Islands, story of Noah
Procedia PDF Downloads 95104 Sustainable and Responsible Mining - Lundin Mining’s Subsidiary in Portugal, Sociedade Mineira de Neves-Corvo Case
Authors: Jose Daniel Braga Alves, Joaquim Gois, Alexandre Leite
Abstract:
This abstract presents the responsible and sustainable mining case study of a Portuguese mine operation, highlighting how mine exploitation can sustainably exist in balance with the environment, aligned with all stakeholders. The mining operation is remotely located in a United Nations (UN) biodiversity reserve, away from major industrial centers or logistical ports, and presents an interesting investigation to assess the balanced mine operation in alignment with all key stakeholders, which presents unique opportunities as well as challenges. Based on the sustainable mining framework, it is intended to detail examples of best practices from Sociedade Mineira de Neves-Corvo (SOMINCOR), demonstrating social acceptance by the local community, health, and safety at work, reduction of environmental impacts and management of mining waste, which directly influence the acceptance and recognition of a sustainable operation. The case study aims to present the SOMINCOR approach to sustainable mining, focusing on social responsibility, considering materials provided by Lundin Mining Corporation (LMC) and SOMINCOR and the socially responsible approach of the mining operations., referencing related international guidelines, UN Sustainable Development Goals. The researchers reviewed LMC's annual Sustainability Reports (2019, 2020 and 2021) and updated information regarding material topics of the most significant interest to internal and external stakeholders. These material topics formed the basis of the corporation-wide sustainability strategy. LMC's Responsible Mining Policy (RMP) was reviewed, focusing on the commitment that guides the approach to responsible operation and management of the Company's business. Social performance, compliance, environmental management, governance, human rights, and economic contribution are principles of the RMP. The Human Rights Risk Impact Assessment (HRRIA), based on frameworks including UN Guiding Principles (UNGP), Voluntary Principles on Security and Human Rights, and a community engagement program implemented (SLO index), was part of this research. The program consists of ongoing surveys and perceptions studies using behavioural science insights, data from which was not available within the timeframe of completing this research. LMC stakeholder engagement standards and grievance mechanisms were also reviewed. Stakeholder engagement and the community's perception are key to this operation to ensure social license to operate (SLO). Preliminary surveys with local communities provided input data for the local development strategy. After the implementation of several initiatives, subsequent surveys were performed to assess acceptance and trust from the local communities and changes to the SLO index. SOMINCOR's operation contributes to 12 out of 17 sustainable development goals. From the assessed and available data, local communities and social engagement are priorities to SOMINCOR. Experience to date shows that the continual engagement with local communities and the grievance mechanisms in place are respected and followed for all concerns presented by any stakeholder. It can be concluded that this underground mine in Portugal complies with applicable regulations and goes beyond them with regard to sustainable development and engagement with key stakeholders.Keywords: sustainable mining, development goals, portuguese mining, zinc copper
Procedia PDF Downloads 76103 Partnering With Faith-Based Entities to Improve Mental Health Awareness and Decrease Stigma in African American Communities
Authors: Bryana Woodard, Monica Mitchell, Kasey Harry, Ebony Washington, Megan Harris, Marcia Boyd, Regina Lynch, Daphene Baines, Surbi Bankar
Abstract:
Introduction: African Americans experience mental health illnesses (i.e., depression, anxiety, etc.) at higher rates than their white counterparts. Despite this, they utilize mental health resources less and have lower mental health literacy, perhaps due to cultural barriers- including but not limited to mistrust. Research acknowledges African Americans’ close ties to community networks, identifying these linkages as key to establishing comfort and trust. Similarly, the church has historically been a space that creates unity and community among African Americans. Studies show that longstanding academic-community partnerships with organizations, such as churches and faith-based entities, have the capability to effectively address health and mental health barriers and needs in African Americans. The importance of implementing faith-based approaches is supported in the literature, however few empirical studies exist. This project describes the First Ladies for Health and Cincinnati Children's Hospital Medical Center (CCHMC) Partnership (FLFH-CCHMC Partnership) and the implementation and assessment of an annual Mental Health Symposium, the overall aim of which was to increase mental health awareness and decrease stigma in African American communities. Methods: The specific goals of the FLFH Mental Health Symposium were to (1) Collaborate with trusted partners to build trust with community participants; (2) Increase mental health literacy and decrease mental health stigma; (3) Understand the barriers to improving mental health and improving trust; (4) Assess the short-term outcomes two months following the symposium. Data were collected through post-event and follow-up surveys using a mixed methods approach. Results: More than 100 participants attended each year with over 350 total participants over three years. 98.7% of participants were African American, 86.67% female, 11.6% male, and 11.6% LGBTQ+/non-binary; 10.5% of participants were teens, with the remainder aged 20 to 80 plus. The event was successful in achieving its goals: (1a) Eleven different speakers from 8 community and church organizations presented; (1b) 93% of participants rated the overall symposium as very good or excellent (2a) Mental health literacy significantly increased each year with over 90% of participants reporting improvement in their “understanding” and “awareness of mental health (2b) Participants 'personal stigma surrounding mental health illness decreased each year with 92.3% of participants reporting changes in their “willingness to talk about and share” mental health challenges; (3) Barriers to mental health care were identified and included social stigma, lack of trust, and the cost of care. Data were used to develop priorities and an action plan for the FLFH-CCHMC Mental Health Partnership; (4) Follow-up data showed that participants sustained benefits of the FLFH Symposium and took actionable steps (e.g., meditation, referrals, etc.). Additional quantitative and qualitative data will be shared. Conclusions: Lower rates of mental health literacy and higher rates of stigma among participants in this initiative demonstrate the importance of mental health providers building trust and partnerships in communities. Working with faith-based entities provides an opportunity to mitigate and address mental health equity in African American communities.Keywords: community psychology, faith-based, african-american, culturally competent care, mental health equity
Procedia PDF Downloads 34102 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 17101 Unique Interprofessional Mental Health Education Model: A Pre/Post Survey
Authors: Michele L. Tilstra, Tiffany J. Peets
Abstract:
Interprofessional collaboration in behavioral healthcare education is increasingly recognized for its value in training students to address diverse client needs. While interprofessional education (IPE) is well-documented in occupational therapy education to address physical health, limited research exists on collaboration with counselors to address mental health concerns and the psychosocial needs of individuals receiving care. Counseling education literature primarily examines the collaboration of counseling students with psychiatrists, psychologists, social workers, and marriage and family therapists. This pretest/posttest survey research study explored changes in attitudes toward interprofessional teams among 56 Master of Occupational Therapy (MOT) (n = 42) and Counseling and Human Development (CHD) (n = 14) students participating in the Counselors and Occupational Therapists Professionally Engaged in the Community (COPE) program. The COPE program was designed to strengthen the behavioral health workforce in high-need and high-demand areas. Students accepted into the COPE program were divided into small MOT/CHD groups to complete multiple interprofessional multicultural learning modules using videos, case studies, and online discussion board posts. The online modules encouraged reflection on various behavioral healthcare roles, benefits of team-based care, cultural humility, current mental health challenges, personal biases, power imbalances, and advocacy for underserved populations. Using the Student Perceptions of Interprofessional Clinical Education- Revision 2 (SPICE-R2) scale, students completed pretest and posttest surveys using a 5-point Likert scale (Strongly Agree = 5 to Strongly Disagree = 1) to evaluate their attitudes toward interprofessional teamwork and collaboration. The SPICE-R2 measured three different factors: interprofessional teamwork and team-based practice (Team), roles/responsibilities for collaborative practice (Roles), and patient outcomes from collaborative practice (Outcomes). The mean total scores for all students improved from 4.25 (pretest) to 4.43 (posttest), Team from 4.66 to 4.58, Roles from 3.88 to 4.30, and Outcomes from 4.08 to 4.36. A paired t-test analysis for the total mean scores resulted in a t-statistic of 2.54, which exceeded both one-tail and two-tail critical values, indicating statistical significance (p = .001). When the factors of the SPICE-R2 were analyzed separately, only the Roles (t Stat=4.08, p =.0001) and Outcomes (t Stat=3.13, p = .002) were statistically significant. The item ‘I understand the roles of other health professionals’ showed the most improvement from a mean score for all students of 3.76 (pretest) to 4.46 (posttest). The significant improvement in students' attitudes toward interprofessional teams suggests that the unique integration of OT and CHD students in the COPE program effectively develops a better understanding of the collaborative roles necessary for holistic client care. These results support the importance of IPE through structured, engaging interprofessional experiences. These experiences are essential for enhancing students' readiness for collaborative practice and align with accreditation standards requiring interprofessional education in OT and CHD programs to prepare practitioners for team-based care. The findings contribute to the growing body of evidence supporting the integration of IPE in behavioral healthcare curricula to improve holistic client care and encourage students to engage in collaborative practice across healthcare settings.Keywords: behavioral healthcare, counseling education, interprofessional education, mental health education, occupational therapy education
Procedia PDF Downloads 38100 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers
Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison
Abstract:
Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing
Procedia PDF Downloads 12299 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy
Authors: Ozgul Kartal, Wade Tillett, Lyn D. English
Abstract:
Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education
Procedia PDF Downloads 6598 Medical Decision-Making in Advanced Dementia from the Family Caregiver Perspective: A Qualitative Study
Authors: Elzbieta Sikorska-Simmons
Abstract:
Advanced dementia is a progressive terminal brain disease that is accompanied by a syndrome of difficult to manage symptoms and complications that eventually lead to death. The management of advanced dementia poses major challenges to family caregivers who act as patient health care proxies in making medical treatment decisions. Little is known, however, about how they manage advanced dementia and how their treatment choices influence the quality of patient life. This prospective qualitative study examines the key medical treatment decisions that family caregivers make while managing advanced dementia. The term ‘family caregiver’ refers to a relative or a friend who is primarily responsible for managing patient’s medical care needs and legally authorized to give informed consent for medical treatments. Medical decision-making implies a process of choosing between treatment options in response to patient’s medical care needs (e.g., worsening comorbid conditions, pain, infections, acute medical events). Family caregivers engage in this process when they actively seek treatments or follow recommendations by healthcare professionals. Better understanding of medical decision-making from the family caregiver perspective is needed to design interventions that maximize the quality of patient life and limit inappropriate treatments. Data were collected in three waves of semi-structured interviews with 20 family caregivers for patients with advanced dementia. A purposive sample of 20 family caregivers was recruited from a senior care center in Central Florida. The qualitative personal interviews were conducted by the author in 4-5 months intervals. The ethical approval for the study was obtained prior to the data collection. Advanced dementia was operationalized as stage five or higher on the Global Deterioration Scale (GDS) (i.e., starting with the GDS score of five, patients are no longer able survive without assistance due to major cognitive and functional impairments). Information about patients’ GDS scores was obtained from the Center’s Medical Director, who had an in-depth knowledge of each patient’s health and medical treatment history. All interviews were audiotaped and transcribed verbatim. The qualitative data analysis was conducted to answer the following research questions: 1) what treatment decisions do family caregivers make while managing the symptoms of advanced dementia and 2) how do these treatment decisions influence the quality of patient life? To validate the results, the author asked each participating family caregiver if the summarized findings accurately captured his/her experiences. The identified medical decisions ranged from seeking specialist medical care to end-of-life care. The most common decisions were related to arranging medical appointments, medication management, seeking treatments for pain and other symptoms, nursing home placement, and accessing community-based healthcare services. The most challenging and consequential decisions were related to the management of acute complications, hospitalizations, and discontinuation of treatments. Decisions that had the greatest impact on the quality of patient life and survival were triggered by traumatic falls, worsening psychiatric symptoms, and aspiration pneumonia. The study findings have important implications for geriatric nurses in the context of patient/caregiver-centered dementia care. Innovative nursing approaches are needed to support family caregivers to effectively manage medical care needs of patients with advanced dementia.Keywords: advanced dementia, family caregiver, medical decision-making, symptom management
Procedia PDF Downloads 121