Search results for: link data
19208 Invalidation of the Start of Lunar Calendars Based on Sighting of Crescent: A Survey of 101 Years of Data between 1938 and 2038
Authors: Rafik Ouared
Abstract:
The purpose of this paper is to invalidate decisions made by the Islamic conference led at Istanbul in 2016, which had defined two basic criteria to determine the start of the lunar month: (1)they are all based on the sighting of the crescent, be it observed or computed with modern methods, and (2) they've strongly recommended the adoption of the principle of 'unification of sighting', by which any occurrence of sighting anywhere would be applicable everywhere. To demonstrate the invalidation of those statements, a survey of 101 years of data, from 1938 to 2038, have been analyzed to compare the probability density function (PDF) of time difference between different types of fajr and new moon. Two groups of fajr have been considered: the 'natural fajr', which is the very first fajr following new moon, and the 'biased fajr', which is defined by human being inclusively of all chosen definitions. The parametric and non-parametric statistical comparisons between the different groups have shown the all the biased PDFs are significantly different from the unbiased (natural) PDF with probability value (p-value) less than 0.001. The significance level was fixed to 0.05. Conclusion: the on-going reference to sighting of crescent is inducing an significant bias in defining lunar calendar. Therefore, 'natural' calendar would be more applicable requiring a more contextualized revision of issue in fiqh.Keywords: biased fajr, lunar calendar, natural fajr, probability density function, sighting of crescent, time difference between fajr and new moon
Procedia PDF Downloads 21419207 Machine Learning Based Smart Beehive Monitoring System Without Internet
Authors: Esra Ece Var
Abstract:
Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture
Procedia PDF Downloads 24619206 Japanese Language Learning Strategies : Case study student in Japanese subject part, Faculty of Humanities and Social Sciences, Suan Sunandha Rajabhat University
Authors: Pailin Klinkesorn
Abstract:
The research aimed to study the use of learning strategies for Japanese language among college students with different learning achievements who study Japanese as a foreign language in the Higher Education’s level. The survey was conducted by using a questionnaire adapted from Strategy Inventory for language Learning or SILL (Oxford, 1990), consisting of two parts: questions about personal data and questions about the use of learning strategies for Japanese language. The samples of college students in the Japanese language program were purposively selected from Suansunandha Rajabhat University. The data from the questionnaire was statistically analyzed by using mean scores and one-way ANOVA. The results showed that Social Strategies was used by the greatest number of college students, whereas Memory Strategies was used by the least number of students. The students in different levels used various strategies, including Memory Strategies, Cognitive Strategies, Metacognitive Strategies and Social Strategies, at the significance level of 0.05. In addition, the students with different learning achievements also used different strategies at the significance level of 0.05. Further studies can explore learning strategies of other groups of Japanese learners, such as university students or company employees. Moreover, learning strategies for language skills, including listening, speaking, reading and writing, can be analyzed for better understanding of learners’ characteristics and for teaching applications.Keywords: language learning strategies, achievement, Japanese, college students
Procedia PDF Downloads 39619205 Analyzing Students' Writing in an English Code-Mixing Context in Nepali: An Ecological and Systematic Functional Approach
Authors: Binod Duwadi
Abstract:
This article examines the language and literacy practices of English Code-mixing in Nepalese Classroom. Situating the study within an ecological framework, a systematic functional linguistic (SFL) approach was used to analyze students writing in two Neplease schools. Data collection included interviews with teachers, classroom observations, instructional materials, and focal students’ writing samples. Data analyses revealed vastly different language ecologies between the schools owing to sharp socioeconomic stratification, the structural organization of schools, and the pervasiveness of standard language ideology, with stigmatizes English code mixing (ECM) and privileges Standard English in schools. Functional analysis of students’ writing showed that the nature of the writing tasks at the schools created different affordances for exploiting lexicogrammatically choices for meaning making-enhancing them in the case of one school but severely restricting them in the case of another- perpetuating the academic disadvantage for code mixing speakers. Recommendations for structural and attitudinal changes through teacher training and implementation of approaches that engage students’ bidialectal competence for learning are made as important first steps towards addressing educational inequities in Nepalese schools.Keywords: code-mixing, ecological perspective, systematic functional approach, language and identity
Procedia PDF Downloads 12719204 Preferred Leadership Behaviour of Coaches by Athletes in Individual and Team Sports in Nigeria
Authors: Ali Isa Danlami
Abstract:
This study examined the coaching leadership behaviours preferred by athletes in individual and team sports in Nigeria that may lead to increased satisfaction and performance. Six leadership behaviours were identified; these are democratic, training and instruction, situational consideration, autocratic, social support and positive feedback. The six leadership behaviours relate to the preference of coaches by athletes that leads to increased performance were the focus of this study. The population of this study is comprised of male and female athletes of states sports councils in Nigeria. An ex-post facto research design was employed for this study. Stratified and purposive sampling techniques were used to select the sampled states according to the six geo-political zones of the country. Two states (North Central (FCT, Nasarawa), North East (Bauchi, Gombe), North West (Kaduna, Sokoto), South East (Anambra, Imo), South west (Ogun, Ondo), South South (Delta, and Rivers) were selected from each stratum. A modified questionnaire was used to collect data for this study, and the data collected were subjected to a reliability test using the Statistical Package for Social Science (SPSS) to analyse the data. A two sample Z-test procedure was used to test the significant differences because of the large number of subjects involved in the different groups. All hypotheses were tested at 0.05 alpha value. The findings of the study concluded that: Athletes in team and individual sports generally preferred coaches who were more disposed towards training and instructions, social support, positive feedback, situational consideration and democratic behaviours. It was also found that athletes in team sports have higher preference for coaches with democratic behaviour. The result revealed that athletes in team and individual sports did not have a preference for coaches disposed towards autocratic behaviour. Based on this, the following recommendations were made: Democratic behaviour by coaches should be encouraged in team and individual sports. Coaches should not be engaged in autocratic behaviours when coaching. These behaviours should be adopted by coaches to increase athletes’ satisfaction and enhancement in performance.Keywords: leadership behaviour, preference, athletes, individual, team, coaches’
Procedia PDF Downloads 13719203 Capacity Loss at Midblock Sections of Urban Arterials Due to Pedestrian Crossings
Authors: Ashish Dhamaniya, Satish Chandra
Abstract:
Pedestrian crossings at grade in India are very common and pedestrian cross the carriageway at undesignated locations where they found the path to access the residential and commercial areas. Present paper aims to determine capacity loss on 4-lane urban arterials due to such crossings. Base capacity which is defined as the capacity without any influencing factor is determined on 4-lane roads by collecting speed-flow data in the field. It is observed that base capacity is varying from 1636 pcu/hr/lane to 2043 pcu/hr/lane which is attributed to the different operating conditions at different sections. The variation in base capacity is related with the operating speed on the road sections. Free flow speed of standard car is measured in the field and 85th percentile of this speed is reported as operating speed. Capacity of the 4-lane road sections with different pedestrian cross-flow is also determined and compared with the capacity of base section. The difference in capacity values is reported as capacity loss due to the average number of pedestrian crossings in one hour. It has been observed that capacity of 4-lane road section reduces from 18 to 30 percent with pedestrian cross-flow of 800 to 1550 peds/hr. A model is proposed between capacity loss and pedestrian cross-flow from the observed data.Keywords: capacity, free flow speed, pedestrian, urban arterial, transport
Procedia PDF Downloads 45219202 On Panel Data Analysis of Factors on Economic Advances in Some African Countries
Authors: Ayoola Femi J., Kayode Balogun
Abstract:
In some African Countries, increase in Gross Domestic Products (GDP) has not translated to real development as expected by common-man in his household. For decades, a lot of contests on economic growth and development has been a nagging issues. The focus of this study is to analysing the effects of economic determinants/factors on economic advances in some African Countries by employing panel data analysis. The yearly (1990-2013) data were obtained from the world economic outlook database of the International Monetary Fund (IMF), for probing the effects of these variables on growth rate in some selected African countries which include: Nigeria, Algeria, Angola, Benin, Botswana, Burundi, Cape-Verde, Cameroun, Central African Republic, Chad, Republic Of Congo, Cote di’ Voire, Egypt, Equatorial-Guinea, Ethiopia, Gabon, Ghana, Guinea Bissau, Kenya, Lesotho, Madagascar, Mali, Mauritius, Morocco, Mozambique, Niger, Rwanda, Senegal, Seychelles, Sierra Leone, South Africa, Sudan, Swaziland, Tanzania, Togo, Tunisia, and Uganda. The effects of 6 macroeconomic variables on GDP were critically examined. We used 37 Countries GDP as our dependent variable and 6 independent variables used in this study include: Total Investment (totinv), Inflation (inf), Population (popl), current account balance (cab), volume of imports of goods and services (vimgs), and volume of exports of goods and services (vexgs). The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of our analysis shows that total investment, population and volume of exports of goods and services strongly affect the economic growth. We noticed that population of these selected countries positively affect the GDP while total investment and volume of exports negatively affect GDP. On the contrary, inflation, current account balance and volume of imports of goods and services’ contribution to the GDP are insignificant. The results of this study would be useful for individual African governments for developing a suitable and appropriate economic policies and strategies. It will also help investors to understand the economic nature and viability of Africa as a continent as well as its individual countries.Keywords: African countries, economic growth and development, gross domestic products, static panel data models
Procedia PDF Downloads 47719201 Forms of Promoting and Disseminating Traditional Local Wisdom to Create Occupations among the Elderly in Nonmueng Community, Muang Sub-District, Baan Doong District, Udonthani Province
Authors: Pennapa Palapin
Abstract:
This research sought to study the traditional local wisdom and study the promotion and dissemination of traditional local wisdom in order to find the forms of promotion and dissemination of traditional local wisdom to create occupations among the elderly at Nonmueng Community, Muang Sub-District, Baan Dung District, UdonThani Province. The criterion used to select the research sample group was, being a person having a role involved in the promotion and dissemination of traditional local wisdom to create occupations among the elderly at Nonmueng Community, Muang Sub-District, Baan Dung District, UdonThani Province; being an experienced person whom the residents of Nonmueng Community find trustworthy; and having lived in Nonmueng Community for a long time so as to be able to see the development and change that occurs. A total of 16 people were selected. Data was gathered as a qualitative study, through semi-structured in-depth interviews. The collected data was then summarised and discussed according to the research objectives. Finally, the data was presented in a narrative format. Results found that the identifying traditional local wisdom of the community (which grew from the residents’ experience and beneficial usage in daily life, passed down from generation to generation) was the weaving of cloth and basketry. As for the manner of promotion and dissemination of traditional local wisdom, the skills were passed down through teaching by example to family members, relatives and others in the community. This was done by the elders or elderly members of the community. For the promotion and dissemination of traditional local wisdom to create occupations among the elderly, the traditional local wisdom should be supported in every way through participation of the community members. For example, establish a museum of traditional local wisdom for the collection of traditional local wisdom in various fields, both in the past and at present. This would be a source of pride for the community, in order to make traditional local wisdom widely known and to create income for the community’s elderly. Additional ways include exhibitions of products made by traditional local wisdom, finding both domestic and international markets, as well as building both domestic and international networks aiming to find opportunities to market products made by traditional local wisdom.Keywords: traditional local wisdom, occupation, elderly, community
Procedia PDF Downloads 30719200 Enhancing Oral Pre-Exposure Prophylaxis Uptake and Continuation among Adolescent Girls and Young Women in Busia District East Central Uganda
Authors: Jameson Mirimu, Edward Mawejje, Ibra Twinomujuni
Abstract:
Introduction: Adolescent girls and young women (AGYW) are a vulnerable category whose risk of acquiring HIV is 20 times compared to the general population accounting for 25% of the new infections. Despite proven scientific evidence of preventing HIV acquisition, Oral Pre-Exposure Prophylaxis (PreP) is less used as one of the biomedical interventions among the AGYW. By 2020, only 31000-32000 of the targeted 90,000 persons in Uganda enrolled on Oral PreP LPHS-EC project employed a combination of Expanded Peer Outreach Approach (EPOA) and Effective client follow-up to increase PreP initiation (PrEP_NEW) and continuation for more than three months (PrEP_CT). Method: Quantitatively, data from National Key population Combination tracker retrospectively analyzed by M&E, focused group discussion with AGYWs and Health care workers to identify barriers. Barriers found; hesitancy of AGYW, misconceptions about Oral PrEP, inadequate knowledge and skills in handling adolescent and Data quality issues. To address the mentioned barriers, youth friendly corners initiated in study sites, identified PrEP Champions among the AGYW, oral PrEP dialogues, group Antenatal counselling, CQI Projects initiated, weekly perfomance meetings to track performance. Results: Routine program data review PrEP_NEW and PrEP_CT increased from 5% (4/80) and 4% (2/54), respectively, in July 2022 to 90% (72/80) and 79% (43/54) respectively for PrEP_NEW and PrEP_CT at the end of March 2023. Lessons Learnt: Demystifying misconception about oral Prep through provision of adequate information by involving health care workers through skills enhancement, CQI projects are critical intervention. Conclusion: With improved safe spaces, skills enhancement of health workers, stakeholders’ engagement through Oral Prep dialogues is critical in improving PreP uptake and continuity among the AGYWS.Keywords: prep, uptake, continuation, AGYW
Procedia PDF Downloads 7619199 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces
Procedia PDF Downloads 39019198 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 9719197 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 8219196 Analysis of the Relationship between the Old Days Hospitalized with Economic Lost Top Ten Age Productive Disease in Hospital Inpatient Inche Abdul Moeis Samarinda, Indonesia
Authors: Tri Murti Tugiman, Awalyya Fasha
Abstract:
This research aims to analyze the magnitude of the economic losses incurred as a result of a person suffering from a particular disease of the ten highest in the productive age diseases in Hospitals Inche Abdul Moeis Samarinda. This research was a descriptive survey research and a secondary data analysis. For the analysis of economic losses populations used are all in patients who suffer from the 10 highest diseases in the productive age in hospitals IA Moeis Samarinda in 2011. Sampling was performed by using a stratified random sampling with samples of 77 people. Research results indicate that the direct cost community incurred to obtain medical services in hospitals IA Moeis is IDR 74437520. The amount of indirect costs incurred during service in a community hospital is IDR 10562000. The amount lost due to sickness fee is IDR 5377800. The amount of economic lost people to obtain medical services in hospitals IA Moeis is IDR 90377320. The number of days of hospitalization was as much as 171 respondents throughout the day. This study suggests the economic loss could be prevented by changes in the lifestyle of the people who clean and healthy along with the following insurance.Keywords: hospitalized, economic lost, productive age diseases, secondary data analysis
Procedia PDF Downloads 48319195 Improving Carbon Fiber Structural Battery Performance with Polymer Interface
Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint
Abstract:
This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries
Procedia PDF Downloads 11419194 Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses
Authors: Arsalan Ghaderi
Abstract:
Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index.Keywords: HS-CRP, integrative model of behavior prediction, physical activity, nurses, web-based education
Procedia PDF Downloads 12019193 Globalization and Women's Social Identity in Iran: A Case Study of Educated Women in the 'World City' of Yazd
Authors: Mohammad Tefagh
Abstract:
The process of globalization has transformed many social and cultural phenomena and has entered the world into a new era and arena. This phenomenon has introduced new methods, ideas, and identity interactions to human beings and has caused great changes in individual and social identity. Women have also been affected by globalization. Globalization has made the presence of women more and more effective and has caused identity changes and changes in the dimensions of identity in them. The purpose of this study is to investigate the impact of globalization of culture on changes in the social identity of educated women in the global city of Yazd. This study will discuss identity change and identity reconstruction due to globalization. The method of this study is qualitative, and the research data is obtained through in-depth interviews with 15 Yazdi-educated women at the Ph.D. level. The method of data analysis is thematic analysis. Findings of the research show that educated Yazdi women have changed their identity due to new communication processes and globalization, including faster, easier, and cheaper communication with other women in the world near and far. Women's social identity has also changed in the face of elements of globalization in various dimensions such as national, gender, religious, and group identities. The analysis of the interviews revealed the confronting elements such as using new cultural goods and communication technologies, membership in social networks, and increasing awareness of environmental change.Keywords: globalization, social identity, educated women, Yazd
Procedia PDF Downloads 33819192 A New Intelligent, Dynamic and Real Time Management System of Sewerage
Authors: R. Tlili Yaakoubi, H.Nakouri, O. Blanpain, S. Lallahem
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.Keywords: automation, optimization, paradigm, RTC
Procedia PDF Downloads 30219191 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient
Authors: Sobhy Fathy A. Hashesh
Abstract:
This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.Keywords: Al Andalus, emotional quotient, students, academic performance development
Procedia PDF Downloads 23919190 Strategies for Improving Teaching and Learning in Higher Institutions: Case Study of Enugu State University of Science and Technology, Nigeria
Authors: Gertrude Nkechi Okenwa
Abstract:
Higher institutions, especially the universities that are saddled with the responsibilities of teaching, learning, research, publications and social services for the production of graduates that are worthy in learning and character, and the creation of up-to-date knowledge and innovations for the total socio-economic and even political development of a given nation. Therefore, the purpose of the study was to identify the teaching, learning techniques used in the Enugu State University of Science and Technology to ensure or ascertain students’ perception on these techniques. To guide the study, survey research method was used. The population for the study was made up of second and final year students which summed up to one hundred and twenty-six students in the faculty of education. Stratified random sampling technique was adopted. A sample size of sixty (60) students was drawn for the study. The instrument used for data collection was questionnaire. To analyze the data, mean and standard deviation were used to answers the research questions. The findings revealed that direct instruction and construction techniques are used in the university. On the whole, it was observed that the students perceived constructivist techniques to be more useful and effective than direct instruction technique. Based on the findings recommendations were made to include diversification of teaching techniques among others.Keywords: Strategies, Teaching and Learning, Constructive Technique, Direct Instructional Technique
Procedia PDF Downloads 54519189 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings
Authors: Mukhtar Maigari
Abstract:
The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.Keywords: BIM, POE, IEQ, HE-buildings
Procedia PDF Downloads 5219188 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 9219187 Wearable Interface for Telepresence in Robotics
Authors: Uriel Martinez-Hernandez, Luke W. Boorman, Hamideh Kerdegari, Tony J. Prescott
Abstract:
In this paper, we present architecture for the study of telepresence, immersion and human-robot interaction. The architecture is built around a wearable interface, developed here, that provides the human with visual, audio and tactile feedback from a remote location. We have chosen to interface the system with the iCub humanoid robot, as it mimics many human sensory modalities, such as vision, with gaze control and tactile feedback. This allows for a straightforward integration of multiple sensory modalities, but also offers a more complete immersion experience for the human. These systems are integrated, controlled and synchronised by an architecture developed for telepresence and human-robot interaction. Our wearable interface allows human participants to observe and explore a remote location, while also being able to communicate verbally with humans located in the remote environment. Our approach has been tested from local, domestic and business venues, using wired, wireless and Internet based connections. This has involved the implementation of data compression to maintain data quality to improve the immersion experience. Initial testing has shown the wearable interface to be robust. The system will endow humans with the ability to explore and interact with other humans at remote locations using multiple sensing modalities.Keywords: telepresence, telerobotics, human-robot interaction, virtual reality
Procedia PDF Downloads 29219186 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array
Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim
Abstract:
We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display
Procedia PDF Downloads 58919185 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 19919184 Effectiveness of Laughter Yoga in Reducing Anxiety among Pre-Operative Patients for Scheduled Major Surgery
Authors: Denise Allison D. Garcia, Camille C. Garcia, Keanu Raphael Garrido, Crestita B. Tan
Abstract:
Introduction: Anxiety is a common problem among pre-operative patients. Several methods or interventions are being applied in order to relieve anxiety. Laughter yoga, however, is a method that has been used to relieve anxiety but has not yet been tested to pre-operative patients. Therefore, this study determined the effectiveness of laughter yoga in reducing anxiety among pre-operative middle-aged patients scheduled for major surgery. Methods: After Ethics Review Board approval, a quasi-experimental study was conducted among 40 purposely-selected pre-operative patients in two tertiary hospitals. Anxiety level was measured prior to administration of laughter yoga using the State-Trait Anxiety Inventory with a Cronbach alpha of 0.83. After Laughter yoga, anxiety level was then measured again. Gathered data were analyzed in SPSS version 20 using paired and independent t-test and ANCOVA. Results: After analysis of the data gathered, the results showed that there was a significant decrease in the anxiety level of patients in the experimental group. From an anxiety level of 44.00, the rating went down to 36.85. Meanwhile in the control group, the anxiety level at the pretest at 41.25 went up to 42.50. Laughter yoga was an effective non-pharmacologic intervention for reducing anxiety of pre-operative patients. Conclusion: It is therefore concluded that laughter yoga causes a significant decrease in the anxiety level of patients.Keywords: anxiety, laughter yoga, non-pharmacologic, pre-operative
Procedia PDF Downloads 44419183 Performance Assessment of Ventilation Systems for Operating Theatres
Authors: Clemens Bulitta, Sasan Sadrizadeh, Sebastian Buhl
Abstract:
Introduction: Ventilation technology in operating theatres (OT)is internationally regulated by dif-ferent standards, which define basic specifications for technical equipment and many times also the necessary operating and performance parameters. This confronts the operators of healthcare facilities with the question of finding the best ventilation and air conditioning system for the OT in order to achieve the goal of a large and robust surgicalworkzone with appropriate air quality and climate for patient safety and occupational health. Additionally, energy consumption and the potential need for clothing that limits transmission of bacteria must be considered as well as the total life cycle cost. However, the evaluation methodology of ventilation systems regarding these matters are still a topic of discussion. To date, there are neither any uniform standardized specifications nor any common validation criteria established. Thus, this study aimed to review data in the literature and add ourown research results to compare and assess the performance of different ventilations systems regarding infection preventive effects, energy efficiency, and staff comfort. Methods: We have conducted a comprehensive literature review on OT ventilation-related topics to understand the strengths and limitations of different ventilation systems. Furthermore, data from experimental assessments on OT ventilation systems at the University of Amberg-Weidenin Germany were in-cluded to comparatively assess the performance of Laminar Airflow (LAF), Turbulent Mixing Air-flow(TMA), and Temperature-controlled Airflow (TcAF) with regards to patient and occupational safety as well as staff comfort including indoor climate.CFD simulations from the Royal Institute of Technology in Sweden (KTH) were also studied to visualize the differences between these three kinds of ventilation systems in terms of the size of the surgical workzone, resilience to obstacles in the airflow, and energy use. Results: A variety of ventilation concepts are in use in the OT today. Each has its advantages and disadvantages, and thus one may be better suited than another depend-ing on the built environment and clinical workflow. Moreover, the proper functioning of OT venti-lation is also affected by multiple external and internal interfering factors. Based on the available data TcAF and LAF seem to provide the greatest effects regarding infection control and minimizing airborne risks for surgical site infections without the need for very tight surgical clothing systems. Resilience to obstacles, staff comfort, and energy efficiency seem to be favourable with TcAF. Conclusion: Based on literature data in current publications and our studies at the Technical Uni-versity of Applied Sciences Amberg-Weidenand the Royal Institute of Technoclogy, LAF and TcAF are more suitable for minimizing the risk for surgical site infections leading to improved clin-ical outcomes. Nevertheless, regarding the best management of thermal loads, atmosphere, energy efficiency, and occupational safety, overall results and data suggest that TcAF systems could pro-vide the economically most efficient and clinically most effective solution under routine clinical conditions.Keywords: ventilation systems, infection control, energy efficiency, operating theatre, airborne infection risks
Procedia PDF Downloads 10119182 Digital Nomads: Current Context, Difficulties, and Opportunities for Costa Rica
Authors: Cristina Gutiérrez Carranza
Abstract:
Digital nomadism is a trend and lifestyle which combines work and traveling. This tourism tendency is motivated by the desire to have a fixed source of financial income while becoming independent from a specific work location. This study contextualizes Costa Rica and its potential prospects to take advantage of this tourism market niche. It explores the dynamics of digital nomadism in the context of Costa Rica, analyzing the current scenario, challenges, and opportunities related to this global phenomenon. The research covers several areas, including the conceptualization of digital nomadism, its historical background, and contemporary manifestations. The investigation delves into the present state of digital nomadism, evaluating the extent of digitalization in Costa Rica, mobile phone coverage, and fixed internet access. As part of the strategies implemented, as the study develops, mapping the most common destinations of digital nomads is a key factor, bringing a sight on the aspects that make Costa Rica an attractive location for this emerging tourist group. Additionally, the paper draws insights from hosting entrepreneurs and digital nomads with work visas in Costa Rica, offering a comprehensive understanding of the experiences and perspectives from both sides. Hence, the study includes data from a sample of 20 digital nomads holding visas for Costa Rica, offering a detailed analysis of their professional activities, experiences and needs as remote workers in the country. As well it adds in perceptions from 10 entrepreneurs engaged in providing accommodation services to digital nomads contribute to a degree of understanding of the way they have faced this growing movement. This research provides significant insights on the dynamics of digital nomadism in Costa Rica by integrating data from specific sources. Policymakers, entrepreneurs, and other stakeholders are anticipated to gain valuable data from the findings regarding the opportunities and challenges of hosting and accommodating digital nomads, which will ultimately aid in the creation of plans to capitalize on this worldwide trend for the nation's socioeconomic development.Keywords: digital nomads, tourism, sustainability, digital nomads visa, remote jobs
Procedia PDF Downloads 7319181 Monitoring Public Transportation in Developing Countries Using Automatic Vehicle Location System: A Case Study
Authors: Ahmed Osama, Hassan A. Mahdy, Khalid A. Kandil, Mohamed Elhabiby
Abstract:
Automatic Vehicle Location systems (AVL) have been used worldwide for more than twenty years and have showed great success in public transportation management and monitoring. Cairo public bus service suffers from several problems such as unscheduled stops, unscheduled route deviations, and inaccurate schedules, which have negative impacts on service reliability. This research aims to study those problems for a selected bus route in Cairo using a prototype AVL system. Experimental trips were run on the selected route; and the locations of unscheduled stops, regions of unscheduled deviations, along with other trip time and speed data were collected. Data was analyzed to demonstrate the reliability of passengers on the unscheduled stops compared to the scheduled ones. Trip time was also modeled to assess the unscheduled stops’ impact on trip time, and to check the accuracy of the applied scheduled trip time. Moreover, frequency and length of the unscheduled route deviations, as well as their impact on the bus stops, were illustrated. Solutions were proposed for the bus service deficiencies using the AVL system. Finally, recommendations were proposed for further research.Keywords: automatic vehicle location, public transportation, unscheduled stops, unscheduled route deviations, inaccurate schedule
Procedia PDF Downloads 39419180 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 15219179 The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students
Authors: Sobhy Fathy A. Hashesh
Abstract:
The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.Keywords: AFC, STEAM, lego education, Al-Andalus fused curriculum, mechatronics
Procedia PDF Downloads 218