Search results for: software process engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20512

Search results for: software process engineering

19852 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 123
19851 Library on the Cloud: Universalizing Libraries Based on Virtual Space

Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan

Abstract:

Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.

Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access

Procedia PDF Downloads 629
19850 Closed Loop Traffic Control System Using PLC

Authors: Chinmay Shah

Abstract:

The project is all about development of a close loop traffic light control system using PLC (Programmable Logic Controller). This project is divided into two parts which are hardware and software. The hardware part for this project is a model of four way junction of a traffic light. Three indicator lamps (Red, Yellow and Green) are installed at each lane for represents as traffic light signal. This traffic control model is a replica of actuated traffic control. Actuated traffic control system is a close loop traffic control system which controls the timing of the indicator lamps depending on the fluidity of traffic for a particular lane. To make it autonomous, in each lane three IR sensors are placed which helps to sense the percentage of traffic present on any particular lane. The IR Sensors and Indicator lamps are connected to LG PLC XGB series. The PLC controls every signal which is coming from the inputs (IR Sensors) to software and display to the outputs (Indicator lamps). Default timing for the indicator lamps is 30 seconds for each lane. But depending on the percentage of traffic present, if the traffic is nearly 30-35%, green lamp will be on for 10 seconds, for 65-70% traffic it will be 20 seconds, for full 100% traffic it will be on for full 30 seconds. The software part that operates with LG PLC is “XG 5000” Programmer. Using this software, the ladder logic diagram is programmed to control the traffic light base on the flow chart. At the end of this project, the traffic light system is actuated successfully by PLC.

Keywords: close loop, IR sensor, PLC, light control system

Procedia PDF Downloads 548
19849 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.

Keywords: natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software

Procedia PDF Downloads 391
19848 Improving the Efficiency of Repacking Process with Lean Technique: The Study of Read With Me Group Company Limited

Authors: Jirayut Phetchuen, Jongkol Srithorn

Abstract:

The study examines the unloading and repacking process of Read With Me Group Company Limited. The research aims to improve the old work process and build a new efficient process with the Lean Technique and new machines for faster delivery without increasing the number of employees. Currently, two employees work based on five days on and off. However, workplace injuries have delayed the delivery time, especially the delivery to the neighboring countries. After the process improvement, the working space increased by 25%, the Process Lead Time decreased by 40%, the work efficiency increased by 175.82%, and the work injuries rate was reduced to zero.

Keywords: lean technique, plant layout design, U-shaped disassembly line, value stream mapping

Procedia PDF Downloads 80
19847 Neighbor Caring Environment System (NCE) Using Parallel Replication Mechanism

Authors: Ahmad Shukri Mohd Noor, Emma Ahmad Sirajudin, Rabiei Mamat

Abstract:

Pertaining to a particular Marine interest, the process of data sampling could take years before a study can be concluded. Therefore, the need for a robust backup system for the data is invariably implicit. In recent advancement of Marine applications, more functionalities and tools are integrated to assist the work of the researchers. It is anticipated that this modality will continue as research scope widens and intensifies and at the same to follow suit with current technologies and lifestyles. The convenience to collect and share information these days also applies to the work in Marine research. Therefore, Marine system designers should be aware that high availability is a necessary attribute in Marine repository applications as well as a robust backup system for the data. In this paper, the approach to high availability is related both to hardware and software but the focus is more on software. We consider a NABTIC repository system that is primitively built on a single server and does not have replicated components. First, the system is decomposed into separate modules. The modules are placed on multiple servers to create a distributed system. Redundancy is added by placing the copies of the modules on different servers using Neighbor Caring Environment System(NCES) technique. NCER is utilizing parallel replication components mechanism. A background monitoring is established to check servers’ heartbeats to confirm their aliveness. At the same time, a critical adaptive threshold is maintained to make sure a failure is timely detected using Adaptive Fault Detection (AFD). A confirmed failure will set the recovery mode where a selection process will be done before a fail-over server is instructed. In effect, the Marine repository service is continued as the fail-over masks a recent failure. The performance of the new prototype is tested and is confirmed to be more highly available. Furthermore, the downtime is not noticeable as service is immediately restored automatically. The Marine repository system is said to have achieved fault tolerance.

Keywords: availability, fault detection, replication, fault tolerance, marine application

Procedia PDF Downloads 303
19846 Effects of Process Parameters on the Yield of Oil from Coconut Fruit

Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude

Abstract:

Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml.

Keywords: coconut, oil-extraction, optimization, physicochemical, proximate

Procedia PDF Downloads 332
19845 Modeling of Oligomerization of Ethylene in a Falling film Reactor for the Production of Linear Alpha Olefins

Authors: Adil A. Mohammed, Seif-Eddeen K. Fateen, Tamer S. Ahmed, Tarek M. Moustafa

Abstract:

Falling film were widely used for gas-liquid absorption and reaction process. Modeling of falling film for oligomerization of ethylene reaction to linear alpha olefins is developed. Although there are many researchers discuss modeling of falling film in many processes, there has been no publish study the simulation of falling film for the oligomerization of ethylene reaction to produce linear alpha olefins. The Comsol multiphysics software was used to simulate the mass transfer with chemical reaction in falling film absorption process. The effect of concentration profile absorption of the products through falling thickness is discussed. The effect of catalyst concentration, catalyst/co-catalyst ratio, and temperature is also studied. For the effect of the temperature, as it increase the concentration of C4 increase. For catalyst concentration and catalyst/co-catalyst ratio as they increases the concentration of C4 increases, till it reached almost constant value.

Keywords: falling film, oligomerization, comsol mutiphysics, linear alpha olefins

Procedia PDF Downloads 450
19844 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 230
19843 Assessment of Rock Masses Performance as a Support of Lined Rock Cavern for Isothermal Compressed Air Energy Storage

Authors: Vathna Suy, Ki-Il Song

Abstract:

In order to store highly pressurized gas such as an isothermal compressed air energy storage, Lined Rock Caverns (LRC) are constructed underground and supported by layers of concrete, steel and rock masses. This study aims to numerically investigate the performance of rock masses which serve as a support of Lined Rock Cavern subjected to high cyclic pressure loadings. FLAC3D finite different software is used for the simulation since the software can effectively model the behavior of concrete lining and steel plate with its built-in structural elements. Cyclic pressure loadings are applied onto the inner surface of the cavern which then transmitted to concrete, steel and eventually to the surrounding rock masses. Changes of stress and strain are constantly monitored throughout all the process of loading operations. The results at various monitoring locations are then extracted and analyzed to assess the response of the rock masses, specifically on its ability to absorb energy during loadings induced by the changes of cyclic pressure loadings inside the cavern. By analyzing the obtained data of stress-strain relation and taking into account the behavior of materials under the effect of strain-dependency, conclusions on the performance of rock masses subjected to high cyclic loading conditions are drawn.

Keywords: cyclic loading, FLAC3D, lined rock cavern (LRC), strain-dependency

Procedia PDF Downloads 232
19842 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 367
19841 Unified Structured Process for Health Analytics

Authors: Supunmali Ahangama, Danny Chiang Choon Poo

Abstract:

Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.

Keywords: agile methodology, health analytics, unified process model, UML

Procedia PDF Downloads 486
19840 Software Verification of Systematic Resampling for Optimization of Particle Filters

Authors: Osiris Terry, Kenneth Hopkinson, Laura Humphrey

Abstract:

Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one.

Keywords: SPARK, software verification, resampling, systematic resampling, particle filter, tracking

Procedia PDF Downloads 61
19839 Comparing Energy Labelling of Buildings in Spain

Authors: Carolina Aparicio-Fernández, Alejandro Vilar Abad, Mar Cañada Soriano, Jose-Luis Vivancos

Abstract:

The building sector is responsible for 40% of the total energy consumption in the European Union (EU). Thus, implementation of strategies for quantifying and reducing buildings energy consumption is indispensable for reaching the EU’s carbon neutrality and energy efficiency goals. Each Member State has transposed the European Directives according to its own peculiarities: existing technical legislation, constructive solutions, climatic zones, etc. Therefore, in accordance with the Energy Performance of Buildings Directive, Member States have developed different Energy Performance Certificate schemes, using proposed energy simulation software-tool for each national or regional area. Energy Performance Certificates provide a powerful and comprehensive information to predict, analyze and improve the energy demand of new and existing buildings. Energy simulation software and databases allow a better understanding of the current constructive reality of the European building stock. However, Energy Performance Certificates still have to face several issues to consider them as a reliable and global source of information since different calculation tools are used that do not allow the connection between them. In this document, TRNSYS (TRaNsient System Simulation program) software is used to calculate the energy demand of a building, and it is compared with the energy labeling obtained with Spanish Official software-tools. We demonstrate the possibility of using not official software-tools to calculate the Energy Performance Certificate. Thus, this approach could be used throughout the EU and compare the results in all possible cases proposed by the EU Member States. To implement the simulations, an isolated single-family house with different construction solutions is considered. The results are obtained for every climatic zone of the Spanish Technical Building Code.

Keywords: energy demand, energy performance certificate EPBD, trnsys, buildings

Procedia PDF Downloads 113
19838 Model-Based Process Development for the Comparison of a Radial Riveting and Roller Burnishing Process in Mechanical Joining Technology

Authors: Tobias Beyer, Christoph Friedrich

Abstract:

Modern simulation methodology using finite element models is nowadays a recognized tool for product design/optimization. Likewise, manufacturing process design is increasingly becoming the focus of simulation methodology in order to enable sustainable results based on reduced real-life tests here as well. In this article, two process simulations -radial riveting and roller burnishing- used for mechanical joining of components are explained. In the first step, the required boundary conditions are developed and implemented in the respective simulation models. This is followed by process space validation. With the help of the validated models, the interdependencies of the input parameters are investigated and evaluated by means of sensitivity analyses. Limit case investigations are carried out and evaluated with the aid of the process simulations. Likewise, a comparison of the two joining methods to each other becomes possible.

Keywords: FEM, model-based process development, process simulation, radial riveting, roller burnishing, sensitivity analysis

Procedia PDF Downloads 91
19837 Austempering Heat Treatment of AISI 4340 Steel and Comparative Analysis of Various Physical Properties at Different Parameters

Authors: Najeeb Niazi, Salman Nisar, Aqueel Shah

Abstract:

In this study a special heat treatment process named austempering on AISI 4340 steel is carried out. Heat treatment on steel is carried out to enhance mechanical properties. In this regard, it is considered essential to undertake a study to evaluate different changes occurred in AISI 4340 steel in terms of hardness, tensile strength and impact strength at different austempering temperatures and cooling times and achieving the best combination of these improved mechanical properties for better and optimum utilization of this grade of steel. By using software Design Expert DOE is formulated with Taguchi orthogonal arrays comprising of L18 (3*3) with 03 factors and 03 responses to be calculated. Results of experiments are analyzed via Taguchi method. Signal to noise ratio of responses are carried out to determine the significant factors among the 03 factors chosen for experimental runs. Overall analysis showed that impact factor along with hardness is improved to great extent by austempering process.

Keywords: austempering temperature, AISI 4340 steel, bainite, Taguchi

Procedia PDF Downloads 442
19836 Numerical Study of Jet Impingement Heat Transfer

Authors: A. M. Tiara, Sudipto Chakraborty, S. K. Pal

Abstract:

Impinging jets and their different configurations are important from the viewpoint of the fluid flow characteristics and their influence on heat transfer from metal surfaces due to their complex flow characteristics. Such flow characteristics results in highly variable heat transfer from the surface, resulting in varying cooling rates which affects the mechanical properties including hardness and strength. The overall objective of the current research is to conduct a fundamental investigation of the heat transfer mechanisms for an impinging coolant jet. Numerical simulation of the cooling process gives a detailed analysis of the different parameters involved even though employing Computational Fluid Dynamics (CFD) to simulate the real time process, being a relatively new research area, poses many challenges. The heat transfer mechanism in the current research is actuated by jet cooling. The computational tool used in the ongoing research for simulation of the cooling process is ANSYS Workbench software. The temperature and heat flux distribution along the steel strip with the effect of various flow parameters on the heat transfer rate can be observed in addition to determination of the jet impingement patterns, which is the major aim of the present analysis. Modelling both jet and air atomized cooling techniques using CFD methodology and validating with those obtained experimentally- including trial and error with different models and comparison of cooling rates from both the techniques have been included in this work. Finally some concluding remarks are made that identify some gaps in the available literature that have influenced the path of the current investigation.

Keywords: CFD, heat transfer, impinging jets, numerical simulation

Procedia PDF Downloads 220
19835 Software Development for Both Small Wind Performance Optimization and Structural Compliance Analysis with International Safety Regulations

Authors: K. M. Yoo, M. H. Kang

Abstract:

Conventional commercial wind turbine design software is limited to large wind turbines due to not incorporating with low Reynold’s Number aerodynamic characteristics typically for small wind turbines. To extract maximum annual energy product from an intermediately designed small wind turbine associated with measured wind data, numerous simulation is highly recommended to have a best fitting planform design with proper airfoil configuration. Since depending upon wind distribution with average wind speed, an optimal wind turbine planform design changes accordingly. It is theoretically not difficult, though, it is very inconveniently time-consuming design procedure to finalize conceptual layout of a desired small wind turbine. Thus, to help simulations easier and faster, a GUI software is developed to conveniently iterate and change airfoil types, wind data, and geometric blade data as well. With magnetic generator torque curve, peak power tracking simulation is also available to better match with the magnetic generator. Small wind turbine often lacks starting torque due to blade optimization. Thus this simulation is also embedded along with yaw design. This software provides various blade cross section details at user’s design convenience such as skin thickness control with fiber direction option, spar shape, and their material properties. Since small wind turbine is under international safety regulations with fatigue damage during normal operations and safety load analyses with ultimate excessive loads, load analyses are provided with each category mandated in the safety regulations.

Keywords: GUI software, Low Reynold’s number aerodynamics, peak power tracking, safety regulations, wind turbine performance optimization

Procedia PDF Downloads 286
19834 Effect of Tube Backward Extrusion (TBE) Process on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

Authors: H. Abdolvand, M. Riazat, H. Sohrabi, G. Faraji

Abstract:

An experimental investigation into the Tube Backward Extrusion (TBE) process on AZ31 magnesium alloy is studied. Microstructures and grain size distribution of the specimens before and after TBE process are investigated by optical microscopy. Tensile and Vickers microhardness tests along extrusion direction were performed at room temperature. It is found that the average grain size is refined remarkably from the initial 33 µm down to 3.5 µm after TBE process. Also, the microhardness increased significantly to 58 HV after the process from an initial value of 36 HV.

Keywords: tube backward extrusion, AZ31, grain size distribution, grain refinement

Procedia PDF Downloads 482
19833 Optimization of Plastic Injection Molding Parameters by Altering Gate and Runner of Feeding System

Authors: Ali Ramezani

Abstract:

Balancing feeding system of plastic injection molding has overriding importance as it minimizes the process’s product defects such as weld line, shrinkage, sink marks and warpage. This article presents the difference between optimization of feeding system in identical multi-cavity molding and family molding using Moldflow Plastic Insight software. In this work, the effect of dimension, shape, position and type of gates and runners on the products quality was studied. The optimization was carried out by analyzing plastic injection molding process parameters, including melt temperature, mold temperature, cooling time, cooling temperature packing time and packing pressure. It was found that symmetrical feeding system is the most efficient shape for diminishing defects in identical multi-cavity molding. However, the same results were not concluded for family molding due to the differences between volume, mass, thickness and shape of cavities.

Keywords: balancing feeding system, family molding, multi-cavity, Moldflow, plastic injection

Procedia PDF Downloads 115
19832 UWB Open Spectrum Access for a Smart Software Radio

Authors: Hemalatha Rallapalli, K. Lal Kishore

Abstract:

In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method.

Keywords: cognitive radio, energy detection, software radio, spectrum sensing

Procedia PDF Downloads 396
19831 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 229
19830 Optimal Management of Internal Capital of Company

Authors: S. Sadallah

Abstract:

In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.

Keywords: management, software, optimal, greedy algorithm, graph-diagram

Procedia PDF Downloads 270
19829 Information System Development for Online Journal System Using Online Journal System for Journal Management of Suan Sunandha Rajabhat University

Authors: Anuphan Suttimarn, Natcha Wattanaprapa, Suwaree Yordchim

Abstract:

The aim of this study is to develop the online journal system using a web application to manage the journal service of Suan Sunandha Rajabhat University in order to improve the journal management of the university. The main structures of the system process consist of 1. journal content management system 2. membership system of the journal and 3. online submission or review process. The investigators developed the system based on a web application using open source OJS software and phpMyAdmin to manage a research database. The system test showed that this online system 'Online Journal System (OJS)' could shorten the time in the period of submission article to journal and helped in managing a journal procedure efficiently and accurately. The quality evaluation of Suan Sunandha Rajabhat online journal system (SSRUOJS) undertaken by experts and researchers in 5 aspects; design, usability, security, reducing time, and accuracy showed the highest average value (X=4.30) on the aspect of reducing time. Meanwhile, the system efficiency evaluation was on an excellent level (X=4.13).

Keywords: online journal system, Journal management, Information system development, OJS

Procedia PDF Downloads 157
19828 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 149
19827 Simple Ways to Enhance the Security of Web Services

Authors: Majid Azarniush, Soroush Mokallaei

Abstract:

Although robust security software, including anti-viruses, anti spy wares, anti-spam and firewalls, are amalgamated with new technologies such as Safe Zone, Hybrid Cloud, Sand Box etc., and it can be said that they have managed to prepare highest level of security against viruses, spy wares and other malwares in 2012, but in fact hackers' attacks to websites are increasingly becoming more and more complicated. Because of security matters and developments, it can be said that it was expected to happen so. Here in this work, we try to point out to some functional and vital notes to enhance security on the web enabling the user to browse safely in no limit web world and to use virtual space securely.

Keywords: firewalls, security, web services, software

Procedia PDF Downloads 485
19826 Reversible and Irreversible Wrinkling in Tube Hydroforming Process

Authors: Ali Abd El-Aty, Ahmed Tauseef, Ahmad Farooq

Abstract:

This research aims at analyzing and optimizing the hydroforming process parameters to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed.

Keywords: finite element, hydroforming, process window, wrinkling

Procedia PDF Downloads 265
19825 Development and Validation of Research Process for Enhancing Humanities Competence of Medical Students

Authors: S. J. Yune, K. H. Park

Abstract:

The purpose of this study was to examine the validity of the research process for enhancing the humanities competence of the medical students. The research process was developed to be operated as a core subject course of 3 semesters. Among them, the research process for enhancing humanities capacity consisted of humanities and societies (6 teams) and education-psychology (2teams). The subjects of this study were 88-second grade students and 22 professors who participated in the research process. Among them, 13 professors participated in the study of humanities and 37 students. In the validity test, the professors were more likely to have more validity in the research process than the students in all areas of logic (p = .001), influence (p = .037), process (p = .001). The validity of the professor was higher than that of the students. The professors highly evaluated the students' learning outcomes and showed the most frequency to the prize group. As a result of analyzing the agreement between the students and the professors through the Kappa coefficient, the agreement degree of communication and cooperation competence was moderate to .430. Problem-solving ability was .340, which showed a fair degree of agreement. However, other factors showed only a slight degree of agreement of less than .20.

Keywords: research process, medical school, humanities competence, validity verification

Procedia PDF Downloads 169
19824 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 135
19823 A Formal Property Verification for Aspect-Oriented Programs in Software Development

Authors: Moustapha Bande, Hakima Ould-Slimane, Hanifa Boucheneb

Abstract:

Software development for complex systems requires efficient and automatic tools that can be used to verify the satisfiability of some critical properties such as security ones. With the emergence of Aspect-Oriented Programming (AOP), considerable work has been done in order to better modularize the separation of concerns in the software design and implementation. The goal is to prevent the cross-cutting concerns to be scattered across the multiple modules of the program and tangled with other modules. One of the key challenges in the aspect-oriented programs is to be sure that all the pieces put together at the weaving time ensure the satisfiability of the overall system requirements. Our paper focuses on this problem and proposes a formal property verification approach for a given property from the woven program. The approach is based on the control flow graph (CFG) of the woven program, and the use of a satisfiability modulo theories (SMT) solver to check whether each property (represented par one aspect) is satisfied or not once the weaving is done.

Keywords: aspect-oriented programming, control flow graph, property verification, satisfiability modulo theories

Procedia PDF Downloads 155