Search results for: modulus of rigidity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 863

Search results for: modulus of rigidity

203 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material

Authors: Livia Guerini, Christian Paglia

Abstract:

In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.

Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP

Procedia PDF Downloads 114
202 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 167
201 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application

Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen

Abstract:

Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.

Keywords: MAO, plasma, graft polymerization, biomedical application

Procedia PDF Downloads 230
200 The Non-Motor Symptoms of Filipino Patients with Parkinson’s Disease

Authors: Cherrie Mae S. Sia, Noel J. Belonguel, Jarungchai Anton S. Vatanagul

Abstract:

Background: Parkinson’s disease (PD) is a chronic progressive, neurodegenerative disorder known for its motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability. Patients with PD also experience non-motor symptoms (NMS) such as depression, fatigue, and sleep disturbances that are most of the time unrecognized by clinicians. This may be due to the lack of spontaneous reports from the patients or partly because of the lack of systematic questioning from the healthcare professional. There is limited data with regards to these NMS especially that of Filipino patients with PD. Objectives: This study aims to determine the non-motor symptoms of Filipino patients with Parkinson’s disease. Materials and Methods: This is a prospective, cohort study involving thirty-four patients of Filipino-descent diagnosed with PD in three out-patient clinics in Cebu City from April to September 2014. Each patient was interviewed using the Non-Motor Symptom Scale (NMSS). A Cebuano version of the NMSS was also provided for the non-English speaking patients. Interview time was approximately ten to fifteen minutes for each respondent. Results: Of the thirty-four patients with Parkinson’s disease, majority was noted to be males (N=19) and the disease was noted to be more prevalent in patients with a mean age of 62 (SD±9) years old. Hypertension (59%) and diabetes mellitus (29%) were the common co-morbidities in the study population. All patients presented more than one NMS, with insomnia (41.2%), poor memory (23.5%) and depression (14.7%) being the first non-motor symptoms to occur. Symptoms involving mood/cognition (mean=2.21), and attention/memory (mean=2.05) were noted to be the most frequent and of moderate severity. Based on the NMSS, the symptoms that were noted to be mild and often to occur were those that involved the mood/cognition (score=3.84), attention/memory (score=3.50), and sleep/fatigue (score=3.00) domains. Levodopa-Carbidopa, Ropinirole, and Pramipexole were the most frequently used medications in the study population. Conclusion: Non-motor symptoms (NMS) are common in patients with Parkinson’s disease (PD). They appear at the time of diagnosis of PD or even before the motor symptoms manifest. The earliest non-motor symptoms to occur are insomnia, poor memory, and depression. Those pertaining to mood/cognition and attention/memory are the most frequent NMS and they are of moderate severity. Identifying these NMS by doing a questionnaire-guided interview such as the Non-Motor Symptom Scale (NMSS) before they can become more severe and affect the patient’s quality of life is a must for every clinician caring for a PD patient. Early treatment and control of these NMS can then be given, hence, improving the patient’s outcome and prognosis.

Keywords: non motor symptoms, Parkinson's Disease, insomnia, depression

Procedia PDF Downloads 419
199 A Comprehensive Review on Structural Properties and Erection Benefits of Large Span Stressed-Arch Steel Truss Industrial Buildings

Authors: Anoush Saadatmehr

Abstract:

Design and build of large clear span structures have always been demanding in the construction industry targeting industrial and commercial buildings around the world. The function of these spectacular structures encompasses distinguished types of building such as aircraft and airship hangars, warehouses, bulk storage buildings, sports and recreation facilities. From an engineering point of view, there are various types of steel structure systems that are often adopted in large-span buildings like conventional trusses, space frames and cable-supported roofs. However, this paper intends to investigate and review an innovative light, economic and quickly erected large span steel structure renowned as “Stressed-Arch,” which has several advantages over the other common types of structures. This patented system integrates the use of cold-formed hollow section steel material with high-strength pre-stressing strands and concrete grout to establish an arch shape truss frame anywhere there is a requirement to construct a cost-effective column-free space for spans within the range of 60m to 180m. In this study and firstly, the main structural properties of the stressed-arch system and its components are discussed technically. These features include nonlinear behavior of truss chords during stress-erection, the effect of erection method on member’s compressive strength, the rigidity of pre-stressed trusses to overcome strict deflection criteria for cases with roof suspended cranes or specialized front doors and more importantly, the prominent lightness of steel structure. Then, the effects of utilizing pre-stressing strands to safeguard a smooth process of installation of main steel members and roof components and cladding are investigated. In conclusion, it is shown that the Stressed-Arch system not only provides an optimized light steel structure up to 30% lighter than its conventional competitors but also streamlines the process of building erection and minimizes the construction time while preventing the risks of working at height.

Keywords: large span structure, pre-stressed steel truss, stressed-arch building, stress-erection, steel structure

Procedia PDF Downloads 115
198 Early-Age Cracking of Low Carbon Concrete Incorporating Ferronickel Slag as Supplementary Cementitious Material

Authors: Mohammad Khan, Arnaud Castel

Abstract:

Concrete viscoelastic properties such as shrinkage, creep, and associated relaxation are important in assessing the risk of cracking during the first few days after placement. This paper investigates the early-age mechanical and viscoelastic properties, restrained shrinkage-induced cracking and time to cracking of concrete incorporating ferronickel slag (FNS) as supplementary cementitious material. Compressive strength, indirect tensile strength and elastic modulus were measured. Tensile creep and drying shrinkage was measured on dog-bone shaped specimens. Restrained shrinkage induced stresses and concrete cracking age were assessed by using the ring test. Results revealed that early-age strength development of FNS blended concrete is lower than that of the corresponding ordinary Portland cement (OPC) concrete. FNS blended concrete showed significantly higher tensile creep. The risk of early-age cracking for the restrained specimens depends on the development of concrete tensile stress considering both restrained shrinkage and tensile creep and the development of the tensile strength. FNS blended concrete showed only 20% reduction in time to cracking compared to reference OPC concrete, and this reduction is significantly lower compared to fly ash and ground granulated blast furnace slag blended concretes at similar replacement level.

Keywords: ferronickel slag, restraint shrinkage, tensile creep, time to cracking

Procedia PDF Downloads 158
197 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing

Procedia PDF Downloads 231
196 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: C. J. Coetzee, E. Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out

Procedia PDF Downloads 274
195 Finite Element Analysis of Steel-Concrete Composite Structures Considering Bond-Slip Effect

Authors: WonHo Lee, Hyo-Gyoung Kwak

Abstract:

A numerical model considering slip behavior of steel-concrete composite structure is introduced. This model is based on a linear bond stress-slip relation along the interface. Single node was considered at the interface of steel and concrete member in finite element analysis, and it improves analytical problems of model that takes double nodes at the interface by adopting spring elements to simulate the partial interaction. The slip behavior is simulated by modifying material properties of steel element contacting concrete according to the derived formulation. Decreased elastic modulus simulates the slip occurrence at the interface and decreased yield strength simulates drop in load capacity of the structure. The model is verified by comparing numerical analysis applying this model with experimental studies. Acknowledgment—This research was supported by a grant(13SCIPA01) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.

Keywords: bond-slip, composite structure, partial interaction, steel-concrete structure

Procedia PDF Downloads 159
194 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films

Authors: Jitrawadee Meerasri, Rungsinee Sothornvit

Abstract:

Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.

Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film

Procedia PDF Downloads 109
193 Study on the Strength and Durability Properties of Ternary Blended Concrete

Authors: Athira Babu, M. Nazeer

Abstract:

Concrete is the most common and versatile construction material used in any type of civil engineering structure. The durability and strength characteristics of concrete make it more desirable among any other construction materials. The manufacture and use of concrete produces wide range of environmental and social consequences. The major component in concrete, cement accounts for roughly 5 % of global CO2 emissions. In order to improve the environmental friendliness of concrete, suitable substitutes are added to concrete. The present study deals with GGBS and silica fume as supplementary cementitious materials. The strength and durability studies were conducted in this ternary blended concrete. Several mixes were adopted with varying percentages of Silica Fume i.e., 5%, 10% and 15%. Binary mix with 50% GGBS was also prepared. GGBS content has been kept constant for the rest of mixes. There is an improvement in compressive strength with addition of Silica Fume.Maximum workability, split tensile strength, modulus of elasticity, flexural strength and impact resistance are obtained for GGBS binary blend. For durability studies, maximum sulphate resistance,carbonation resistance andresistance to chloride ion penetration are obtained for ternary blended concrete. Partial replacement of GGBS and Silica Fume reduces the environmental effects, produces economical and eco-friendly concrete. The study showed that for strength characteristics, binary blended concrete showed better performance while for durability study ternary blend performed better.

Keywords: concrete, GGBS, silica fume, ternary blend

Procedia PDF Downloads 454
192 Analysis of High Resolution Seismic Reflection Data to Identify Different Regional Lithologies of the Zaria Batholith Located in the Basement Complex of North Central Nigeria

Authors: Collins C. Chiemeke, A. Onugba, P. Sule

Abstract:

High resolution seismic reflection has recently been carried out on Zaria batholith, with the aim of characterizing the granitic Zaria batholiths in terms of its lithology. The geology of the area has revealed that the older granite outcrops in the vicinity of Zaria are exposures of a syntectonics to late-tectonic granite batholiths which intruded a crystalline gneissic basement during the Pan-African Orogeny. During the data acquisition the geophone were placed at interval of 1 m, variable offset of 1 and 10 m was used. The common midpoint (CMP) method with 12 fold coverage was employed for the survey. Analysis of the generated 3D surface of the p wave velocities from different profiles for densities and bulk modulus revealed that the rock material is more consolidated in South East part of the batholith and less consolidated in the North Western part. This was in conformity with earlier identified geology of the area, with the South Eastern part majorly of granitic outcrop, while the North Western part is characterized with the exposure of gneisses and thick overburden cover. The difference in lithology was also confirmed by the difference in seismic sections and Arial satellite photograph. Hence two major lithologies were identified, the granitic and gneisses complex which are characterized by gradational boundaries.

Keywords: basement complex, batholith, high resolution, lithologies, seismic reflection

Procedia PDF Downloads 272
191 Refinement of Thermal and Mechanical Properties of Poly (Lactic Acid)/Poly (Ethylene-Co-Glycidyle Methacrylate)/ Hexagonal Boron Nitride Blend-Composites through Electron-Beam Irradiation

Authors: Ashish Kumar, T. Venkatappa Rao, Subhendu Ray Chowdhury, S. V. S. Ramana Reddy

Abstract:

The main objective of this work is to determine the influence of electron beam irradiation on thermal and mechanical properties of Poly (lactic acid) (PLA)/Poly (ethylene-co-glycidyle methacrylate) (PEGM)/Hexagonal boron nitride (HBN) blend-composites. To reduce the brittleness and improve the toughness of PLA, the PLA/PEGM blend is prepared by using twin-screw Micro compounder. However, the heat deflection temperature (HDT) and other tensile properties were reduced. The HBN has been incorporated into the PLA/PEGM blend as part per hundred i.e. 5 phr and 10phr to improve the HDT. The prepared specimens of blend and blend-composites were irradiated to high energy (4.5 MeV) electron beam (E-beam) at different radiation doses to introduce the cross linking among the polymer chains and uniform dispersion of HBN particles in the PLA/PEGM/HBN blend-composites. The further improvement in the notched impact strength and HDT have been achieved in the case of PLA/PEGM/HBN blend-composites. The irradiated PLA/PEGM/HBN 5phr blend composite shows high notched impact strength and HDT as compared to other unirradiated and E-beam irradiated blend and blend-composites. The improvements in the yield strength and tensile modulus have also been noticed in the case of E-beam irradiated PLA/PEGM/HBN blend-composites as compared to unirradiated blend-composites.

Keywords: blend-composite, e-beam, HDT, PEGM, PLA

Procedia PDF Downloads 155
190 Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite

Authors: Mozhgan Chaichi, Farhad Sharif, Saeede Mazinani

Abstract:

Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix.

Keywords: magnetic nanoparticles, nanocomposites, toughness, orientation

Procedia PDF Downloads 300
189 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil

Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina

Abstract:

This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.

Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis

Procedia PDF Downloads 182
188 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation

Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy

Abstract:

Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).

Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation

Procedia PDF Downloads 126
187 Development of Mechanisms of Value Creation and Risk Management Organization in the Conditions of Transformation of the Economy of Russia

Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Eugenia V. Klicheva

Abstract:

In modern conditions, scientific judgment of problems in developing mechanisms of value creation and risk management acquires special relevance. Formation of economic knowledge has resulted in the constant analysis of consumer behavior for all players from national and world markets. Effective mechanisms development of the demand analysis, crucial for consumer's characteristics of future production, and the risks connected with the development of this production are the main objectives of control systems in modern conditions. The modern period of economic development is characterized by a high level of globalization of business and rigidity of competition. At the same time, the considerable share of new products and services costs has a non-material intellectual nature. The most successful in Russia is the contemporary development of small innovative firms. Such firms, through their unique technologies and new approaches to process management, which form the basis of their intellectual capital, can show flexibility and succeed in the market. As a rule, such enterprises should have very variable structure excluding the tough scheme of submission and demanding essentially new incentives for inclusion of personnel in innovative activity. Realization of similar structures, as well as a new approach to management, can be constructed based on value-oriented management which is directed to gradual change of consciousness of personnel and formation from groups of adherents included in the solution of the general innovative tasks. At the same time, valuable changes can gradually capture not only innovative firm staff, but also the structure of its corporate partners. Introduction of new technologies is the significant factor contributing to the development of new valuable imperatives and acceleration of the changing values systems of the organization. It relates to the fact that new technologies change the internal environment of the organization in a way that the old system of values becomes inefficient in new conditions. Introduction of new technologies often demands change in the structure of employee’s interaction and training in their new principles of work. During the introduction of new technologies and the accompanying change in the value system, the structure of the management of the values of the organization is changing. This is due to the need to attract more staff to justify and consolidate the new value system and bring their view into the motivational potential of the new value system of the organization.

Keywords: value, risk, creation, problems, organization

Procedia PDF Downloads 257
186 Experimental Study of Moisture Effect on the Mechanical Behavior of Flax Fiber Reinforcement

Authors: Marwa Abida, Florian Gehring, Jamel Mars, Alexandre Vivet, Fakhreddine Dammak, Mohamed Haddar

Abstract:

The demand for bio-based materials in semi-structural and structural applications is constantly growing to conform to new environmental policies. Among them, Plant Fiber Reinforced Composites (PFRC) are attractive for the scientific community as well as the industrial world. Due to their relatively low densities and low environmental impact, vegetal fibers appear to be suitable as reinforcing materials for polymers. However, the major issue of plant fibers and PFRC in general is their hydrophilic behavior (high affinity to water molecules). Indeed, when absorbed, water causes fiber swelling and a loss of mechanical properties. Thus, the environmental loadings (moisture, temperature, UV) can strongly affect their mechanical properties and therefore play a critical role in the service life of PFRC. In order to analyze the influence of conditioning at relative humidity on the behavior of flax fiber reinforced composites, a preliminary study on flax fabrics has been conducted. The conditioning of the fabrics in different humid atmospheres made it possible to study the influence of the water content on the hygro-mechanical behavior of flax reinforcement through mechanical tensile tests. This work shows that increasing the relative humidity of the atmosphere induces an increase of the water content in the samples. It also brings up the significant influence of water content on the stiffness and elongation at break of the fabric, while no significant change of the breaking load is detected. Non-linear decrease of flax fabric rigidity and increase of its elongation at maximal force with the increase of water content are observed. It is concluded that water molecules act as a softening agent on flax fabrics. Two kinds of typical tensile curves are identified. Most of the tensile curves of samples show one unique linear region where the behavior appears to be linear prior to the first yarn failure. For some samples in which water content is between 2.7 % and 3.7 % (regardless the conditioning atmosphere), the emergence of a two-linear region behavior is pointed out. This phenomenon could be explained by local heterogeneities of water content which could induce premature local plasticity in some regions of the flax fabric sample behavior.

Keywords: hygro-mechanical behavior, hygroscopy, flax fabric, relative humidity, mechanical properties

Procedia PDF Downloads 165
185 Assessment of the Remains in Historic Urban Area Based on Spatial Prototype: Case Study on Jingmen City, China

Authors: Guangtong Xu, Yi He

Abstract:

Like most historic and cultural cities in China, the historic urban area of Jingmen city is facing a typical spatial problem of fragmentation and fuzzification. This study focuses on exploring a method for evaluating the existing values of historic urban area based on spatial prototype, a concept introduced into urban morphology from 'Archetype' in architectural typology. As the spatial elements and built-up relationship of historic city, spatial prototype has habitual structural characteristics and formal modulus. It is the inherent logic and order rules behind the scattered historic environment, providing a clue to understand the spatial characteristics and a basis for guiding the construction and conservation in historic urban areas. Three criteria, the resolution of historical elements, the completeness of historical structure and the renewal potential of associated land, were selected to construct the integrated assessment system. These three dimensions are linked to the spatial prototype and its constituent elements, as well as the transformation relationship in ancient and present day. The results showed that historic urban areas have changed from a holistic city to different existing types dominated by their historic structure elements. It is necessary to improve the pertinence of planning strategies and develop diversified management measures in the conservation scope of historic urban area. Moreover, a constructive-conservation strategy should be put forward to enhance the integrity of historic urban area based on the trace of spatial prototype and evaluation results.

Keywords: constructive conservation, existing value, historic urban area, spatial prototype

Procedia PDF Downloads 139
184 Analyzing Restrictive Refugee Policies in Japan and the United Kingdom: An Examination of Fundamental Causes and Implications

Authors: Shalini Shawari Matharage

Abstract:

The worldwide refugee challenge has arisen as a critical concern, with millions of individuals fleeing their home countries owing to conflict, persecution, and human rights violations. Since the establishment of an international framework in 1951 for tackling the humanitarian needs of refugees and asylum seekers, many developed and developing countries have adopted a refugee admittance framework into their national immigration policy and steadily changed their domestic legislation to assist the resettlement of refugees. However, many developed nations have put forth strict limitations on refugee admission in the midst of the continuing refugee crisis, claiming factors including national sovereignty, security of their borders, and national economy. Two such developed nations that have been restrictive on refugees is Japan and the United Kingdom. Despite their contrasting histories, migration methods, and viewpoints on diversity in modern society, the two notably developed nations have taken similar restrictive approaches in refugee policy in the recent years. This study attempts to investigate the underlying causes that led these countries to adopt strict refugee policies and how those policies have affected their compliance with international human rights responsibilities. The study employs a head-to-head methodology to examine the structural inequities in Japan and the United Kingdom's refugee policies. Using data from the UNHCR Refugee Data Finder, official government policy proposals, statements, and academic works, the study evaluates the contemporary refugee legislations, fundamental causes, and subsequent implications. The study illustrates a combination of economic, security, and demographic issues, as well as political rigidity and negative public perceptions, as major determinants of the two countries' restrictive refugee policies. The findings shed light on the restrictive actions taken by Japan and the UK, raising concerns about potential breaches in obligations to their commitments to international law and human rights obligations. Understanding the underlying issues influencing these policies allows lawmakers and activists to establish more compassionate refugee policies that adhere to international human rights and protect vulnerable individuals fleeing persecution. Ultimately, this study aims to contribute to the development of sensible refugee policies that uphold human rights and humanitarian values.

Keywords: immigration, Japan, refugee policy, united kingdom

Procedia PDF Downloads 47
183 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation

Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras

Abstract:

The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.

Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation

Procedia PDF Downloads 121
182 Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures

Authors: Davood Mousanezhad, Ashkan Vaziri

Abstract:

As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes.

Keywords: cellular structures, honeycombs, hierarchical structures, metamaterials, multifunctional structures, phononic crystals, auxetic structures

Procedia PDF Downloads 323
181 Apatite-Forming Ability of Doped-Ceria Coatings for Orthopedic Implants

Authors: Ayda Khosravanihaghighi, Pramod Koshy, Bill Walsh, Vedran Lovric, Charles Christopher Sorrell

Abstract:

There is an increasing demand for orthopedic implants owing to the increasing numbers of the aging population. Titanium alloy (Ti6Al4V) is a common material used for orthopedic implants owing to its advantageous properties in terms of good corrosion resistance, minimal elastic modulus mismatch with bone, bio-inertness, and high mechanical strength. However, it is important to improve the bioactivity and osseointegration of the titanium alloy and this can be achieved by coating the implant surface with suitable ceramic materials. In the present work, pure and doped-ceria (CeO₂) coatings were deposited by spin coating on the titanium alloy surface in order to enhance the biological interactions between the surface of the implant and the surrounding tissue. In order to examine the bone-binding ability of an implant, simulated body fluid (SBF) tests were conducted in order to assess the capability of apatite layer formation on the surface and thus predict in vivo bone bioactivity. Characterization was done using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses to determine the extent of apatite formation. Preliminary tests showed that the CeO₂ coatings were biocompatible and that the extent of apatite formation and its characteristics can be enhanced by doping with suitable metal ions.

Keywords: apatite layer, biocompatibility, ceria, orthopaedic implant, SBF, spin coater, Ti-implant

Procedia PDF Downloads 129
180 Flexural Strengthening of Steel Beams Using Fiber Reinforced Polymers

Authors: Sally Hosny, Mona G. Ibrahim, N. K. Hassan

Abstract:

Fiber reinforced polymers (FRP) is one of the most environmentally method for strengthening and retrofitting steel structure buildings. The behaviour of flexural strengthened steel I-beams using FRP was investigated. The finite element (FE) models were developed using ANSYS® as verification cases to simulate the experimental behaviour of using FRP strips to flexure strengthen steel I-beam. Two experimental studies were selected for verification; first examined the effect of different thicknesses and modulus of elasticity while the second studied the effect of applying different carbon fiber reinforced polymers (CFRP) bond lengths. The proposed FE models were in good agreement with the experimental results in terms of failure modes, load bearing capacities and strain distribution on CFRP strips. The verified FE models can be utilized to conduct a parametric study where various widths (40, 50, 60, 70 and 80 mm), thickness (1.2, 2 and 4 mm) and lengths (1500, 1700 and 1800 mm) of CFRP were analyzed. The results presented clearly revealed that the load bearing capacity was significantly increased (+7%) when the width and thickness were increased. However, load bearing capacity was slightly affected using longer CFRP strips. Moreover, applying another glass fiber reinforced polymers (GFRP) of 1500 mm in length, 50 mm in width and thicknesses of 1.2, 2 and 4 mm were investigated. Load bearing capacity of strengthened I-beams using GFRP is less than CFRP by average 8%. Statistical analysis has been conducted using Minitab®.

Keywords: FRP, strengthened steel I-beams, flexural, FEM, ANSYS

Procedia PDF Downloads 246
179 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites

Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad

Abstract:

The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.

Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure

Procedia PDF Downloads 314
178 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF

Authors: Sezen Gurdag, Ayse Ebru Akin

Abstract:

There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.

Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive

Procedia PDF Downloads 128
177 A Review on Silicon Based Induced Resistance in Plants against Insect Pests

Authors: Asim Abbasi, Muhammad Sufyan, Muhammad Kamran, Iqra

Abstract:

Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future.

Keywords: defensive, phytoliths, resistance, stresses

Procedia PDF Downloads 166
176 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 228
175 Low-Temperature Fabrication of Reaction Bonded Composites, Based on Sic and (Sic+B4C) Mixture, Infiltrated with Si-Al Alloy

Authors: Helen Dilman, Eyal Oz, Shmuel Hayun, Nahum Frage

Abstract:

The conventional approach for manufacturing silicon carbide and boron carbide reaction bonded composites is based on infiltrating a ceramic porous preform with molten silicon. The relatively high melting temperature of the silicon infiltrating medium is a drawback of the process. The present contribution is concerned with an approach that allows obtaining reaction bonded composites by pressure-less infiltration at a significantly lower (850-1000oC) temperature range. This approach was applied for the fabrication of fully dense SiC/(Si-Al) and (SiC+B4C)/(Si-Al) composites. The key feature of the approach is based on using Si alloys with low melting temperature and the Mg-vapor atmosphere, under which an adequate wetting between ceramics and liquid alloys for the infiltration process is achieved. In the first set of the experiments ceramic performs compacted from multimodal SiC powders (with the green density of about 27 vol. %) without free carbon addition were infiltrated by Si-20%Al alloy at 950oC. In the second set, 19 vol. % of a fine boron carbide powder was added to SiC powders as a source of carbon. The green density of the SiC-B4C preforms was about 23-25 vol. %. In both cases, successful infiltration was achieved and the composites were fully dense. The density of the composites was about 3g/cm3. For the SiC based composites the hardness value was 750±150HV, Young modulus-280GPa and bending strength-240±30MPa. These values for (SiC-B4C)/(Si-Al) composites (1460±200HV, 317GPa and 360±20MPa) were significantly higher due to the formation of novel ceramics phases. Microstructural characteristics of the composites and their phase composition will be discussed.

Keywords: boron carbide, composites, infiltration, low temperatures, silicon carbide

Procedia PDF Downloads 530
174 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 284