Search results for: hybrid modifier
1113 Templating Copper on Polymer/DNA Hybrid Nanowires
Authors: Mahdi Almaky, Reda Hassanin, Benjamin Horrocks, Andrew Houlton
Abstract:
DNA-templated poly(N-substituted pyrrole)bipyridinium nanowires were synthesised at room temperature using the chemical oxidation method. The resulting CPs/DNA hybrids have been characterised using electronic and vibrational spectroscopic methods especially Ultraviolet-Visible (UV-Vis) spectroscopy and FTIR spectroscpy. The nanowires morphology was characterised using Atomic Force Microscopy (AFM). The electrical properties of the prepared nanowires were characterised using Electrostatic Force Microscopy (EFM), and measured using conductive AFM (c-AFM) and two terminal I/V technique, where the temperature dependence of the conductivity was probed. The conductivities of the prepared CPs/DNA nanowires are generally lower than PPy/DNA nanowires showingthe large effect on N-alkylation in decreasing the conductivity of the polymer, butthese are higher than the conductivity of their corresponding bulk films.This enhancement in conductivity could be attributed to the ordering of the polymer chains on DNA during the templating process. The prepared CPs/DNA nanowires were used as templates for the growth of copper nanowires at room temperature using aqueous solution of Cu(NO3)2as a source of Cu2+ and ascorbic acid as reducing agent. AFM images showed that these nanowires were uniform and continuous compared to copper nanowires prepared using the templating method directly onto DNA. Electrical characterization of the nanowires by c AFM revealed slight improvement in conductivity of these nanowires (Cu-CPs/DNA) compared to CPs/DNA nanowires before metallisation.Keywords: templating, copper nanowires, polymer/DNA hybrid, chemical oxidation method
Procedia PDF Downloads 3631112 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique
Authors: Sandhya Baskaran, Hari Kumar Nagabushanam
Abstract:
Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer
Procedia PDF Downloads 2931111 Investigation of the Addition of Macro and Micro Polypropylene Fibers on Mechanical Properties of Concrete Pavement
Authors: Seyed Javad Vaziri Kang Olyaei, Asma Sadat Dabiri, Hassan Fazaeli, Amir Ali Amini
Abstract:
Cracks in concrete pavements are places for the entrance of water and corrosive substances to the pavement, which can reduce the durability of concrete in the long term as well as the serviceability of road. The use of fibers in concrete pavement is one of the effective methods to control and mitigate cracking. This study investigates the effect of the addition of micro and macro polypropylene fibers in different types and volumes and also in combination with the mechanical properties of concrete used in concrete pavements, including compressive strength, splitting tensile strength, modulus of rupture, and average residual strength. The fibers included micro-polypropylene, macro-polypropylene, and hybrid micro and micro polypropylene in different percentages. The results showed that macro polypropylene has the most significant effect on improving the mechanical properties of concrete. Also, the hybrid micro and macro polypropylene fibers increase the mechanical properties of concrete more. It was observed that according to the results of the average residual strength, macro polypropylene fibers alone and together with micro polypropylene fibers could have excellent performance in controlling the sudden formation of cracks and their growth after the formation of cracking which is an essential property in concrete pavements.Keywords: concrete pavement, mechanical properties, macro polypropylene fibers, micro polypropylene fibers
Procedia PDF Downloads 1571110 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach
Authors: Kamalendu Pal
Abstract:
This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation
Procedia PDF Downloads 3671109 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 381108 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System
Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k
Abstract:
Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving
Procedia PDF Downloads 2551107 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3391106 Orientational Pair Correlation Functions Modelling of the LiCl6H2O by the Hybrid Reverse Monte Carlo: Using an Environment Dependence Interaction Potential
Authors: Mohammed Habchi, Sidi Mohammed Mesli, Rafik Benallal, Mohammed Kotbi
Abstract:
On the basis of four partial correlation functions and some geometric constraints obtained from neutron scattering experiments, a Reverse Monte Carlo (RMC) simulation has been performed in the study of the aqueous electrolyte LiCl6H2O at the glassy state. The obtained 3-dimensional model allows computing pair radial and orientational distribution functions in order to explore the structural features of the system. Unrealistic features appeared in some coordination peaks. To remedy to this, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an additional energy constraint in addition to the usual constraints derived from experiments. The energy of the system is calculated using an Environment Dependence Interaction Potential (EDIP). Ions effects is studied by comparing correlations between water molecules in the solution and in pure water at room temperature Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in orientational distribution curves.Keywords: LiCl6H2O, glassy state, RMC, HRMC
Procedia PDF Downloads 4721105 Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production
Authors: Anna Crivellari, Valerio Cozzani
Abstract:
Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market.Keywords: cost analysis, energy efficiency assessment, hydrogen production, offshore wind energy
Procedia PDF Downloads 1261104 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 971103 A Metaheuristic Approach for Optimizing Perishable Goods Distribution
Authors: Bahare Askarian, Suchithra Rajendran
Abstract:
Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models
Procedia PDF Downloads 231102 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System
Authors: S. Oladoyinbo, A. A. Tijani
Abstract:
Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor
Procedia PDF Downloads 3671101 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study
Authors: Ana Serafimovic, Karthik Devarajan
Abstract:
Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence
Procedia PDF Downloads 2461100 Fuzzy Adaptive Control of an Intelligent Hybrid HPS (Pvwindbat), Grid Power System Applied to a Dwelling
Authors: A. Derrouazin, N. Mekkakia-M, R. Taleb, M. Helaimi, A. Benbouali
Abstract:
Nowadays the use of different sources of renewable energy for the production of electricity is the concern of everyone, as, even impersonal domestic use of the electricity in isolated sites or in town. As the conventional sources of energy are shrinking, a need has arisen to look for alternative sources of energy with more emphasis on its optimal use. This paper presents design of a sustainable Hybrid Power System (PV-Wind-Storage) assisted by grid as supplementary sources applied to case study residential house, to meet its entire energy demand. A Fuzzy control system model has been developed to optimize and control flow of power from these sources. This energy requirement is mainly fulfilled from PV and Wind energy stored in batteries module for critical load of a residential house and supplemented by grid for base and peak load. The system has been developed for maximum daily households load energy of 3kWh and can be scaled to any higher value as per requirement of individual /community house ranging from 3kWh/day to 10kWh/day, as per the requirement. The simulation work, using intelligent energy management, has resulted in an optimal yield leading to average reduction in cost of electricity by 50% per day.Keywords: photovoltaic (PV), wind turbine, battery, microcontroller, fuzzy control (FC), Matlab
Procedia PDF Downloads 6501099 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 1121098 Hybrid Nanostructures of Acrylonitrile Copolymers
Authors: A. Sezai Sarac
Abstract:
Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures
Procedia PDF Downloads 3841097 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan
Authors: Basit Aftab, Zhichao Wang, Feng Zhongke
Abstract:
Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.
Procedia PDF Downloads 351096 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1121095 Cost Effectiveness of Slit-Viscoelastic Dampers for Seismic Retrofit of Structures
Authors: Minsung Kim, Jinkoo Kim
Abstract:
In order to reduce or eliminate seismic damage in structures, many researchers have investigated various energy dissipation devices. In this study, the seismic capacity and cost of a slit-viscoelastic seismic retrofit system composed of a steel slit plate and viscoelastic dampers connected in parallel are evaluated. The combination of the two different damping mechanisms is expected to produce enhanced seismic performance of the building. The analysis model of the system is first derived using various link elements in the nonlinear dynamic analysis software Perform 3D, and fragility curves of the structure retrofitted with the dampers are obtained using incremental dynamic analyses. The analysis results show that the displacement of the structure equipped with the hybrid dampers is smaller than that of the structure with slit dampers due to the enhanced self-centering capability of the system. It is also observed that the initial cost of hybrid system required for the seismic retrofit is smaller than that of the structure with viscoelastic dampers. Acknowledgement: This research was financially supported by the Ministry of Trade, Industry and Energy(MOTIE) and Korea Institute for Advancement of Technology(KIAT) through the International Cooperative R&D program(N043100016_Development of low-cost high-performance seismic energy dissipation devices using viscoelastic material).Keywords: damped cable systems, seismic retrofit, viscous dampers, self-centering
Procedia PDF Downloads 2701094 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis
Procedia PDF Downloads 1281093 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability
Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher
Abstract:
Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectivelyKeywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge
Procedia PDF Downloads 761092 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic
Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac
Abstract:
In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepress whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analyzed through the tests, in this study, the applicability and possibility are proposed.Keywords: Carbon Fiber Reinforced Plastic(CFRP), Glass Fiber Reinforced Plastic(GFRP), stainless wire mesh, electromagnetic shielding
Procedia PDF Downloads 4171091 Functionalized Mesoporous Silica: Absorbents for Water Purification
Authors: Saima Nasreen, Uzaira Rafique, Shery Ehrman, Muhammad Aqeel Ashraf
Abstract:
The release of heavy metals into the environment is a potential threat to water and soil quality as well as to plant, animal and human health. In current research work, organically functionalized mesoporous silicates (MSU-H) were prepared by the co-condensation between sodium silicate and oregano alkoxysilanes in the presence of the nonionic surfactant triblock copolymer P104. The surfactant was used as a template for improving the porosity of the hybrid gels. Synthesized materials were characterized by TEM, FT-IR, SEM/EDX, TG, surface area analysis. The surface morphology and textural properties of such materials varied with various kinds of groups in the channels. In this study, removal of some heavy metals ions from aqueous solution by adsorption process was investigated. Batch adsorption studies show that the adsorption capacity of metal ions on the functionalized silicates is more than that on pure MSU-H. Data shows adsorption on synthesized materials is a time efficient process, suggesting adsorption on external surface as well as the mesoporous process. Adsorption models of Langmuir, Freundlich, and Temkin depicted equal goodness for all adsorbents, whereas pseudo 2nd order kinetics is in best agreement with experimental data.Keywords: heavy metals, mesoporous silica, hybrid, adsorption, freundlich, langmuir, temkin
Procedia PDF Downloads 2691090 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 3141089 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem
Authors: Boumesbah Asma, Chergui Mohamed El-amine
Abstract:
Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search
Procedia PDF Downloads 921088 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements
Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel
Abstract:
Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance
Procedia PDF Downloads 2951087 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia
Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi
Abstract:
Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.Keywords: APSIM, downscaling, response, SDSM
Procedia PDF Downloads 3831086 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 941085 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts
Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu
Abstract:
Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria
Procedia PDF Downloads 751084 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling
Procedia PDF Downloads 175