Search results for: graph convolutional networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3355

Search results for: graph convolutional networks

2695 Algorithmic Fault Location in Complex Gas Networks

Authors: Soban Najam, S. M. Jahanzeb, Ahmed Sohail, Faraz Idris Khan

Abstract:

With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources.

Keywords: FLA, fault location analysis, GDN, gas distribution network, GIS, geographic information system, NMS, network Management system, OMS, outage management system, SSGC, Sui Southern gas company, UFG, unaccounted for gas

Procedia PDF Downloads 632
2694 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO

Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero

Abstract:

Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.

Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control

Procedia PDF Downloads 370
2693 Topological Language for Classifying Linear Chord Diagrams via Intersection Graphs

Authors: Michela Quadrini

Abstract:

Chord diagrams occur in mathematics, from the study of RNA to knot theory. They are widely used in theory of knots and links for studying the finite type invariants, whereas in molecular biology one important motivation to study chord diagrams is to deal with the problem of RNA structure prediction. An RNA molecule is a linear polymer, referred to as the backbone, that consists of four types of nucleotides. Each nucleotide is represented by a point, whereas each chord of the diagram stands for one interaction for Watson-Crick base pairs between two nonconsecutive nucleotides. A chord diagram is an oriented circle with a set of n pairs of distinct points, considered up to orientation preserving diffeomorphisms of the circle. A linear chord diagram (LCD) is a special kind of graph obtained cutting the oriented circle of a chord diagram. It consists of a line segment, called its backbone, to which are attached a number of chords with distinct endpoints. There is a natural fattening on any linear chord diagram; the backbone lies on the real axis, while all the chords are in the upper half-plane. Each linear chord diagram has a natural genus of its associated surface. To each chord diagram and linear chord diagram, it is possible to associate the intersection graph. It consists of a graph whose vertices correspond to the chords of the diagram, whereas the chord intersections are represented by a connection between the vertices. Such intersection graph carries a lot of information about the diagram. Our goal is to define an LCD equivalence class in terms of identity of intersection graphs, from which many chord diagram invariants depend. For studying these invariants, we introduce a new representation of Linear Chord Diagrams based on a set of appropriate topological operators that permits to model LCD in terms of the relations among chords. Such set is composed of: crossing, nesting, and concatenations. The crossing operator is able to generate the whole space of linear chord diagrams, and a multiple context free grammar able to uniquely generate each LDC starting from a linear chord diagram adding a chord for each production of the grammar is defined. In other words, it allows to associate a unique algebraic term to each linear chord diagram, while the remaining operators allow to rewrite the term throughout a set of appropriate rewriting rules. Such rules define an LCD equivalence class in terms of the identity of intersection graphs. Starting from a modelled RNA molecule and the linear chord, some authors proposed a topological classification and folding. Our LCD equivalence class could contribute to the RNA folding problem leading to the definition of an algorithm that calculates the free energy of the molecule more accurately respect to the existing ones. Such LCD equivalence class could be useful to obtain a more accurate estimate of link between the crossing number and the topological genus and to study the relation among other invariants.

Keywords: chord diagrams, linear chord diagram, equivalence class, topological language

Procedia PDF Downloads 206
2692 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks

Authors: P. R. Dushantha Chaminda, Peng Kai

Abstract:

In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.

Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM

Procedia PDF Downloads 221
2691 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale

Authors: Imene Skhakhfa, Lahbaci Ouerdachi

Abstract:

To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.

Keywords: model calibration, intensity, runoff, hydrograph

Procedia PDF Downloads 488
2690 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs

Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar

Abstract:

The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.

Keywords: simulation, probability, confidence interval, sensitivity analysis

Procedia PDF Downloads 390
2689 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction

Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade

Abstract:

Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.

Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction

Procedia PDF Downloads 397
2688 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 460
2687 An Optimized Association Rule Mining Algorithm

Authors: Archana Singh, Jyoti Agarwal, Ajay Rana

Abstract:

Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.

Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph

Procedia PDF Downloads 426
2686 Exploring the Connectedness of Ad Hoc Mesh Networks in Rural Areas

Authors: Ibrahim Obeidat

Abstract:

Reaching a fully-connected network of mobile nodes in rural areas got a great attention between network researchers. This attention rose due to the complexity and high costs while setting up the needed infrastructures for these networks, in addition to the low transmission range these nodes has. Terranet technology, as an example, employs ad-hoc mesh network where each node has a transmission range not exceed one kilometer, this means that every two nodes are able to communicate with each other if they are just one kilometer far from each other, otherwise a third-party will play the role of the “relay”. In Terranet, and as an idea to reduce network setup cost, every node in the network will be considered as a router that is responsible of forwarding data between other nodes which result in a decentralized collaborative environment. Most researches on Terranet presents the idea of how to encourage mobile nodes to become more cooperative by letting their devices in “ON” state as long as possible while accepting to play the role of relay (router). This research presents the issue of finding the percentage of nodes in ad-hoc mesh network within rural areas that should play the role of relay at every time slot, relating to what is the actual area coverage of nodes in order to have the network reach the fully-connectivity. Far from our knowledge, till now there is no current researches discussed this issue. The research is done by making an implementation that depends on building adjacency matrix as an indicator to the connectivity between network members. This matrix is continually updated until each value in it refers to the number of hubs that should be followed to reach from one node to another. After repeating the algorithm on different area sizes, different coverage percentages for each size, and different relay percentages for several times, results extracted shows that for area coverage less than 5% we need to have 40% of the nodes to be relays, where 10% percentage is enough for areas with node coverage greater than 5%.

Keywords: ad-hoc mesh networks, network connectivity, mobile ad-hoc networks, Terranet, adjacency matrix, simulator, wireless sensor networks, peer to peer networks, vehicular Ad hoc networks, relay

Procedia PDF Downloads 287
2685 Simulation of Cybersecurity Attacks and Detection Using Machine Learning Techniques with Virtual Local Area Networks Integration

Authors: Sankenth Jalwad, Satyam, Suteerth Kalkeri, Vidula L. S., Geetha Dayalan

Abstract:

In today’s cyber landscape, threats are emerging every single day; they are much more advanced and dynamic than in the past within this cyber landscape. This project focuses on Virtual Local Area Networks or VLANs. VLANs provide the compartmentalization of sensitive information and optimal management of traffic but introduce specific vulnerabilities. Attackers also target VLAN configurations for exploitation of some security holes, such as VLAN hopping. The aim is to deal with such security requirements by developing a machine learning-based IDS for the VLAN environment that identifies in real time the patterns and anomalies signifying possible attacks. Apart from the IDS, it also looks at the generation of cyberattack datasets specific to VLANs with the help of Wireshark that will help train the ML model.

Keywords: cybersecurity, machine learning, VLAN networks, DTP, STP

Procedia PDF Downloads 12
2684 System Survivability in Networks in the Context of Defense/Attack Strategies: The Large Scale

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez, Mehdi Mrad

Abstract:

We investigate the large scale of networks in the context of network survivability under attack. We use appropriate techniques to evaluate and the attacker-based- and the defender-based-network survivability. The attacker is unaware of the operated links by the defender. Each attacked link has some pre-specified probability to be disconnected. The defender choice is so that to maximize the chance of successfully sending the flow to the destination node. The attacker however will select the cut-set with the highest chance to be disabled in order to partition the network. Moreover, we extend the problem to the case of selecting the best p paths to operate by the defender and the best k cut-sets to target by the attacker, for arbitrary integers p,k > 1. We investigate some variations of the problem and suggest polynomial-time solutions.

Keywords: defense/attack strategies, large scale, networks, partitioning a network

Procedia PDF Downloads 287
2683 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 101
2682 From the Sharing Economy to Social Manufacturing: Analyzing Collaborative Service Networks in the Manufacturing Domain

Authors: Babak Mohajeri

Abstract:

In recent years, the conventional business model of ownership has been changed towards accessibility in a variety of markets. Two trends can be observed in the evolution of this rental-like business model. Firstly, the technological development that enables the emergence of new business models. These new business models increasingly become agile and flexible. For example Spotify, an online music stream company provides consumers access to over millions of music tracks, conveniently through the smartphone, tablet or computer. Similarly, Car2Go, the car sharing company accesses its members with flexible and nearby sharing cars. The second trend is the increasing communication and connections via social networks. This trend enables a shift to peer-to-peer accessibility based business models. Conventionally, companies provide access for their customers to own companies products or services. In peer-to-peer model, nonetheless, companies facilitate access and connection across their customers to use other customers owned property or skills, competencies or services .The is so-called the sharing economy business model. The aim of this study is to investigate into a new and emerging type of the sharing economy model in which role of customers and service providers may dramatically change. This new model is called Collaborative Service Networks. We propose a mechanism for Collaborative Service Networks business model. Uber and Airbnb, two successful growing companies, have been selected for our case studies and their business models are analyzed. Finally, we study the emergence of the collaborative service networks in the manufacturing domain. Our finding results to a new manufacturing paradigm called social manufacturing.

Keywords: sharing economy, collaborative service networks, social manufacturing, manufacturing development

Procedia PDF Downloads 322
2681 Simulation as a Problem-Solving Spotter for System Reliability

Authors: Wheyming Tina Song, Chi-Hao Hong, Peisyuan Lin

Abstract:

An important performance measure for stochastic manufacturing networks is the system reliability, defined as the probability that the production output meets or exceeds a specified demand. The system parameters include the capacity of each workstation and numbers of the conforming parts produced in each workstation. We establish that eighteen archival publications, containing twenty-one examples, provide incorrect values of the system reliability. The author recently published the Song Rule, which provides the correct analytical system-reliability value; it is, however, computationally inefficient for large networks. In this paper, we use Monte Carlo simulation (implemented in C and Flexsim) to provide estimates for the above-mentioned twenty-one examples. The simulation estimates are consistent with the analytical solution for small networks but is computationally efficient for large networks. We argue here for three advantages of Monte Carlo simulation: (1) understanding stochastic systems, (2) validating analytical results, and (3) providing estimates even when analytical and numerical approaches are overly expensive in computation. Monte Carlo simulation could have detected the published analysis errors.

Keywords: Monte Carlo simulation, analytical results, leading digit rule, standard error

Procedia PDF Downloads 368
2680 Singularization: A Technique for Protecting Neural Networks

Authors: Robert Poenaru, Mihail Pleşa

Abstract:

In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.

Keywords: machine learning, ANE, CNN, security

Procedia PDF Downloads 20
2679 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 457
2678 Regularization of Gene Regulatory Networks Perturbed by White Noise

Authors: Ramazan I. Kadiev, Arcady Ponosov

Abstract:

Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.

Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities

Procedia PDF Downloads 200
2677 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation

Procedia PDF Downloads 448
2676 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 168
2675 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 194
2674 System Survivability in Networks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

We consider the problem of attacks on networks. We define the concept of system survivability in networks in the presence of intelligent threats. Our setting of the problem assumes a flow to be sent from one source node to a destination node. The attacker attempts to disable the network by preventing the flow to reach its destination while the defender attempts to identify the best path-set to use to maximize the chance of arrival of the flow to the destination node. Our concept is shown to be different from the classical concept of network reliability. We distinguish two types of network survivability related to the defender and to the attacker of the network, respectively. We prove that the defender-based-network survivability plays the role of a lower bound while the attacker-based-network survivability plays the role of an upper bound of network reliability. We also prove that both concepts almost never agree nor coincide with network reliability. Moreover, we use the shortest-path problem to determine the defender-based-network survivability and the min-cut problem to determine the attacker-based-network survivability. We extend the problem to a variety of models including the minimum-spanning-tree problem and the multiple source-/destination-network problems.

Keywords: defense/attack strategies, information, networks, reliability, survivability

Procedia PDF Downloads 400
2673 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 359
2672 Collaboration in Palliative Care Networks in Urban and Rural Regions of Switzerland

Authors: R. Schweighoffer, N. Nagy, E. Reeves, B. Liebig

Abstract:

Due to aging populations, the need for seamless palliative care provision is of central interest for western societies. An essential aspect of palliative care delivery is the quality of collaboration amongst palliative care providers. Therefore, the current research is based on Bainbridge’s conceptual framework, which provides an outline for the evaluation of palliative care provision. This study is the first one to investigate the predictive validity of spatial distribution on the quantity of interaction amongst various palliative care providers. Furthermore, based on the familiarity principle, we examine whether the extent of collaboration influences the perceived quality of collaboration among palliative care providers in urban versus rural areas of Switzerland. Based on a population-representative survey of Swiss palliative care providers, the results of the current study show that professionals in densely populated areas report higher absolute numbers of interactions and are more satisfied with their collaborative practice. This indicates that palliative care providers who work in urban areas are better embedded into networks than their counterparts in more rural areas. The findings are especially important, considering that efficient collaboration is a prerequisite to achieve satisfactory patient outcomes. Conclusively, measures should be taken to foster collaboration in weakly interconnected palliative care networks.

Keywords: collaboration, healthcare networks, palliative care, Switzerland

Procedia PDF Downloads 273
2671 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 122
2670 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application

Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior

Abstract:

Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.

Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks

Procedia PDF Downloads 175
2669 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 124
2668 Some Results on Cluster Synchronization

Authors: Shahed Vahedi, Mohd Salmi Md Noorani

Abstract:

This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results.

Keywords: cluster synchronization, adaptive control, community network, simulation

Procedia PDF Downloads 481
2667 Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach

Authors: Nada Souissi, Mourad Mroua

Abstract:

The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index.

Keywords: Financial asset return predictability, Economic factors, Investor's psychology index, Bayesian approach, Probabilistic networks, Parametric learning

Procedia PDF Downloads 155
2666 Preparation of 1D Nano-Polyaniline/Dendritic Silver Composites

Authors: Wen-Bin Liau, Wan-Ting Wang, Chiang-Jen Hsiao, Sheng-Mao Tseng

Abstract:

In this paper, an interesting and easy method to prepare one-dimensional nanostructured polyaniline/dendritic silver composites is reported. It is well known that the morphology of metal particle is a very important factor to influence the properties of polymer-metal composites. Usually, the dendritic silver is prepared by kinetic control in reduction reaction. It is not a thermodynamically stable structure. It is the goal to reduce silver ion to dendritic silver by polyaniline polymer via kinetic control and form one-dimensional nanostructured polyaniline/dendritic silver composites. The preparation is a two steps sequential reaction. First step, the polyaniline networks composed of nano fibrillar polyaniline are synthesized from aniline monomers aqueous with ammonium persulfate as the initiator at room temperature. In second step, the silver nitrate is added into polyaniline networks dispersed in deionized water. The dendritic silver is formed via reduction by polyaniline networks under the kinetic control. The formation of polyaniline is discussed via transmission electron microscopy (TEM). Nanosheets, nanotubes, nanospheres, nanosticks, and networks are observed via TEM. Then, the mechanism of formation of one-dimensional nanostructured polyaniline/dendritic silver composites is discussed. The formation of dendritic silver is observed by TEM and X-ray diffraction.

Keywords: 1D nanostructured polyaniline, dendritic silver, synthesis

Procedia PDF Downloads 505