Search results for: cloud computing privacy
1118 Big Data Analysis with Rhipe
Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim
Abstract:
Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe
Procedia PDF Downloads 4971117 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty
Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih
Abstract:
In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization
Procedia PDF Downloads 1251116 Saving Energy through Scalable Architecture
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.Keywords: scalable architectures, sustainability, application design, disruptive technology, machine learning and natural language processing, AI, social media platform, cloud computing, advanced networking and storage devices, advanced monitoring and metering infrastructure, climate change
Procedia PDF Downloads 1061115 A Case Study in Using Gamification in the Mobile Computing Course
Authors: Rula Al Azawi, Abobaker Shafi
Abstract:
The purpose of this paper is to use gamification technology in the mobile computing course to increase students motivation and engagement. The game applied to be designed by students focusing also to design educational game for children with age six years. This game will teach the students how to learn in a fun way. Our case study is implemented at Gulf College which is affiliated with Staffordshire University-UK. Our game design was applied to teach students Android Studio software by designing an educational game. Our goal with gamification is to improve student attendance, increase student engagement, problem solving and user stratification. Finally, we describe the findings and results of our case study. The data analysis and evaluation are based on students feedback, staff feedback and the final marking grades for the students.Keywords: gamification, educational game, android studio software, students motivation and engagement
Procedia PDF Downloads 4551114 A New Method to Reduce 5G Application Layer Payload Size
Authors: Gui Yang Wu, Bo Wang, Xin Wang
Abstract:
Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.Keywords: 5G, JSON, payload size, service-based interface
Procedia PDF Downloads 1801113 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors
Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara
Abstract:
Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement
Procedia PDF Downloads 1211112 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries
Authors: Gaurav Kumar Sinha
Abstract:
In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency
Procedia PDF Downloads 641111 Ethical Artificial Intelligence: An Exploratory Study of Guidelines
Authors: Ahmad Haidar
Abstract:
The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI
Procedia PDF Downloads 931110 A Vehicle Monitoring System Based on the LoRa Technique
Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang
Abstract:
Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.Keywords: LoRa, monitoring system, smart city, vehicle
Procedia PDF Downloads 4161109 Unified Theory of Acceptance and Use of Technology in Evaluating Voters' Intention Towards the Adoption of Electronic Forensic Election Audit System
Authors: Sijuade A. A., Oguntoye J. P., Awodoye O. O., Adedapo O. A., Wahab W. B., Okediran O. O., Omidiora E. O., Olabiyisi S. O.
Abstract:
Electronic voting systems have been introduced to improve the efficiency, accuracy, and transparency of the election process in many countries around the world, including Nigeria. However, concerns have been raised about the security and integrity of these systems. One way to address these concerns is through the implementation of electronic forensic election audit systems. This study aims to evaluate voters' intention to the adoption of electronic forensic election audit systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. In the study, the UTAUT model which is a widely used model in the field of information systems to explain the factors that influence individuals' intention to use a technology by integrating performance expectancy, effort expectancy, social influence, facilitating conditions, cost factor and privacy factor to voters’ behavioural intention was proposed. A total of 294 sample data were collected from a selected population of electorates who had at one time or the other participated in at least an electioneering process in Nigeria. The data was then analyzed statistically using Partial Least Square Structural Equation Modeling (PLS-SEM). The results obtained show that all variables have a significant effect on the electorates’ behavioral intention to adopt the development and implementation of an electronic forensic election audit system in Nigeria.Keywords: election Audi, voters, UTAUT, performance expectancy, effort expectancy, social influence, facilitating condition social influence, facilitating conditions, cost factor, privacy factor, behavioural intention
Procedia PDF Downloads 731108 Analysis of Tourism Development Level and Research on Improvement Strategies - Take Chongqing as an Example
Abstract:
As a member of the tertiary industry, tourism is an important driving factor for urban economic development. As a well-known tourist city in China, according to statistics, the added value of tourism and related industries in 2022 will reach 106.326 billion yuan, a year-on-year increase of 1.2%, accounting for 3.7% of the city's GDP. However, the overall tourism development level of Chongqing is seriously unbalanced, and the tourism strength of the main urban area is much higher than that of the southeast Chongqing, northeast Chongqing and the surrounding city tourism area, and the overall tourism strength of the other three regions is relatively balanced. Based on the estimation of tourism development level and the geographic detector method, this paper finds that the important factors affecting the tourism development level of non-main urban areas in Chongqing are A-level tourist attractions. Through GIS geospatial analysis technology and SPSS data correlation research method, the spatial distribution characteristics and influencing factors of A-level tourist attractions in Chongqing were quantitatively analyzed by using data such as geospatial data cloud, relevant documents of Chongqing Municipal Commission of Culture and Tourism Development, planning cloud, and relevant statistical yearbooks. The results show that: (1) The spatial distribution of tourist attractions in non-main urban areas of Chongqing is agglomeration and uneven. (2) The spatial distribution of A-level tourist attractions in non-main urban areas of Chongqing is affected by ecological factors, and the degree of influence is in the order of water factors> topographic factors > green space factors.Keywords: tourist attractions, geographic detectors, quantitative research, ecological factors, GIS technology, SPSS analysis
Procedia PDF Downloads 91107 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study
Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan
Abstract:
Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation
Procedia PDF Downloads 2251106 A Parallel Algorithm for Solving the PFSP on the Grid
Authors: Samia Kouki
Abstract:
Solving NP-hard combinatorial optimization problems by exact search methods, such as Branch-and-Bound, may degenerate to complete enumeration. For that reason, exact approaches limit us to solve only small or moderate size problem instances, due to the exponential increase in CPU time when problem size increases. One of the most promising ways to reduce significantly the computational burden of sequential versions of Branch-and-Bound is to design parallel versions of these algorithms which employ several processors. This paper describes a parallel Branch-and-Bound algorithm called GALB for solving the classical permutation flowshop scheduling problem as well as its implementation on a Grid computing infrastructure. The experimental study of our distributed parallel algorithm gives promising results and shows clearly the benefit of the parallel paradigm to solve large-scale instances in moderate CPU time.Keywords: grid computing, permutation flow shop problem, branch and bound, load balancing
Procedia PDF Downloads 2831105 A TiO₂-Based Memristor Reliable for Neuromorphic Computing
Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang
Abstract:
A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based
Procedia PDF Downloads 891104 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality
Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya
Abstract:
Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.Keywords: augmented reality, data analytics, catch room, marketing and sales
Procedia PDF Downloads 2371103 ESRA: An End-to-End System for Re-identification and Anonymization of Swiss Court Decisions
Authors: Joel Niklaus, Matthias Sturmer
Abstract:
The publication of judicial proceedings is a cornerstone of many democracies. It enables the court system to be made accountable by ensuring that justice is made in accordance with the laws. Equally important is privacy, as a fundamental human right (Article 12 in the Declaration of Human Rights). Therefore, it is important that the parties (especially minors, victims, or witnesses) involved in these court decisions be anonymized securely. Today, the anonymization of court decisions in Switzerland is performed either manually or semi-automatically using primitive software. While much research has been conducted on anonymization for tabular data, the literature on anonymization for unstructured text documents is thin and virtually non-existent for court decisions. In 2019, it has been shown that manual anonymization is not secure enough. In 21 of 25 attempted Swiss federal court decisions related to pharmaceutical companies, pharmaceuticals, and legal parties involved could be manually re-identified. This was achieved by linking the decisions with external databases using regular expressions. An automated re-identification system serves as an automated test for the safety of existing anonymizations and thus promotes the right to privacy. Manual anonymization is very expensive (recurring annual costs of over CHF 20M in Switzerland alone, according to an estimation). Consequently, many Swiss courts only publish a fraction of their decisions. An automated anonymization system reduces these costs substantially, further leading to more capacity for publishing court decisions much more comprehensively. For the re-identification system, topic modeling with latent dirichlet allocation is used to cluster an amount of over 500K Swiss court decisions into meaningful related categories. A comprehensive knowledge base with publicly available data (such as social media, newspapers, government documents, geographical information systems, business registers, online address books, obituary portal, web archive, etc.) is constructed to serve as an information hub for re-identifications. For the actual re-identification, a general-purpose language model is fine-tuned on the respective part of the knowledge base for each category of court decisions separately. The input to the model is the court decision to be re-identified, and the output is a probability distribution over named entities constituting possible re-identifications. For the anonymization system, named entity recognition (NER) is used to recognize the tokens that need to be anonymized. Since the focus lies on Swiss court decisions in German, a corpus for Swiss legal texts will be built for training the NER model. The recognized named entities are replaced by the category determined by the NER model and an identifier to preserve context. This work is part of an ongoing research project conducted by an interdisciplinary research consortium. Both a legal analysis and the implementation of the proposed system design ESRA will be performed within the next three years. This study introduces the system design of ESRA, an end-to-end system for re-identification and anonymization of Swiss court decisions. Firstly, the re-identification system tests the safety of existing anonymizations and thus promotes privacy. Secondly, the anonymization system substantially reduces the costs of manual anonymization of court decisions and thus introduces a more comprehensive publication practice.Keywords: artificial intelligence, courts, legal tech, named entity recognition, natural language processing, ·privacy, topic modeling
Procedia PDF Downloads 1481102 Computer-Aided Depression Screening: A Literature Review on Optimal Methodologies for Mental Health Screening
Authors: Michelle Nighswander
Abstract:
Suicide can be a tragic response to mental illness. It is difficult for people to disclose or discuss suicidal impulses. The stigma surrounding mental health can create a reluctance to seek help for mental illness. Patients may feel pressure to exhibit a socially desirable demeanor rather than reveal these issues, especially if they sense their healthcare provider is pressed for time or does not have an extensive history with their provider. Overcoming these barriers can be challenging. Although there are several validated depression and suicide risk instruments, varying processes used to administer these tools may impact the truthfulness of the responses. A literature review was conducted to find evidence of the impact of the environment on the accuracy of depression screening. Many investigations do not describe the environment and fewer studies use a comparison design. However, three studies demonstrated that computerized self-reporting might be more likely to elicit truthful and accurate responses due to increased privacy when responding compared to a face-to-face interview. These studies showed patients reported positive reactions to computerized screening for other stigmatizing health conditions such as alcohol use during pregnancy. Computerized self-screening for depression offers the possibility of more privacy and patient reflection, which could then send a targeted message of risk to the healthcare provider. This could potentially increase the accuracy while also increasing time efficiency for the clinic. Considering the persistent effects of mental health stigma, how these screening questions are posed can impact patients’ responses. This literature review analyzes trends in depression screening methodologies, the impact of setting on the results and how this may assist in overcoming one barrier caused by stigma.Keywords: computerized self-report, depression, mental health stigma, suicide risk
Procedia PDF Downloads 1291101 2016 Taiwan's 'Health and Physical Education Field of 12-Year Basic Education Curriculum Outline (Draft)' Reform and Its Implications
Authors: Hai Zeng, Yisheng Li, Jincheng Huang, Chenghui Huang, Ying Zhang
Abstract:
Children are strong; the country strong, the development of children Basketball is a strategic advantage. Common forms of basketball equipment has been difficult to meet the needs of young children teaching the game of basketball, basketball development for 3-6 years old children in the form of appropriate teaching aids is a breakthrough basketball game teaching children bottlenecks, improve teaching critical path pleasure, but also the development of early childhood basketball a necessary requirement. In this study, literature, questionnaires, focus group interviews, comparative analysis, for domestic and foreign use of 12 kinds of basketball teaching aids (cloud computing MINI basketball, adjustable basketball MINI, MINI basketball court, shooting assist paw print ball, dribble goggles, dribbling machine, machine cartoon shooting, rebounding machine, against the mat, elastic belt, ladder, fitness ball), from fun and improve early childhood shooting technique, dribbling technology, as well as offensive and defensive rebounding against technology conduct research on conversion technology. The results show that by using appropriate forms of teaching children basketball aids, can effectively improve children's fun basketball game, targeted to improve a technology, different types of aids from different perspectives enrich the connotation of children basketball game. Recommended for children of color psychology, cartoon and environmentally friendly material production aids, and increase research efforts basketball aids children, encourage children to sports teachers aids applications.Keywords: health and physical education field of curriculum outline, health fitness, sports and health curriculum reform, Taiwan, twelve years basic education
Procedia PDF Downloads 3931100 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design
Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler
Abstract:
When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing
Procedia PDF Downloads 791099 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework
Authors: Mayada Al Meghari
Abstract:
Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance
Procedia PDF Downloads 1191098 Training for Digital Manufacturing: A Multilevel Teaching Model
Authors: Luís Rocha, Adam Gąska, Enrico Savio, Michael Marxer, Christoph Battaglia
Abstract:
The changes observed in the last years in the field of manufacturing and production engineering, popularly known as "Fourth Industry Revolution", utilizes the achievements in the different areas of computer sciences, introducing new solutions at almost every stage of the production process, just to mention such concepts as mass customization, cloud computing, knowledge-based engineering, virtual reality, rapid prototyping, or virtual models of measuring systems. To effectively speed up the production process and make it more flexible, it is necessary to tighten the bonds connecting individual stages of the production process and to raise the awareness and knowledge of employees of individual sectors about the nature and specificity of work in other stages. It is important to discover and develop a suitable education method adapted to the specificities of each stage of the production process, becoming an extremely crucial issue to exploit the potential of the fourth industrial revolution properly. Because of it, the project “Train4Dim” (T4D) intends to develop complex training material for digital manufacturing, including content for design, manufacturing, and quality control, with a focus on coordinate metrology and portable measuring systems. In this paper, the authors present an approach to using an active learning methodology for digital manufacturing. T4D main objective is to develop a multi-degree (apprenticeship up to master’s degree studies) and educational approach that can be adapted to different teaching levels. It’s also described the process of creating the underneath methodology. The paper will share the steps to achieve the aims of the project (training model for digital manufacturing): 1) surveying the stakeholders, 2) Defining the learning aims, 3) producing all contents and curriculum, 4) training for tutors, and 5) Pilot courses test and improvements.Keywords: learning, Industry 4.0, active learning, digital manufacturing
Procedia PDF Downloads 971097 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)
Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo
Abstract:
Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop
Procedia PDF Downloads 4031096 Smart City Solutions for Enhancing the Cultural and Historic Value of Urban Heritage Sites
Authors: Farnoosh Faal
Abstract:
The trend among smart cities is to incorporate technological advancements to better manage and protect their cultural heritage sites. This study investigates how smart city solutions can improve the cultural and historical significance of urban heritage sites and assesses present practices and potential for the future. The paper delves into the literature to examine how smart city technologies can be utilized to increase knowledge and respect for cultural heritage, as well as promote sustainable tourism and economic growth. The article reviews various instances of smart city initiatives across different regions of the world, pinpointing innovative tactics and best practices in improving the cultural and historical worth of urban heritage sites. Additionally, it analyzes the difficulties and limitations associated with implementing these solutions, including community involvement, privacy concerns, and data management issues. The conclusions drawn from this paper propose that smart city solutions offer a substantial opportunity to augment the cultural and historical value of urban heritage sites. By effectively integrating technology into heritage management, there can be greater comprehension and admiration for cultural heritage, enhanced visitor experience, and support for sustainable tourism. However, to fully exploit the potential of smart city solutions in this context, it is crucial to prioritize community engagement and participation, as well as ensure that data management practices are transparent, responsible, and respectful of privacy. In summary, this paper offers guidance and advice to policymakers, urban planners, and heritage management professionals who want to increase the cultural and historical significance of urban heritage sites through the application of smart city solutions. It emphasizes the significance of creating comprehensive and cooperative strategies, as well as ensuring that efforts to preserve heritage are sustainable, fair, and efficient.Keywords: smart city, Urban heritage, sustainable tourism, heritage preservation
Procedia PDF Downloads 921095 Communication of Sensors in Clustering for Wireless Sensor Networks
Authors: Kashish Sareen, Jatinder Singh Bal
Abstract:
The use of wireless sensor networks (WSNs) has grown vastly in the last era, pointing out the crucial need for scalable and energy-efficient routing and data gathering and aggregation protocols in corresponding large-scale environments. Wireless Sensor Networks have now recently emerged as a most important computing platform and continue to grow in diverse areas to provide new opportunities for networking and services. However, the energy constrained and limited computing resources of the sensor nodes present major challenges in gathering data. The sensors collect data about their surrounding and forward it to a command centre through a base station. The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) as they are very useful in target detecting and other applications. However, hierarchical clustering protocols have maximum been used in to overall system lifetime, scalability and energy efficiency. In this paper, the state of the art in corresponding hierarchical clustering approaches for large-scale WSN environments is shown.Keywords: clustering, DLCC, MLCC, wireless sensor networks
Procedia PDF Downloads 4811094 The Recording of Personal Data in the Spanish Criminal Justice System and Its Impact on the Right to Privacy
Authors: Deborah García-Magna
Abstract:
When a person goes through the criminal justice system, either as a suspect, arrested, prosecuted or convicted, certain personal data are recorded, and a wide range of persons and organizations may have access to it. The recording of data can have a great impact on the daily life of the person concerned during the period of time determined by the legislation. In addition, this registered information can refer to various aspects not strictly related directly to the alleged or actually committed infraction. In some areas, the Spanish legislation does not clearly determine the cancellation period of the registers nor what happens when they are cancelled since some of the files are not really erased and remain recorded, even if their consultation is no more allowed or it is stated that they should not be taken into account. Thus, access to the recorded data of arrested or convicted persons may reduce their possibilities of reintegration into society. In this research, some of the areas in which data recording has a special impact on the lives of affected persons are analyzed in a critical manner, taking into account Spanish legislation and jurisprudence, and the influence of the European Court of Human Rights, the Council of Europe and other supranational instruments. In particular, the analysis cover the scope of video-surveillance in public spaces, the police record, the recording of personal data for the purposes of police investigation (especially DNA and psychological profiles), the registry of administrative and minor offenses (especially as they are taken into account to impose aggravating circumstaces), criminal records (of adults, minors and legal entities), and the registration of special circumstances occurred during the execution of the sentence (files of inmates under special surveillance –FIES–, disciplinary sanctions, special therapies in prison, etc.).Keywords: ECHR jurisprudence, formal and informal criminal control, privacy, disciplinary sanctions, social reintegration
Procedia PDF Downloads 1441093 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 1261092 An Exploratory Investigation into the Quality of Life of People with Multi-Drug Resistant Pulmonary Tuberculosis (MDR-PTB) Using the ICF Core Sets: A Preliminary Investigation
Authors: Shamila Manie, Soraya Maart, Ayesha Osman
Abstract:
Introduction: People diagnosed with multidrug resistant pulmonary tuberculosis (MDR-PTB) is subjected to prolonged hospitalization in South Africa. It has thus become essential for research to shift its focus from a purely medical approach, but to include social and environmental factors when looking at the impact of the disease on those affected. Aim: To explore the factors affecting individuals with multi-drug resistant pulmonary tuberculosis during long-term hospitalization using the comprehensive ICF core-sets for obstructive pulmonary disease (OPD) and cardiopulmonary (CPR) conditions at Brooklyn Chest Hospital (BCH). Methods: A quantitative descriptive, cross-sectional study design was utilized. A convenient sample of 19 adults at Brooklyn Chest Hospital were interviewed. Results: Most participants reported a decrease in exercise tolerance levels (b455: n=11). However it did not limit participation. Participants reported that a lack of privacy in the environment (e155) was a barrier to health. The presence of health professionals (e355) and the provision of skills development services (e585) are facilitators to health and well-being. No differences exist in the functional ability of HIV positive and negative participants in this sample. Conclusion: The ICF Core Sets appeared valid in identifying the barriers and facilitators experienced by individuals with MDR-PTB admitted to BCH. The hospital environment must be improved to add to the QoL of those admitted, especially improving privacy within the wards. Although the social grant is seen as a facilitator, greater emphasis must be placed on preparing individuals to be economically active in the labour for when they are discharged.Keywords: multidrug resistant tuberculosis, MDR ICF core sets, health-related quality of life (HRQoL), hospitalization
Procedia PDF Downloads 3461091 Digital Homeostasis: Tangible Computing as a Multi-Sensory Installation
Authors: Andrea Macruz
Abstract:
This paper explores computation as a process for design by examining how computers can become more than an operative strategy in a designer's toolkit. It documents this, building upon concepts of neuroscience and Antonio Damasio's Homeostasis Theory, which is the control of bodily states through feedback intended to keep conditions favorable for life. To do this, it follows a methodology through algorithmic drawing and discusses the outcomes of three multi-sensory design installations, which culminated from a course in an academic setting. It explains both the studio process that took place to create the installations and the computational process that was developed, related to the fields of algorithmic design and tangible computing. It discusses how designers can use computational range to achieve homeostasis related to sensory data in a multi-sensory installation. The outcomes show clearly how people and computers interact with different sensory modalities and affordances. They propose using computers as meta-physical stabilizers rather than tools.Keywords: algorithmic drawing, Antonio Damasio, emotion, homeostasis, multi-sensory installation, neuroscience
Procedia PDF Downloads 1061090 First Systematic Review on Aerosol Bound Water: Exploring the Existing Knowledge Domain Using the CiteSpace Software
Authors: Kamila Widziewicz-Rzonca
Abstract:
The presence of PM bound water as an integral chemical compound of suspended aerosol particles (PM) has become one of the hottest issues in recent years. The UN climate summits on climate change (COP24) indicate that PM of anthropogenic origin (released mostly from coal combustion) is directly responsible for climate change. Chemical changes at the particle-liquid (water) interface determine many phenomena occurring in the atmosphere such as visibility, cloud formation or precipitation intensity. Since water-soluble particles such as nitrates, sulfates, or sea salt easily become cloud condensation nuclei, they affect the climate for example by increasing cloud droplet concentration. Aerosol water is a master component of atmospheric aerosols and a medium that enables all aqueous-phase reactions occurring in the atmosphere. Thanks to a thorough bibliometric analysis conducted using CiteSpace Software, it was possible to identify past trends and possible future directions in measuring aerosol-bound water. This work, in fact, doesn’t aim at reviewing the existing literature in the related topic but is an in-depth bibliometric analysis exploring existing gaps and new frontiers in the topic of PM-bound water. To assess the major scientific areas related to PM-bound water and clearly define which among those are the most active topics we checked Web of Science databases from 1996 till 2018. We give an answer to the questions: which authors, countries, institutions and aerosol journals to the greatest degree influenced PM-bound water research? Obtained results indicate that the paper with the greatest citation burst was Tang In and Munklewitz H.R. 'water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance', 1994. The largest number of articles in this specific field was published in atmospheric chemistry and physics. An absolute leader in the quantity of publications among all research institutions is the National Aeronautics Space Administration (NASA). Meteorology and atmospheric sciences is a category with the most studies in this field. A very small number of studies on PM-bound water conduct a quantitative measurement of its presence in ambient particles or its origin. Most articles rather point PM-bound water as an artifact in organic carbon and ions measurements without any chemical analysis of its contents. This scientometric study presents the current and most actual literature regarding particulate bound water.Keywords: systematic review, aerosol-bound water, PM-bound water, CiteSpace, knowledge domain
Procedia PDF Downloads 1231089 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Authors: Maciej Jedrzejczyk, Karolina Marzantowicz
Abstract:
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids
Procedia PDF Downloads 300