Search results for: adobe masonry buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1842

Search results for: adobe masonry buildings

1182 Environmental Impact of a New-Build Educational Building in England: Life-Cycle Assessment as a Method to Calculate Whole Life Carbon Emissions

Authors: Monkiz Khasreen

Abstract:

In the context of the global trend towards reducing new buildings carbon footprint, the design team is required to make early decisions that have a major influence on embodied and operational carbon. Sustainability strategies should be clear during early stages of building design process, as changes made later can be extremely costly. Life-Cycle Assessment (LCA) could be used as the vehicle to carry other tools and processes towards achieving the requested improvement. Although LCA is the ‘golden standard’ to evaluate buildings from 'cradle to grave', lack of details available on the concept design makes LCA very difficult, if not impossible, to be used as an estimation tool at early stages. Issues related to transparency and accessibility of information in the building industry are affecting the credibility of LCA studies. A verified database derived from LCA case studies is required to be accessible to researchers, design professionals, and decision makers in order to offer guidance on specific areas of significant impact. This database could be the build-up of data from multiple sources within a pool of research held in this context. One of the most important factors that affects the reliability of such data is the temporal factor as building materials, components, and systems are rapidly changing with the advancement of technology making production more efficient and less environmentally harmful. Recent LCA studies on different building functions, types, and structures are always needed to update databases derived from research and to form case bases for comparison studies. There is also a need to make these studies transparent and accessible to designers. The work in this paper sets out to address this need. This paper also presents life-cycle case study of a new-build educational building in England. The building utilised very current construction methods and technologies and is rated as BREEAM excellent. Carbon emissions of different life-cycle stages and different building materials and components were modelled. Scenario and sensitivity analyses were used to estimate the future of new educational buildings in England. The study attempts to form an indicator during the early design stages of similar buildings. Carbon dioxide emissions of this case study building, when normalised according to floor area, lie towards the lower end of the range of worldwide data reported in the literature. Sensitivity analysis shows that life cycle assessment results are highly sensitive to future assumptions made at the design stage, such as future changes in electricity generation structure over time, refurbishment processes and recycling. The analyses also prove that large savings in carbon dioxide emissions can result from very small changes at the design stage.

Keywords: architecture, building, carbon dioxide, construction, educational buildings, England, environmental impact, life-cycle assessment

Procedia PDF Downloads 100
1181 Aerial Survey and 3D Scanning Technology Applied to the Survey of Cultural Heritage of Su-Paiwan, an Aboriginal Settlement, Taiwan

Authors: April Hueimin Lu, Liangj-Ju Yao, Jun-Tin Lin, Susan Siru Liu

Abstract:

This paper discusses the application of aerial survey technology and 3D laser scanning technology in the surveying and mapping work of the settlements and slate houses of the old Taiwanese aborigines. The relics of old Taiwanese aborigines with thousands of history are widely distributed in the deep mountains of Taiwan, with a vast area and inconvenient transportation. When constructing the basic data of cultural assets, it is necessary to apply new technology to carry out efficient and accurate settlement mapping work. In this paper, taking the old Paiwan as an example, the aerial survey of the settlement of about 5 hectares and the 3D laser scanning of a slate house were carried out. The obtained orthophoto image was used as an important basis for drawing the settlement map. This 3D landscape data of topography and buildings derived from the aerial survey is important for subsequent preservation planning as well as building 3D scan provides a more detailed record of architectural forms and materials. The 3D settlement data from the aerial survey can be further applied to the 3D virtual model and animation of the settlement for virtual presentation. The information from the 3D scanning of the slate house can also be used for further digital archives and data queries through network resources. The results of this study show that, in large-scale settlement surveys, aerial surveying technology is used to construct the topography of settlements with buildings and spatial information of landscape, as well as the application of 3D scanning for small-scale records of individual buildings. This application of 3D technology, greatly increasing the efficiency and accuracy of survey and mapping work of aboriginal settlements, is much helpful for further preservation planning and rejuvenation of aboriginal cultural heritage.

Keywords: aerial survey, 3D scanning, aboriginal settlement, settlement architecture cluster, ecological landscape area, old Paiwan settlements, slat house, photogrammetry, SfM, MVS), Point cloud, SIFT, DSM, 3D model

Procedia PDF Downloads 141
1180 Vegetation Integrated with Architecture: A Comparative Study in Vijayawada

Authors: Clince Rodrigues

Abstract:

Due to high dense areas, there is a continuous increase in the global warming and urban pollution, thus integrating green with the built environment is vital. The paper deals with the understanding of vegetation in architecture and how a proper design strategy can aim at improving not only the performances of buildings but also the outdoor climate. In the present scenario of cities, one cannot inhale pure air. Vegetations combat global warming by absorbing the carbon emitted by vehicles, lowering carbon emissions from fossil fuel-burning plants, and reducing the energy used for climate control in buildings by the use of plants which can reduce the carbon emission and thus, making the environment less polluted. A comparative study of areas, neighborhood and dwelling unit has been used as a scope for understanding different scenarios and scale. By comparing a system (area; building) with and without vegetation, and then finding out the difference. Understanding the Vijayawada city by taking its past and present conditions, and how these changes have affected the environment and people at a macro and micro level. Built environment and climactic performance at the building level and surrounding spaces are the areas that are covered in the study.

Keywords: climate, environment, neighborhood, pollution, vegetation, Vijayawada, urban

Procedia PDF Downloads 139
1179 Estimation of Seismic Drift Demands for Inelastic Shear Frame Structures

Authors: Ali Etemadi, Polat H. Gulkan

Abstract:

The drift spectrum derived through the continuous shear-beam and wave propagation theory is known to be useful appliance to measure of the demand of pulse like near field ground motions on building structures. As regards, many of old frame buildings with poor or non-ductile column elements, pass the elastic limits and blurt the post yielding hysteresis degradation responses when subjected to such impulsive ground motions. The drift spectrum which, is based on a linear system cannot be predicted the overestimate drift demands arising from inelasticity in an elastic plastic systems. A simple procedure to estimate the drift demands in shear-type frames which, respond over the elastic limits is described and effect of hysteresis degradation behavior on seismic demands is clarified. Whereupon the modification factors are proposed to incorporate the hysteresis degradation effects parametrically. These factors are defined with respected to the linear systems. The method can be applicable for rapid assessment of existing poor detailed, non-ductile buildings.

Keywords: drift spectrum, shear-type frame, stiffness and strength degradation, pinching, smooth hysteretic model, quasi static analysis

Procedia PDF Downloads 508
1178 Evaluation of Energy Upgrade Measures and Connection of Renewable Energy Sources Using Software Tools: Case Study of an Academic Library Building in Larissa, Greece

Authors: Giwrgos S. Gkarmpounis, Aikaterini G. Rokkou, Marios N. Moschakis

Abstract:

Increased energy consumption in the academic buildings, creates the need to implement energy saving measures and to take advantage of the renewable energy sources to cover the electrical needs of those buildings. An Academic Library will be used as a case study. With the aid of RETScreen software that takes into account the energy consumptions and characteristics of the Library Building, it is proved that measures such as the replacement of fluorescent lights with led lights, the installation of outdoor shading, the replacement of the openings and Building Management System installation, provide a high level of energy savings. Moreover, given the available space of the building and the climatic data, the installation of a photovoltaic system of 100 kW can also cover a serious amount of the building energy consumption, unlike a wind system that seems uncompromising. Lastly, HOMER software is used to compare the use of a photovoltaic system against a wind system in order to verify the results that came up from the RETScreen software concerning the renewable energy sources.

Keywords: building sector, energy saving measures, energy upgrading, homer software, renewable energy sources, RETScreen software

Procedia PDF Downloads 211
1177 Water Harvest and Recycling with Principles of Permaculture in Rural Buildings in Southeastern Anatolia Region, Turkey

Authors: Muhammed Gündoğan

Abstract:

Permaculture is an important source of science and experience that can ensure the integration of sustainable architecture with nature. Since the past, many applications have been applied in rural areas for generations with the principle of benefiting from the self-renewal potential of nature. This culture, which has been transferred from generation to generation with architectural disciplines, has the potential to significantly improve the sustainability of the rural area and is an important guide with its nature-based solution proposals. Şanlıurfa has arid and semi-arid climate characteristics. Although it has substantial agricultural potential, water is limited, especially in rural areas. In the region, rainwater harvesting practices such as artificial water canals and cisterns have been used for a long time. However, these solutions remained mostly at the urban scale, and their reflections at the building scale were restricted and inadequate solutions. Impermeable surfaces are required for water harvesting, but water harvesting is not possible as rural buildings are mostly surrounded by cultivated land. Therefore, existing structures are important in terms of applicability. In this context, considering the typology of Traditional Şanlıurfa Houses, the aim of the project was to create a proposal for limited potable and utility water, which is a serious problem, especially for rural buildings in Şanlıurfa. In the project proposal, roof systems that can work integrated with the structural shape of Traditional Şanlıurfa Houses, rainwater collection systems in the inner courtyard, and greywater recycling were provided. While the average precipitation amount was 453.7 kg/m3 between 1929 and 2012, this value was measured as 622.7 kg/m3 in 2012. Greywater was used to produce natural fertilizers and compost for small-scale fruit and vegetable gardens, and it was combined with the principles of Permaculture to make it a lifestyle. As a result, it has been estimated that a total of 976.4 m3 kg of water can be saved, with an annual average of 158.8 m3 of rainwater recycling and 817.6 m3 of greywater recycling within the scope of the project.

Keywords: rural, traditional residential building, permaculture, rainwater harvesting, greywater recycling

Procedia PDF Downloads 113
1176 A Method to Identify the Critical Delay Factors for Building Maintenance Projects of Institutional Buildings: Case Study of Eastern India

Authors: Shankha Pratim Bhattacharya

Abstract:

In general building repair and renovation projects are minor in nature. It requires less attention as the primary cost involvement is relatively small. Although the building repair and maintenance projects look simple, it involves much complexity during execution. Many of the present research indicate that few uncertain situations are usually linked with maintenance projects. Those may not be read properly in the planning stage of the projects, and finally, lead to time overrun. Building repair and maintenance become essential and periodical after commissioning of the building. In Institutional buildings, the regular maintenance projects also include addition –alteration, modification activities. Increase in the student admission, new departments, and sections, new laboratories and workshops, up gradation of existing laboratories are very common in the institutional buildings in the developing nations like India. The project becomes very critical because it undergoes space problem, architectural design issues, structural modification, etc. One of the prime factors in the institutional building maintenance and modification project is the time constraint. Mostly it required being executed a specific non-work time period. The present research considered only the institutional buildings of the Eastern part of India to analyse the repair and maintenance project delay. A general survey was conducted among the technical institutes to find the causes and corresponding nature of construction delay factors. Five technical institutes are considered in the present study with repair, renovation, modification and extension type of projects. Construction delay factors are categorically subdivided into four groups namely, material, manpower (works), Contract and Site. The survey data are collected for the nature of delay responsible for a specific project and the absolute amount of delay through proposed and actual duration of work. In the first stage of the paper, a relative importance index (RII) is proposed for the delay factors. The occurrence of the delay factors is also judged by its frequency-severity nature. Finally, the delay factors are then rated and linked with the type of work. In the second stage, a regression analysis is executed to establish an empirical relationship between the actual time of a project and the percentage of delay. It also indicates the impact of the factors for delay responsibility. Ultimately, the present paper makes an effort to identify the critical delay factors for the repair and renovation type project in the Eastern Indian Institutional building.

Keywords: delay factor, institutional building, maintenance, relative importance index, regression analysis, repair

Procedia PDF Downloads 236
1175 Nanoparticle Exposure Levels in Indoor and Outdoor Demolition Sites

Authors: Aniruddha Mitra, Abbas Rashidi, Shane Lewis, Jefferson Doehling, Alexis Pawlak, Jacob Schwartz, Imaobong Ekpo, Atin Adhikari

Abstract:

Working or living close to demolition sites can increase risks of dust-related health problems. Demolition of concrete buildings may produce crystalline silica dust, which can be associated with a broad range of respiratory diseases including silicosis and lung cancers. Previous studies demonstrated significant associations between demolition dust exposure and increase in the incidence of mesothelioma or asbestos cancer. Dust is a generic term used for minute solid particles of typically <500 µm in diameter. Dust particles in demolition sites vary in a wide range of sizes. Larger particles tend to settle down from the air. On the other hand, the smaller and lighter solid particles remain dispersed in the air for a long period and pose sustained exposure risks. Submicron ultrafine particles and nanoparticles are respirable deeper into our alveoli beyond our body’s natural respiratory cleaning mechanisms such as cilia and mucous membranes and are likely to be retained in the lower airways. To our knowledge, how various demolition tasks release nanoparticles are largely unknown and previous studies mostly focused on course dust, PM2.5, and PM10. General belief is that the dust generated during demolition tasks are mostly large particles formed through crushing, grinding, or sawing of various concrete and wooden structures. Therefore, little consideration has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor, which was used for nanoparticle monitoring at two adjacent indoor and outdoor building demolition sites in southern Georgia. Nanoparticle levels were measured (n = 10) by TSI NanoScan SMPS Model 3910 at four different distances (5, 10, 15, and 30 m) from the work location as well as in control sites. Temperature and relative humidity levels were recorded. Indoor demolition works included acetylene torch, masonry drilling, ceiling panel removal, and other miscellaneous tasks. Whereas, outdoor demolition works included acetylene torch and skid-steer loader use to remove a HVAC system. Concentration ranges of nanoparticles of 13 particle sizes at the indoor demolition site were: 11.5 nm: 63 – 1054/cm³; 15.4 nm: 170 – 1690/cm³; 20.5 nm: 321 – 730/cm³; 27.4 nm: 740 – 3255/cm³; 36.5 nm: 1,220 – 17,828/cm³; 48.7 nm: 1,993 – 40,465/cm³; 64.9 nm: 2,848 – 58,910/cm³; 86.6 nm: 3,722 – 62,040/cm³; 115.5 nm: 3,732 – 46,786/cm³; 154 nm: 3,022 – 21,506/cm³; 205.4 nm: 12 – 15,482/cm³; 273.8 nm: Keywords: demolition dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 407
1174 Application of Proper Foundation in Building Construction

Authors: Chukwuma Anya, Mekwa Eme

Abstract:

Foundation is popularly defined as the lowest load-bearing part of a building, typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice, which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably, resulting to misuse or abuse of the building materials man, power, and some times altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of foundation, even building settlement and stability. In addition to those, it will improve aesthetics, maintain cost effectiveness both construction cost and maintenance cost. Finally it will ensure the safety of the building and its inhabitants. At the end of this research work we will be able to differentiate the various foundation types and there proper application in the design and construction of buildings.

Keywords: foundation, application, stability, aesthetics

Procedia PDF Downloads 54
1173 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 308
1172 Investigating the Role of Community in Heritage Conservation through the Ladder of Citizen Participation Approach: Case Study, Port Said, Egypt

Authors: Sara S. Fouad, Omneya Messallam

Abstract:

Egypt has countless prestigious buildings and diversity of cultural heritage which are located in many cities. Most of the researchers, archaeologists, stakeholders and governmental bodies are paying more attention to the big cities such as Cairo and Alexandria, due to the country’s centralization nature. However, there are other historic cities that are grossly neglected and in need of emergency conservation. For instance, Port Said which is a former colonial city that was established in nineteenth century located at the edge of the northeast Egyptian coast between the Mediterranean Sea and the Suez Canal. This city is chosen because it presents one of the important Egyptian archaeological sites that archive Egyptian architecture of the 19th and 20th centuries. The historic urban fabric is divided into three main districts; the Arab, the European (Al-Afrang), and Port Fouad. The European district is selected to be the research case study as it has culture diversity, significant buildings, and includes the largest number of the listed heritage buildings in Port Said. Based on questionnaires and interviews, since 2003 several initiative trials have been taken by Alliance Francaise, the National Organization for Urban Harmony (NOUH), some Non-Governmental Organizations (NGOs), and few number of community residents to highlight the important city legacy and protect it from being demolished. Unfortunately, the limitation of their participation in decision-making policies is considered a crucial threat facing sustainable heritage conservation. Therefore, encouraging the local community to participate in their architecture heritage conservation would create a self-confident one, capable of making decisions for the city’s future development. This paper aims to investigate the role of the local inhabitants in protecting their buildings heritage through listing the community level of participations twice (2012 and 2018) in preserving their heritage based on the ladder citizen participation approach. Also, it is to encourage community participation in order to promote city architecture conservation, heritage management, and sustainable development. The methodology followed in this empirical research involves using several data assembly methods such as structural observations, questionnaires, interviews, and mental mapping. The questionnaire was distributed among 92 local inhabitants aged 18-60 years. However, the outset of this research at the beginning demonstrated the majority negative attitude, motivation, and confidence of the local inhabitants’ role to safeguard their architectural heritage. Over time, there was a change in the negative attitudes. Therefore, raising public awareness and encouraging community participation by providing them with a real opportunity to take part in the decision-making. This may lead to a positive relationship between the community residents and the built heritage, which is essential for promoting its preservation and sustainable development.

Keywords: buildings preservation, community participation, heritage conservation, local inhabitant, ladder of citizen participation

Procedia PDF Downloads 142
1171 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 149
1170 Comparative Spatial Analysis of a Re-Arranged Hospital Building

Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak

Abstract:

Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and self-innovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, connectivity, visual mean depth, beta and visual integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.

Keywords: architecture, hospital building, space syntax, strengthening

Procedia PDF Downloads 503
1169 Rotor Concepts for the Counter Flow Heat Recovery Fan

Authors: Christoph Speer

Abstract:

Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.

Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation

Procedia PDF Downloads 333
1168 A New Suburb Renovation Concept

Authors: Anu Soikkelii, Laura Sorri

Abstract:

Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects. The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.

Keywords: energy efficiency, prefabrication, renovation concept, suburbs, sustainability, user-orientated

Procedia PDF Downloads 321
1167 A Study on Thermodynamic Prototype for Vernacular Dwellings in Perspective of Bioclimatic Architecture

Authors: Zhenzhen Zhang

Abstract:

As major human activity places, buildings consume a large amount of energy, and residential buildings are very important part of it. An extensive research work had been conducted to research how to achieve low energy goals, vernacular dwellings and contemporary technologies are two prime parameters among them. On one hand, some researchers concentrated on vernacular dwellings which were climate-response design and could offer a better living condition without mechanic application. On the other hand, a series concepts appeared based on modern technologies, surplus energy house, bioclimatic architecture, etc. especially thermodynamic architecture which integrates the micro-climate, human activity, thermal comfort, and energy efficiency into design. How to blend the two parameters is the key research topic now, which would act as the key to how to integrate the ancient design wise and contemporary new technologies. By several cases study, this paper will represent the evolution of thermodynamic architecture and then try to develop one methodology about how to produce a typical thermodynamic prototype for one area by blending the ancient building wise and contemporary concepts to achieve both low energy consumption and surplus energy.

Keywords: vernacular dwelling, thermodynamic architecture, bioclimatic architecture, thermodynamic prototype, surplus energy

Procedia PDF Downloads 270
1166 Assessment of Causes of Building Collapse in Nigeria

Authors: Olufemi Oyedele

Abstract:

Building collapse (BC) in Nigeria is becoming a regular occurrence, each recording great casualties in the number of lives and materials lost. Building collapse is a situation where building which has been completed and occupied, completed but not occupied or under construction, collapses on its own due to action or inaction of man or due to natural event like earthquake, storm, flooding, tsunami or wildfire. It is different from building demolition. There are various causes of building collapse and each case requires expert judgment to decide the cause of its collapse. Rate of building collapse is a reflection of the level of organization and control of building activities and degree of sophistication of the construction professionals in a country. This study explored the use of case study by examining the causes of six (6) collapsed buildings (CB) across Nigeria. Samples of materials from the sites of the collapsed buildings were taken for testing and analysis, while critical observations were made at the sites to note the conditions of the ground (building base). The study found out that majority of the building collapses in Nigeria were due to poor workmanship, sub-standard building materials, followed by bad building base and poor design. The National Building Code 2006 is not effective due to lack of enforcement and the Physical Development Departments of states and Federal Capital Territory are just mere agents of corruption allowing all types of construction without building approvals.

Keywords: building collapse, concrete tests, differential settlement, integrity test, quality control

Procedia PDF Downloads 509
1165 A Simulation Tool for Projection Mapping Based on Mapbox and Unity

Authors: Noriko Hanakawa, Masaki Obana

Abstract:

A simulation tool has been proposed for big-scale projection mapping events. The tool has four main functions based on Mapbox and Unity utilities. The first function is building a 3D model of real cities by MapBox. The second function is a movie projection to some buildings in real cities by Unity. The third function is a movie sending function from a PC to a virtual projector. The fourth function is mapping movies with fitting buildings. The simulation tool was adapted to a real projection mapping event that was held in 2019. The event has been finished. The event had a serious problem in the movie projection to the target building. The extra tents were set in front of the target building. The tents became the obstacles to the movie projection. The simulation tool can be reappeared the problems of the event. Therefore, if the simulation tool was developed before the 2019 projection mapping event, the problem of the tents’ obstacles could be avoided with the simulation tool. In addition, we confirmed that the simulation tool is useful to make a plan of future projection mapping events in order to avoid obstacles of various extra equipment such as utility poles, planting trees, monument towers.

Keywords: projection mapping, projector position, real 3D map, avoiding obstacles

Procedia PDF Downloads 184
1164 Climate Adaptive Building Shells for Plus-Energy-Buildings, Designed on Bionic Principles

Authors: Andreas Hammer

Abstract:

Six peculiar architecture designs from the Frankfurt University will be discussed within this paper and their future potential of the adaptable and solar thin-film sheets implemented facades will be shown acting and reacting on climate/solar changes of their specific sites. The different aspects, as well as limitations with regard to technical and functional restrictions, will be named. The design process for a “multi-purpose building”, a “high-rise building refurbishment” and a “biker’s lodge” on the river Rheine valley, has been critically outlined and developed step by step from an international studentship towards an overall energy strategy, that firstly had to push the design to a plus-energy building and secondly had to incorporate bionic aspects into the building skins design. Both main parameters needed to be reviewed and refined during the whole design process. Various basic bionic approaches have been given [e.g. solar ivyᵀᴹ, flectofinᵀᴹ or hygroskinᵀᴹ, which were to experiment with, regarding the use of bendable photovoltaic thin film elements being parts of a hybrid, kinetic façade system.

Keywords: bionic and bioclimatic design, climate adaptive building shells [CABS], energy-strategy, harvesting façade, high-efficiency building skin, photovoltaic in building skins, plus-energy-buildings, solar gain, sustainable building concept

Procedia PDF Downloads 409
1163 Creative Thinking in Structural Design of Historic Constructions

Authors: Avraham Mosseri

Abstract:

The architectural conservation process of the built heritage is a very complex process dealing with the integration of professional knowledge from many fields like history, sociology, economy, engineering, etc. One of the most important fields is the structural field, which has a great influence on the final architectural and aesthetic solution of the built heritage. In many cases, the ability to protect and save the heritage values of the historical buildings is an outcome of the structural creativity and conceptual design of the conservation engineers. This creativity is especially important when dealing with structural engineering of historic construction, where there are a lot of constraints and contradictions between different aspects like aesthetics, artistic values, culture, authenticity, structural performance, etc. But in spite of the importance of this creativity in conservation engineering, many research efforts are mainly devoted to the structural analysis of historic construction, which of course is very important and vital. But, in general, more attention can be paid to the creative process in the conceptual stage. In this situation there is a need, in parallel to analysis research, to devote more resources in order to improve the creative and conceptual theories in relation to conservation engineering. This paper focuses on the creativity aspects in the structural design process in the conservation of historic buildings as part of conservation theories.

Keywords: conservation, creativity, historic constructions, structural design

Procedia PDF Downloads 218
1162 Combining Chiller and Variable Frequency Drives

Authors: Nasir Khalid, S. Thirumalaichelvam

Abstract:

In most buildings, according to US Department of Energy Data Book, the electrical consumption attributable to centralized heating and ventilation of air- condition (HVAC) component can be as high as 40-60% of the total electricity consumption for an entire building. To provide efficient energy management for the market today, researchers are finding new ways to develop a system that can save electrical consumption of buildings even more. In this concept paper, a system known as Intelligent Chiller Energy Efficiency (iCEE) System is being developed that is capable of saving up to 25% from the chiller’s existing electrical energy consumption. In variable frequency drives (VFDs), research has found significant savings up to 30% of electrical energy consumption. Together with the VFDs at specific Air Handling Unit (AHU) of HVAC component, this system will save even more electrical energy consumption. The iCEE System is compatible with any make, model or age of centrifugal, rotary or reciprocating chiller air-conditioning systems which are electrically driven. The iCEE system uses engineering principles of efficiency analysis, enthalpy analysis, heat transfer, mathematical prediction, modified genetic algorithm, psychometrics analysis, and optimization formulation to achieve true and tangible energy savings for consumers.

Keywords: variable frequency drives, adjustable speed drives, ac drives, chiller energy system

Procedia PDF Downloads 543
1161 A Study of New Window Typology for Palestinian Residential Building for More Sustainable Building

Authors: Nisreen Ardda

Abstract:

Fenestrations are one of the main building envelope elements that play an important role in home social-ecological l factors. They play a vital role in providing natural lighting and ventilation, visual, thermal, and acoustical comfort, and also provide weather-tightness, privacy, a feeling of openness. In most home buildings, fenestrations are controlled manually by the occupants, which significantly impacts occupants' comfort and energy use. Culture plays a central role in the Palestinians window operation behavior. Improved windows design that provides the desired privacy while maintaining the appropriate function of fenestration (natural lighting, thermal comfort, and visual openness) is becoming a necessity. Therefore, this paper proposes a window typology to achieve the social and environmental factors in residential buildings in the West Bank. The window typology and reference building were designed in Rivet 2021, and natural ventilation was carried out in Design Builder 4.3.0.039. The results showed that the proposed typology provides the desired privacy and the feeling of openness without compromising natural ventilation as the existing window did.

Keywords: window design, passive design, sustainable built environment, building material

Procedia PDF Downloads 171
1160 The Effect of Gas Flare on the Health of Schoolchildren in the Niger Delta Area of Nigeria

Authors: Uche Joyce Ogbonda, Yingchun Ji, Paul Coates

Abstract:

The proximity of schools to gas flaring sites and the use of simple ventilation systems in school buildings with currently no regulation or laid down blueprint during design and construction in an environment prone to adverse environmental hazards caused by the continuous exploration of oil in the Niger Delta is worrisome. Although a wide health implication has been associated with inhalation of poor air, its effect on the performance of schoolchildren and staffs is poorly understood. Thus, the aim of this research is to explore from professionals around the region the issues surrounding the provision of clean air indoors even though, most developed and developing world are advancing in newer systems and technologies for clean indoor air. This study adopts both qualitative and quantitative approach using both open-ended and semi- structured interview techniques. This paper finds that indoor air quality is not considered during design, selection, and construction of schools. Analysis showed that rather than consider the health effect associated with the inhalation of ambient air by schoolchildren who spend 80% of their active time in schools due to the use of simple open windows and doors as source of breathable air. Advanced ventilation systems were therefore recommended to ensure supplying clean air for school buildings.

Keywords: air quality, gas flare, health implication, schools, ventilation system

Procedia PDF Downloads 282
1159 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings

Authors: Ahmed A. Mohamed Aly

Abstract:

Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.

Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth

Procedia PDF Downloads 126
1158 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact

Authors: Martin Adlington, Boris Ceranic, Sally Shazhad

Abstract:

In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.

Keywords: overheating, climate change, thermal comfort, health

Procedia PDF Downloads 337
1157 Green Architecture from the Thawing Arctic: Reconstructing Traditions for Future Resilience

Authors: Nancy Mackin

Abstract:

Historically, architects from Aalto to Gaudi to Wright have looked to the architectural knowledge of long-resident peoples for forms and structural principles specifically adapted to the regional climate, geology, materials availability, and culture. In this research, structures traditionally built by Inuit peoples in a remote region of the Canadian high Arctic provides a folio of architectural ideas that are increasingly relevant during these times of escalating carbon emissions and climate change. ‘Green architecture from the Thawing Arctic’ researches, draws, models, and reconstructs traditional buildings of Inuit (Eskimo) peoples in three remote, often inaccessible Arctic communities. Structures verified in pre-contact oral history and early written history are first recorded in architectural drawings, then modeled and, with the participation of Inuit young people, local scientists, and Elders, reconstructed as emergency shelters. Three full-sized building types are constructed: a driftwood and turf-clad A-frame (spring/summer); a stone/bone/turf house with inwardly spiraling walls and a fan-shaped floor plan (autumn); and a parabolic/catenary arch-shaped dome from willow, turf, and skins (autumn/winter). Each reconstruction is filmed and featured in a short video. Communities found that the reconstructed buildings and the method of involving young people and Elders in the reconstructions have on-going usefulness, as follows: 1) The reconstructions provide emergency shelters, particularly needed as climate change worsens storms, floods, and freeze-thaw cycles and scientists and food harvesters who must work out of the land become stranded more frequently; 2) People from the communities re-learned from their Elders how to use materials from close at hand to construct impromptu shelters; 3) Forms from tradition, such as windbreaks at entrances and using levels to trap warmth within winter buildings, can be adapted and used in modern community buildings and housing; and 4) The project initiates much-needed educational and employment opportunities in the applied sciences (engineering and architecture), construction, and climate change monitoring, all offered in a culturally-responsive way. Elders, architects, scientists, and young people added innovations to the traditions as they worked, thereby suggesting new sustainable, culturally-meaningful building forms and materials combinations that can be used for modern buildings. Adding to the growing interest in bio-mimicry, participants looked at properties of Arctic and subarctic materials such as moss (insulation), shrub bark (waterproofing), and willow withes (parabolic and catenary arched forms). ‘Green Architecture from the Thawing Arctic’ demonstrates the effective, useful architectural oeuvre of a resilient northern people. The research parallels efforts elsewhere in the world to revitalize long-resident peoples’ architectural knowledge, in the interests of designing sustainable buildings that reflect culture, heritage, and identity.

Keywords: architectural culture and identity, climate change, forms from nature, Inuit architecture, locally sourced biodegradable materials, traditional architectural knowledge, traditional Inuit knowledge

Procedia PDF Downloads 506
1156 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades

Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco

Abstract:

Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.

Keywords: façade, MCDM, MIVES, sustainability

Procedia PDF Downloads 323
1155 Influence of Free Field Vibrations Due to Vibratory Pile Driving

Authors: Shashank Mukkoti, Mainak Majumder, Srinivasan Venkatraman

Abstract:

Owing to the land scarcity in the modern-day, most of the construction activities are carried out closed to the existing buildings. Most of the high-rise buildings are constructed on pile foundations to transfer the design loads to a strong stratum below the ground surface. Due to the proximity of the new and existing structures, noise disturbances are prominent during the pile installation. Installation of vibratory piles is most suitable in urban areas. The ground vibrations developed due to the vibratory pile driving may cause many detrimental effects on the surrounding structures based on the proximity of the sources and nature of the structures. In the present study, an attempt has been made to study the severity of ground vibrations induced by vibratory pile driving. For this purpose, a three-dimensional finite element model has been developed in the ABAQUS/ Explicit finite element program. The couple finite/infinite element method has been employed for the capturing of propagating waves due to the pile installation. The geometry of the pile foundations, frequency of the pile driving, length of the pile has been considered for the parametric study. The results show that vibrations generated due to the vibratory pile installation are either very close or more than the thresholds tolerance limits set by different guidelines.

Keywords: FE model, pile driving, free field vibrations, wave propagation

Procedia PDF Downloads 279
1154 Validating Thermal Performance of Existing Wall Assemblies Using In-Situ Measurements

Authors: Shibei Huang

Abstract:

In deep energy retrofits, the thermal performance of existing building envelopes is often difficult to determine with a high level of accuracy. For older buildings, the records of existing assemblies are often incomplete or inaccurate. To obtain greater baseline performance accuracy for energy models, in-field measurement tools can be used to obtain data on the thermal performance of the existing assemblies. For a known assembly, these field measurements assist in validating the U-factor estimates. If the field-measured U-factor consistently varies from the calculated prediction, those measurements prompt further study. For an unknown assembly, successful field measurements can provide approximate U-factor evaluation, validate assumptions, or identify anomalies requiring further investigation. Using case studies, this presentation will focus on the non-destructive methods utilizing a set of various field tools to validate the baseline U-factors for a range of existing buildings with various wall assemblies. The lessons learned cover what can be achieved, the limitations of these approaches and tools, and ideas for improving the validity of measurements. Key factors include the weather conditions, the interior conditions, the thermal mass of the measured assemblies, and the thermal profiles of the assemblies in question.

Keywords: existing building, sensor, thermal analysis, retrofit

Procedia PDF Downloads 39
1153 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 241