Search results for: WEKA data mining tool
27944 Big Data in Construction Project Management: The Colombian Northeast Case
Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez
Abstract:
In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.Keywords: big data, building information modeling, tecnology, project manamegent
Procedia PDF Downloads 12827943 Peculiar Implications of Self Perceived Identity as Policy Tool for Transgender Recognition in Pakistan
Authors: Hamza Iftikhar
Abstract:
The research study focuses on the transgender community's gender recognition challenges. It is one of the issues for the transgender community, interacting directly with the difficulties of gender identity and the lives of these people who are facing gender disapproval from society. This study investigates the major flaws of the transgender act. The study's goal is to look into the strange implications of self-perceived identity as a policy tool for transgender recognition. This policy tool jeopardises the rights of Pakistan's indigenous gender-variant people as well as the country's legal and social framework. Qualitative research using semi structured interviews will be carried out. This study proposes developing a scheme for mainstreaming gender-variant people on the basis of the Pakistani Constitution, Supreme Court guidelines, and internationally recognised principles of law. This would necessitate a thorough review of current law using a new approach and reference point.Keywords: transgender act, self perceived identity, gender variant, policy tool
Procedia PDF Downloads 11727942 Design of a Service-Enabled Dependable Integration Environment
Authors: Fuyang Peng, Donghong Li
Abstract:
The aim of information systems integration is to make all the data sources, applications and business flows integrated into the new environment so that unwanted redundancies are reduced and bottlenecks and mismatches are eliminated. Two issues have to be dealt with to meet such requirements: the software architecture that supports resource integration, and the adaptor development tool that help integration and migration of legacy applications. In this paper, a service-enabled dependable integration environment (SDIE), is presented, which has two key components, i.e., a dependable service integration platform and a legacy application integration tool. For the dependable platform for service integration, the service integration bus, the service management framework, the dependable engine for service composition, and the service registry and discovery components are described. For the legacy application integration tool, its basic organization, functionalities and dependable measures taken are presented. Due to its service-oriented integration model, the light-weight extensible container, the service component combination-oriented p-lattice structure, and other features, SDIE has advantages in openness, flexibility, performance-price ratio and feature support over commercial products, is better than most of the open source integration software in functionality, performance and dependability support.Keywords: application integration, dependability, legacy, SOA
Procedia PDF Downloads 36027941 Decision Support Tool for Water Re-used Systems
Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz
Abstract:
The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.Keywords: circular economy, digital tool, geo-visualization, wastewater re-use
Procedia PDF Downloads 5627940 Investigation of the Heavy Metal Pollution of the River Ecosystems in the Lake Sevan Basin, Armenia
Authors: G. Gevorgyan, S. Khudaverdyan, A. Vaseashta
Abstract:
The Lake Sevan basin is situated in the eastern part of the Republic of Armenia (Gegharquniq marz/district). The heavy metal pollution of the some tributaries of Lake Sevan was investigated. Water sampling was performed in August and December, 2014 from the 4 observation sites: 1) Sotq river upstream (about 600 meters upstream from the Sotq gold mine); 2) Sotq river mouth; 3) Masrik river mouth; 4) Dzknaget river mouth. Heavy metal (V, Fe, Ni, Cu, As, Mo, Pb) concentrations in the water samples were determined by the standard methods using an atomic absorption spectrophotometer. The results of the study showed that heavy metal content mainly increased from the upstream of the Sotq river to the mouth of the Masrik river which may have been conditioned by the influence of gold mining activity as the Masrik and its tributary-Sotq rivers passing through the gold mining area were exposed to heavy metal pollution. The observation sites can be ranked by pollution degree as follows: №3> №2> №1> №4. The highest heavy metal pollution degree was observed in the Masrik river mouth which may have been conditioned by the direct impact of gold mining activity and the pressure of its tributary–the Sotq river which flows through the gold mining area. The lowest heavy metal pollution degree was registered in the Dzknaget river mouth which flowing through rural areas wasn’t subject to significant heavy metal pollution. According to the observation sites of the Sotq and Masrik rivers, high positive correlation was mainly observed between the concentrations of the investigated heavy metals (except nickel) which indicated that all the heavy metals except the nickel had the same anthropogenic pollution source which was the activity of the Sotq gold mine. In general, it is possible to state that the activity of the Sotq gold mine in the Lake Sevan basin caused the heavy metal pollution of the Sotq and Masrik rivers which may have posed environmental hazards. Heavy metals are nondegradable substances, and heavy metal pollution of freshwater systems may pose risks to the environment and human health through accumulation in the tissues of aquatic organisms, water-food chain as well as oral ingestion and dermal contact.Keywords: Armenia, Lake Sevan basin, gold mining activity, river ecosystems, heavy metal pollution
Procedia PDF Downloads 58427939 Attitudes of Academic Staff towards the Use of Information Communication Technology as a Pedagogical Tool for Effective Teaching in FCT College of Education, Zuba-Abuja, Nigeria
Authors: Salako Emmanuel Adekunle
Abstract:
With numerous advantages of ICT in teaching such as using images to improve the retentive memory of students, academic staff is yet to deliver instructions adequately and effectively due to no power supply, lack of technical supports and non-availability of functional ICT tools. This study was conducted to investigate the attitudes of academic staff towards the use of information communication technology as a pedagogical tool for effective teaching in FCT College of Education, Zuba-Abuja, Nigeria. A sample of 200 academic staff from five schools/faculties was involved in the study. The respondents were selected by using simple random sampling technique (SRST). A questionnaire was developed and validated by the experts in Measurement and Evaluation, and reliability co-efficient of 0.85 was obtained. It was used to gather relevant data from the respondents. This study revealed that the respondents had positive attitudes towards the use of ICT as a pedagogical tool for effective teaching. Also, the uses of ICT by the academic staff included: to encourage closer relationship for attainment of higher academic, and to deliver instructions effectively. The study also revealed that there is a significant relationship between the attitudes and the uses of ICT by the academic staff. Based on these findings, some recommendations were made which include: power supply should be provided to operate ICT facilities for effective teaching, and technical assistance on ICT usage for effective delivery of instructions should be provided among other recommendations.Keywords: academic staff, attitudes, information communication technology, pedagogical tool, teaching, use
Procedia PDF Downloads 23927938 Implementation of Big Data Concepts Led by the Business Pressures
Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski
Abstract:
Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.Keywords: big data, unstructured data, SAP ERP, documentum
Procedia PDF Downloads 27127937 Coconut Shells as the Alternative Equipment for Foot Reflexology
Authors: Nichanant Sermsri, Chananchida Yuktirat
Abstract:
This research was the experimental research. Its purpose was to find out how coconut shells can be adapted to be equipment for foot and calf reflexology. The sample group was 58 female street vendors in Thewet Market, Dusit District, Bangkok, selected by selection criteria and voluntary. The data collecting tool in this research was the Visual Analogue Scale. The massaging tool made from coconut shells (designed and produced by the research team) was the key equipment for this research. The duration of the research was 1 month. The research team assessed the level of exhaustion and heart rate among sample group before and after the massage, then analyzed the data by mean, standard deviation and paired sample t-test. We found out from the research that 1) The level of exhaustion decreased 4.529 levels after the massage. The standard deviation was 1.6195. The heart rates went down 11.67 times/minute. The standard deviation was 6.742. 2) The level of exhaustion and heart rate after the massage decreased with the statistically significance at 0.01.Keywords: foot reflexology, massaging plate, coconut shells, ecological sciences
Procedia PDF Downloads 18627936 Algerian EFL Students' Perceptions towards the Development of Writing through Weblog Storytelling
Authors: Nawel Mansouri
Abstract:
Weblog as a form of internet-based resources has become popular as an authentic and constructive learning tool, especially in the language classroom. This research explores the use of weblog storytelling as a pedagogical tool to develop Algerian EFL students’ creative writing. This study aims to investigate the effectiveness of weblog- writing and the attitudes of both Algerian EFL students and teachers towards weblog storytelling. It also seeks to explore the potential benefits and problems that may affect the use of weblog and investigate the possible solutions to overcome the problems encountered. The research work relies on a mixed-method approach which combines both qualitative and quantitative methods. A questionnaire will be applied to both EFL teachers and students as a means to obtain preliminary data. Interviews will be integrated in accordance with the primary data that will be gathered from the questionnaire with the aim of validating its accuracy or as a strategy to follow up any unexpected results. An intervention will take place on the integration of weblog- writing among 15 Algerian EFL students for a period of two months where students are required to write five narrative essays about their personal experiences, give feedback through the use of a rubric to two or three of their peers, and edit their work based on the feedback. After completion, questionnaires and interviews will also take place as a medium to obtain both the students’ perspectives towards the use of weblog as an innovative teaching approach. This study is interesting because weblog storytelling has recently been emerged as a new form of digital communication and it is a new concept within Algerian context. Furthermore, the students will not just develop their writing skill through weblog storytelling but it can also serve as a tool to develop students’ critical thinking, creativity, and autonomy.Keywords: Weblog writing, EFL writing, EFL learners' attitudes, EFL teachers' views
Procedia PDF Downloads 17427935 Automatic Generation of Census Enumeration Area and National Sampling Frame to Achieve Sustainable Development Goals
Authors: Sarchil H. Qader, Andrew Harfoot, Mathias Kuepie, Sabrina Juran, Attila Lazar, Andrew J. Tatem
Abstract:
The need for high-quality, reliable, and timely population data, including demographic information, to support the achievement of the sustainable development goals (SDGs) in all countries was recognized by the United Nations' 2030 Agenda for sustainable development. However, many low and middle-income countries lack reliable and recent census data. To achieve reliable and accurate census and survey outputs, up-to-date census enumeration areas and digital national sampling frames are critical. Census enumeration areas (EAs) are the smallest geographic units for collection, disseminating, and analyzing census data and are often used as a national sampling frame to serve various socio-economic surveys. Even for countries that are wealthy and stable, creating and updating EAs is a difficult yet crucial step in preparing for a national census. Such a process is commonly done manually, either by digitizing small geographic units on high-resolution satellite imagery or walking the boundaries of units, both of which are extremely expensive. We have developed a user-friendly tool that could be employed to generate draft EA boundaries automatically. The tool is based on high-resolution gridded population and settlement datasets, GPS household locations, building footprints and uses publicly available natural, man-made and administrative boundaries. Initial outputs were produced in Burkina Faso, Paraguay, Somalia, Togo, Niger, Guinea, and Zimbabwe. The results indicate that the EAs are in line with international standards, including boundaries that are easily identifiable and follow ground features, have no overlaps, are compact and free of pockets and disjoints, and the boundaries are nested within administrative boundaries.Keywords: enumeration areas, national sampling frame, gridded population data, preEA tool
Procedia PDF Downloads 14427934 An Architectural Model for APT Detection
Authors: Nam-Uk Kim, Sung-Hwan Kim, Tai-Myoung Chung
Abstract:
Typical security management systems are not suitable for detecting APT attack, because they cannot draw the big picture from trivial events of security solutions. Although SIEM solutions have security analysis engine for that, their security analysis mechanisms need to be verified in academic field. Although this paper proposes merely an architectural model for APT detection, we will keep studying on correlation analysis mechanism in the future.Keywords: advanced persistent threat, anomaly detection, data mining
Procedia PDF Downloads 52827933 Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters
Authors: G. Krishna Mohana Rao, P. Ravi Kumar
Abstract:
Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters.Keywords: damping inserts, end milling, vibrations, nonlinear dynamic analysis, number of fingers
Procedia PDF Downloads 52427932 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 3327931 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 48827930 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis
Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba
Abstract:
In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece
Procedia PDF Downloads 27327929 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 11627928 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 42227927 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift
Procedia PDF Downloads 31527926 An Investigation of Sentiment and Themes from Twitter for Brexit in 2016
Authors: Anas Alsuhaibani
Abstract:
Observing debate and discussion over social media has been found to be a promising tool to investigate different types of opinion. On 23 June 2016, Brexit voters in the UK decided to depart from the EU, with 51.9% voting to leave. On Twitter, there had been a massive debate in this context, and the hashtag Brexit was allocated as number six of the most tweeted hashtags across the globe in 2016. The study aimed to investigate the sentiment and themes expressed in a sample of tweets during a political event (Brexit) in 2016. A sentiment and thematic analysis was conducted on 1304 randomly selected tweets tagged with the hashtag Brexit in Twitter for the period from 10 June 2016 to 7 July 2016. The data were coded manually into two code frames, sentiment and thematic, and the reliability of coding was assessed for both codes. The sentiment analysis of the selected sample found that 45.63% of tweets conveyed negative emotions while there were only 10.43% conveyed positive emotions. It also surprisingly resulted that 29.37% were factual tweets, where the tweeter expressed no sentiment and the tweet conveyed a fact. For the thematic analysis, the economic theme dominated by 23.41%, and almost half of its discussion was related to business within the UK and the UK and global stock markets. The study reported that the current UK government and relation to campaign themes were the most negative themes. Both sentiment and thematic analyses found that tweets with more than one opinion or theme were rare, 8.29% and 6.13%, respectively.Keywords: Brexit, political opinion mining, social media, twitter
Procedia PDF Downloads 21427925 Study of Behavior Tribological Cutting Tools Based on Coating
Authors: A. Achour L. Chekour, A. Mekroud
Abstract:
Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.Keywords: friction, wear, tool, cutting
Procedia PDF Downloads 33127924 Measurement of Natural Radioactivity and Health Hazard Index Evaluation in Major Soils of Tin Mining Areas of Perak
Authors: Habila Nuhu
Abstract:
Natural radionuclides in the environment can significantly contribute to human exposure to ionizing radiation. The knowledge of their levels in an environment can help the radiological protection agencies in policymaking. Measurement of natural radioactivity in major soils in the tin mining state of Perak Malaysia has been conducted using an HPGe detector. Seventy (70) soil samples were collected at widely distributed locations in the state. Six major soil types were sampled, and thirteen districts around the state were covered. The following were the results of the 226Ra (238U), 228Ra (232Th), and 40K activity in the soil samples: 226Ra (238U) has a mean activity concentration of 191.83 Bq kg⁻¹, more than five times the UNSCEAR reference limits of 35 Bq kg⁻¹. The mean activity concentration of 228Ra (232Th) with a value of 232.41 Bq kg⁻¹ is over seven times the UNSCEAR reference values of 30 Bq kg⁻¹. The average concentration of 40K activity was 275.24 Bq kg⁻¹, which was less than the UNSCEAR reference limit of 400 Bq Kg⁻¹. The range of external hazards index (Hₑₓ) values was from 1.03 to 2.05, while the internal hazards index (Hin) was from 1.48 to 3.08. The Hex and Hin should be less than one for minimal external and internal radiation threats as well as secure use of soil material for building construction. The Hₑₓ and Hin results generally indicate that while using the soil types and their derivatives as building materials in the study area, care must be taken.Keywords: activity concentration, hazard index, soil samples, tin mining
Procedia PDF Downloads 11127923 An Investigation on Orthopedic Rehabilitation by Avoiding Thermal Necrosis
Authors: R. V. Dahibhate, A. B. Deoghare, P. M. Padole
Abstract:
Maintaining natural integrity of biosystem is paramount significant for orthopedic surgeon while performing surgery. Restoration is challenging task to rehabilitate trauma patient. Drilling is an inevitable procedure to fix implants. The task leads to rise in temperature at the contact site which intends to thermal necrosis. A precise monitoring can avoid thermal necrosis. To accomplish it, data acquiring instrument is integrated with the drill bit. To contemplate it, electronic feedback system is developed. It not only measures temperature without any physical contact in between measuring device and target but also visualizes the site and monitors correct movement of tool path. In the current research work an infrared thermometer data acquisition system is used which monitors variation in temperature at the drilling site and a camera captured movement of drill bit advancement. The result is presented in graphical form which represents variations in temperature, drill rotation and time. A feedback system helps in keeping drill speed in threshold limit.Keywords: thermal necrosis, infrared thermometer, drilling tool, feedback system
Procedia PDF Downloads 23127922 Application of Groundwater Level Data Mining in Aquifer Identification
Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen
Abstract:
Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.Keywords: aquifer identification, decision tree, groundwater, Fourier transform
Procedia PDF Downloads 15727921 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis
Authors: R. Periyasamy, Deepak Joshi, Sneh Anand
Abstract:
Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis
Procedia PDF Downloads 49927920 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 26527919 Optimization of Surface Roughness by Taguchi’s Method for Turning Process
Authors: Ashish Ankus Yerunkar, Ravi Terkar
Abstract:
Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer
Procedia PDF Downloads 36727918 Application of a Modified Crank-Nicolson Method in Metallurgy
Authors: Kobamelo Mashaba
Abstract:
The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry.Keywords: delayed partial differential equation, modified Crank-Nicolson Method, molten slag, heat recovery, parabolic equation
Procedia PDF Downloads 10127917 NABERS Indoor Environment - a Rating Tool to Benchmark the IEQ of Australian Office Commercial Buildings
Authors: Kazi Hossain
Abstract:
The National Australian Built Environment Rating System (NABERS) is the key industry standard for measuring and benchmarking environmental performance of existing buildings in Australia. Developed and run by the New South Wales government, NABERS measures the operational efficiency of different types of buildings by using a set of tools that provide an easy to understand graphical rating outcome ranged from 0 to 6 stars. This set of tools also include a tool called NABERS IE which enables tenants or building managers to benchmark their buildings indoor environment quality against the national market. Launched in 2009, the number NABERS IE ratings have steadily increased from 10 certified ratings in 2011 to 43 in 2013. However there is a massive uptake of over 50 ratings alone in 2014 making the number of ratings to reach over 100. This paper outlines the methodology used to create this tool, a statistical overview of the tool, and the driving factor that motivates the building owners and managers to use this tool every year to rate their buildings.Keywords: Acoustic comfort, Indoor air quality, Indoor Environment, NABERS, National Australian Built Environment Rating System, Performance rating, Rating System, Thermal comfort, Ventilation effectiveness, Visual comfort.
Procedia PDF Downloads 56227916 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 17327915 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance
Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang
Abstract:
A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.Keywords: beta function, compressor map, interpolation error, map optimization tool
Procedia PDF Downloads 267