Search results for: Analytic Network Process
18599 Intelligent Earthquake Prediction System Based On Neural Network
Authors: Emad Amar, Tawfik Khattab, Fatma Zada
Abstract:
Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.Keywords: BP neural network, prediction, RBF neural network, earthquake
Procedia PDF Downloads 49418598 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.Keywords: complexity, hypergraphs, reciprocity, metabolism
Procedia PDF Downloads 29618597 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network
Authors: Frankie Burgos, Emely Munar, Conrado Basa
Abstract:
This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading
Procedia PDF Downloads 29618596 Comparative Advantage of Mobile Agent Application in Procuring Software Products on the Internet
Authors: Michael K. Adu, Boniface K. Alese, Olumide S. Ogunnusi
Abstract:
This paper brings to fore the inherent advantages in application of mobile agents to procure software products rather than downloading software content on the Internet. It proposes a system whereby the products come on compact disk with mobile agent as deliverable. The client/user purchases a software product, but must connect to the remote server of the software developer before installation. The user provides an activation code that activates mobile agent which is part of the software product on compact disk. The validity of the activation code is checked on connection at the developer’s end to ascertain authenticity and prevent piracy. The system is implemented by downloading two different software products as compare with installing same products on compact disk with mobile agent’s application. Downloading software contents from developer’s database as in the traditional method requires a continuously open connection between the client and the developer’s end, a fixed network is not economically or technically feasible. Mobile agent after being dispatched into the network becomes independent of the creating process and can operate asynchronously and autonomously. It can reconnect later after completing its task and return for result delivery. Response Time and Network Load are very minimal with application of Mobile agent.Keywords: software products, software developer, internet, activation code, mobile agent
Procedia PDF Downloads 31018595 An Efficient Book Keeping Strategy for the Formation of the Design Matrix in Geodetic Network Adjustment
Authors: O. G. Omogunloye, J. B. Olaleye, O. E. Abiodun, J. O. Odumosu, O. G. Ajayi
Abstract:
The focus of the study is to proffer easy formulation and computation of least square observation equation’s design matrix by using an efficient book keeping strategy. Usually, for a large network of many triangles and stations, a rigorous task is involved in the computation and placement of the values of the differentials of each observation with respect to its station coordinates (latitude and longitude), in their respective rows and columns. The efficient book keeping strategy seeks to eliminate or reduce this rigorous task involved, especially in large network, by simple skillful arrangement and development of a short program written in the Matlab environment, the formulation and computation of least square observation equation’s design matrix can be easily achieved.Keywords: design, differential, geodetic, matrix, network, station
Procedia PDF Downloads 35318594 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process
Abstract:
Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process
Procedia PDF Downloads 14618593 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning
Authors: Sumitra Nuanmeesri
Abstract:
The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.Keywords: blended learning, new media, infrastructure and computer network, tele-education, online learning
Procedia PDF Downloads 40218592 Competitor Integration with Voice of Customer Ratings in QFD Studies Using Geometric Mean Based on AHP
Authors: Zafar Iqbal, Nigel P. Grigg, K. Govindaraju, Nicola M. Campbell-Allen
Abstract:
Quality Function Deployment (QFD) is structured approach. It has been used to improve the quality of products and process in a wide range of fields. Using this systematic tool, practitioners normally rank Voice of Customer ratings (VoCs) in order to produce Improvement Ratios (IRs) which become the basis for prioritising process / product design or improvement activities. In one matrix of the House of Quality (HOQ) competitors are rated. The method of obtaining improvement ratios (IRs) does not always integrate the competitors’ rating in a systematic way that fully utilises competitor rating information. This can have the effect of diverting QFD practitioners’ attention from a potentially important VOC to less important VOC. In order to enhance QFD analysis, we present a more systematic method for integrating competitor ratings, utilising the geometric mean of the customer rating matrix. In this paper we develop a new approach, based on the Analytic Hierarchy Process (AHP), in which we generating a matrix of multiple comparisons of all competitors, and derive a geometric mean for each competitor. For each VOC an improved IR is derived which-we argue herein - enhances the initial VOC importance ratings by integrating more information about competitor performance. In this way, our method can help overcome one of the possible shortcomings of QFD. We then use a published QFD example from literature as a case study to demonstrate the use of the new AHP-based IRs, and show how these can be used to re-rank existing VOCs to -arguably- better achieve the goal of customer satisfaction in relation VOC ratings and competitors’ rankings. We demonstrate how two dimensional AHP-based geometric mean derived from the multiple competitor comparisons matrix can be useful for analysing competitors’ rankings. Our method utilises an established methodology (AHP) applied within an established application (QFD), but in an original way (through the competitor analysis matrix), to achieve a novel improvement.Keywords: quality function deployment, geometric mean, improvement ratio, AHP, competitors ratings
Procedia PDF Downloads 36518591 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 8918590 Strain Based Failure Criterion for Composite Notched Laminates
Authors: Ibrahim A. Elsayed, Mohamed H. Elalfy, Mostafa M. Abdalla
Abstract:
A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis.Keywords: anisotropy ratio, failure criteria, notched laminates, Omni-strain envelope, savin’s solution
Procedia PDF Downloads 11518589 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network
Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang
Abstract:
The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.Keywords: critical message, DTN, navigation satellite, on-board, real-time
Procedia PDF Downloads 34018588 A Comparative Study of the Proposed Models for the Components of the National Health Information System
Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi
Abstract:
National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.Keywords: National Health Information System, components of the NHIS, Lippeveld Model
Procedia PDF Downloads 42018587 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system
Procedia PDF Downloads 47018586 Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis
Authors: Jian Xu, Xiaochun Yun, Yongzheng Zhang, Yafei Sang, Zhenyu Cheng
Abstract:
Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces.Keywords: attribution trace, probabilistic relevance, network attack, attacker identification
Procedia PDF Downloads 36518585 Analysis of Two-Echelon Supply Chain with Perishable Items under Stochastic Demand
Authors: Saeed Poormoaied
Abstract:
Perishability and developing an intelligent control policy for perishable items are the major concerns of marketing managers in a supply chain. In this study, we address a two-echelon supply chain problem for perishable items with a single vendor and a single buyer. The buyer adopts an aged-based continuous review policy which works by taking both the stock level and the aging process of items into account. The vendor works under the warehouse framework, where its lot size is determined with respect to the batch size of the buyer. The model holds for a positive and fixed lead time for the buyer, and zero lead time for the vendor. The demand follows a Poisson process and any unmet demand is lost. We provide exact analytic expressions for the operational characteristics of the system by using the renewal reward theorem. Items have a fixed lifetime after which they become unusable and are disposed of from the buyer's system. The age of items starts when they are unpacked and ready for the consumption at the buyer. When items are held by the vendor, there is no aging process which results in no perishing at the vendor's site. The model is developed under the centralized framework, which takes the expected profit of both vendor and buyer into consideration. The goal is to determine the optimal policy parameters under the service level constraint at the retailer's site. A sensitivity analysis is performed to investigate the effect of the key input parameters on the expected profit and order quantity in the supply chain. The efficiency of the proposed age-based policy is also evaluated through a numerical study. Our results show that when the unit perishing cost is negligible, a significant cost saving is achieved.Keywords: two-echelon supply chain, perishable items, age-based policy, renewal reward theorem
Procedia PDF Downloads 14118584 Using GIS and AHP Model to Explore the Parking Problem in Khomeinishahr
Authors: Davood Vatankhah, Reza Mokhtari Malekabadi, Mohsen Saghaei
Abstract:
Function of urban transportation systems depends on the existence of the required infrastructures, appropriate placement of different components, and the cooperation of these components with each other. Establishing various neighboring parking spaces in city neighborhood in order to prevent long-term and inappropriate parking of cars in the allies is one of the most effective operations in reducing the crowding and density of the neighborhoods. Every place with a certain application attracts a number of daily travels which happen throughout the city. A large percentage of the people visiting these places go to these travels by their own cars; therefore, they need a space to park their cars. The amount of this need depends on the usage function and travel demand of the place. The study aims at investigating the spatial distribution of the public parking spaces, determining the effective factors in locating, and their combination in GIS environment in Khomeinishahr of Isfahan city. Ultimately, the study intends to create an appropriate pattern for locating parking spaces, determining the request for parking spaces of the traffic areas, choosing the proper places for providing the required public parking spaces, and also proposing new spots in order to promote quality and quantity aspects of the city in terms of enjoying public parking spaces. Regarding the method, the study is based on applied purpose and regarding nature, it is analytic-descriptive. The population of the study includes people of the center of Khomeinishahr which is located on Northwest of Isfahan having about 5000 hectares of geographic area and the population of 241318 people are in the center of Komeinishahr. In order to determine the sample size, Cochran formula was used and according to the population of 26483 people of the studied area, 231 questionnaires were used. Data analysis was carried out by usage of SPSS software and after estimating the required space for parking spaces, initially, the effective criteria in locating the public parking spaces are weighted by the usage of Analytic Hierarchical Process in the Arc GIS software. Then, appropriate places for establishing parking spaces were determined by fuzzy method of Order Weighted Average (OWA). The results indicated that locating of parking spaces in Khomeinishahr have not been carried out appropriately and per capita of the parking spaces is not desirable in relation to the population and request; therefore, in addition to the present parking lots, 1434 parking lots are needed in the area of the study for each day; therefore, there is not a logical proportion between parking request and the number of parking lots in Khomeinishahr.Keywords: GIS, locating, parking, khomeinishahr
Procedia PDF Downloads 30718583 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 15218582 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator
Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty
Abstract:
Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state
Procedia PDF Downloads 26418581 Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network
Authors: Asnawi Mohd Busrah, Au Mau Teng, Tan Chin Hooi, Lau Chee Chong
Abstract:
This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers.Keywords: value based planning, distribution network, value of loss load (VoLL), energy not served (ENS)
Procedia PDF Downloads 47718580 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification
Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo
Abstract:
The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.Keywords: the bluff body wakes, low-order modeling, neural network, system identification
Procedia PDF Downloads 17918579 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)
Procedia PDF Downloads 8418578 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks
Authors: Juan José Mesas, Luis Sainz
Abstract:
The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis
Procedia PDF Downloads 7718577 Modeling and Simulation of Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 52718576 Performance Analysis of the Precise Point Positioning Data Online Processing Service and Using for Monitoring Plate Tectonic of Thailand
Authors: Nateepat Srivarom, Weng Jingnong, Serm Chinnarat
Abstract:
Precise Point Positioning (PPP) technique is use to improve accuracy by using precise satellite orbit and clock correction data, but this technique is complicated methods and high costs. Currently, there are several online processing service providers which offer simplified calculation. In the first part of this research, we compare the efficiency and precision of four software. There are three popular online processing service providers: Australian Online GPS Processing Service (AUSPOS), CSRS-Precise Point Positioning and CenterPoint RTX post processing by Trimble and 1 offline software, RTKLIB, which collected data from 10 the International GNSS Service (IGS) stations for 10 days. The results indicated that AUSPOS has the least distance root mean square (DRMS) value of 0.0029 which is good enough to be calculated for monitoring the movement of tectonic plates. The second, we use AUSPOS to process the data of geodetic network of Thailand. In December 26, 2004, the earthquake occurred a 9.3 MW at the north of Sumatra that highly affected all nearby countries, including Thailand. Earthquake effects have led to errors of the coordinate system of Thailand. The Royal Thai Survey Department (RTSD) is primarily responsible for monitoring of the crustal movement of the country. The difference of the geodetic network movement is not the same network and relatively large. This result is needed for survey to continue to improve GPS coordinates system in every year. Therefore, in this research we chose the AUSPOS to calculate the magnitude and direction of movement, to improve coordinates adjustment of the geodetic network consisting of 19 pins in Thailand during October 2013 to November 2017. Finally, results are displayed on the simulation map by using the ArcMap program with the Inverse Distance Weighting (IDW) method. The pin with the maximum movement is pin no. 3239 (Tak) in the northern part of Thailand. This pin moved in the south-western direction to 11.04 cm. Meanwhile, the directional movement of the other pins in the south gradually changed from south-west to south-east, i.e., in the direction noticed before the earthquake. The magnitude of the movement is in the range of 4 - 7 cm, implying small impact of the earthquake. However, the GPS network should be continuously surveyed in order to secure accuracy of the geodetic network of Thailand.Keywords: precise point positioning, online processing service, geodetic network, inverse distance weighting
Procedia PDF Downloads 18818575 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 17318574 Methods for Restricting Unwanted Access on the Networks Using Firewall
Authors: Bhagwant Singh, Sikander Singh Cheema
Abstract:
This paper examines firewall mechanisms routinely implemented for network security in depth. A firewall can't protect you against all the hazards of unauthorized networks. Consequently, many kinds of infrastructure are employed to establish a secure network. Firewall strategies have already been the subject of significant analysis. This study's primary purpose is to avoid unnecessary connections by combining the capability of the firewall with the use of additional firewall mechanisms, which include packet filtering and NAT, VPNs, and backdoor solutions. There are insufficient studies on firewall potential and combined approaches, but there aren't many. The research team's goal is to build a safe network by integrating firewall strength and firewall methods. The study's findings indicate that the recommended concept can form a reliable network. This study examines the characteristics of network security and the primary danger, synthesizes existing domestic and foreign firewall technologies, and discusses the theories, benefits, and disadvantages of different firewalls. Through synthesis and comparison of various techniques, as well as an in-depth examination of the primary factors that affect firewall effectiveness, this study investigated firewall technology's current application in computer network security, then introduced a new technique named "tight coupling firewall." Eventually, the article discusses the current state of firewall technology as well as the direction in which it is developing.Keywords: firewall strategies, firewall potential, packet filtering, NAT, VPN, proxy services, firewall techniques
Procedia PDF Downloads 9918573 A Relational Approach to Adverb Use in Interactions
Authors: Guillaume P. Fernandez
Abstract:
Individual language use is a matter of choice in particular interactions. The paper proposes a conceptual and theoretical framework with methodological consideration to develop how language produced in dyadic relations is to be considered and situated in the larger social configuration the interaction is embedded within. An integrated and comprehensive view is taken: social interactions are expected to be ruled by a normative context, defined by the chain of interdependences that structures the personal network. In this approach, the determinants of discursive practices are not only constrained by the moment of production and isolated from broader influences. Instead, the position the individual and the dyad have in the personal network influences the discursive practices in a twofold manner: on the one hand, the network limits the access to linguistic resources available within it, and, on the other hand, the structure of the network influences the agency of the individual, by the social control inherent to particular network characteristics. Concretely, we investigate how and to what extent consistent ego is from one interaction to another in his or her use of adverbs. To do so, social network analysis (SNA) methods are mobilized. Participants (N=130) are college students recruited in the french speaking part of Switzerland. The personal network of significant ones of each individual is created using name generators and edge interpreters, with a focus on social support and conflict. For the linguistic parts, respondents were asked to record themselves with five of their close relations. From the recordings, we computed an average similarity score based on the adverb used across interactions. In terms of analyses, two are envisaged: First, OLS regressions including network-level measures, such as density and reciprocity, and individual-level measures, such as centralities, are performed to understand the tenets of linguistic similarity from one interaction to another. The second analysis considers each social tie as nested within ego networks. Multilevel models are performed to investigate how the different types of ties may influence the likelihood to use adverbs, by controlling structural properties of the personal network. Primary results suggest that the more cohesive the network, the less likely is the individual to change his or her manner of speaking, and social support increases the use of adverbs in interactions. While promising results emerge, further research should consider a longitudinal approach to able the claim of causality.Keywords: personal network, adverbs, interactions, social influence
Procedia PDF Downloads 6618572 Dynamic Transmission Modes of Network Public Opinion on Subevents Clusters of an Emergent Event
Authors: Yuan Xu, Xun Liang, Meina Zhang
Abstract:
The rise and attenuation of the public opinion broadcast of an emergent accident, in the social network, has a close relationship with the dynamic development of its subevents cluster. In this article, we take Tianjin Port explosion's subevents as an example to research the dynamic propagation discipline of Internet public opinion in a sudden accident, and analyze the overall structure of dynamic propagation to propose four different routes for subevents clusters propagation. We also generate network diagrams for the dynamic public opinion propagation, analyze each propagation type specifically. Based on this, suggestions on the supervision and guidance of Internet public opinion broadcast can be made.Keywords: network dynamic transmission modes, emergent subevents clusters, Tianjin Port explosion, public opinion supervision
Procedia PDF Downloads 29518571 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 13818570 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 288