Search results for: central auditory processing disorder
908 Morphological and Molecular Abnormalities of the Skeletal Muscle Tissue from Pediatric Patient Affected by a Rare Genetic Chaperonopathy Associated with Motor Neuropathy
Authors: Leila Noori, Rosario Barone, Francesca Rappa, Antonella Marino Gammazza, Alessandra Maria Vitale, Giuseppe Donato Mangano, Giusy Sentiero, Filippo Macaluso, Kathryn H. Myburgh, Francesco Cappello, Federica Scalia
Abstract:
The neuromuscular system controls, directs, and allows movement of the body through the action of neural circuits, which include motor neurons, sensory neurons, and skeletal muscle fibers. Protein homeostasis of the involved cytotypes appears crucial to maintain the correct and prolonged functions of the neuromuscular system, and both neuronal cells and skeletal muscle fibers express significant quantities of protein chaperones, the molecular machinery responsible to maintain the protein turnover. Genetic mutations or defective post-translational modifications of molecular chaperones (i.e., genetic or acquired chaperonopathies) may lead to neuromuscular disorders called as neurochaperonopathies. The limited knowledge of the effects of the defective chaperones on skeletal muscle fibers and neurons impedes the progression of therapeutic approaches. A distinct genetic variation of CCT5 gene encoding for the subunit 5 of the chaperonin CCT (Chaperonin Containing TCP1; also known as TRiC, TCP1 Ring Complex) was recently described associated with severe distal motor neuropathy by our team. In this study, we investigated the histopathological abnormalities of the skeletal muscle biopsy of the pediatric patient affected by the mutation Leu224Val in the CCT5 subunit. We provide molecular and structural features of the diseased skeletal muscle tissue that we believe may be useful to identify undiagnosed cases of this rare genetic disorder. We investigated the histological abnormalities of the affected tissue via hematoxylin and eosin staining. Then we used immunofluorescence and qPCR techniques to explore the expression and distribution of CCT5 in diseased and healthy skeletal muscle tissue. Immunofluorescence and immunohistochemistry assays were performed to study the sarcomeric and structural proteins of skeletal muscle, including actin, myosin, tubulin, troponin-T, telethonin, and titin. We performed Western blot to examine the protein expression of CCT5 and some heat shock proteins, Hsp90, Hsp60, Hsp27, and α-B crystallin, along with the main client proteins of the CCT5, actin, and tubulin. Our findings revealed muscular atrophy, abnormal morphology, and different sizes of muscle fibers in affected tissue. The swollen nuclei and wide interfiber spaces were seen. Expression of CCT5 had been decreased and showed a different distribution pattern in the affected tissue. Altered expression, distribution, and bandage pattern were detected by confocal microscopy for the interested muscular proteins in tissue from the patient compared to the healthy control. Protein levels of the studied Hsps normally located at the Z-disk were reduced. Western blot results showed increased levels of the actin and tubulin proteins in the diseased skeletal muscle biopsy compared to healthy tissue. Chaperones must be expressed at high levels in skeletal muscle to counteract various stressors such as mechanical, oxidative, and thermal crises; therefore, it seems relevant that defects of molecular chaperones may result in damaged skeletal muscle fibers. So far, several chaperones or cochaperones involved in neuromuscular disorders have been defined. Our study shows that alteration of the CCT5 subunit is associated with the damaged structure of skeletal muscle fibers and alterations of chaperone system components and paves the way to explore possible alternative substrates of chaperonin CCT. However, further studies are underway to investigate the CCT mechanisms of action to design applicable therapeutic strategies.Keywords: molecular chaperones, neurochaperonopathy, neuromuscular system, protein homeostasis
Procedia PDF Downloads 70907 Generation & Migration Of Carbone Dioxid In The Lower Cretaceous Bahi Sandstone Reservoir Within The En-naga Sub Basin, Sirte Basin, Libya
Authors: Moaawia Abdulgader Gdara
Abstract:
En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex.Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub – basin), three main developed structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represents a good example for the deep over pressure potential in (En Naga sub - basin). The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large.Keywords: 1) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co2 generation and migration to the bahi sandstone reservoir
Procedia PDF Downloads 71906 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 184905 Phytoremediation of artisanal gold mine tailings - Potential of Chrysopogon zizanioides and Andropogon gayanus in the Sahelian climate
Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien
Abstract:
Soil pollution and, consequently, water resources by micropollutants from gold mine tailings constitute a major threat in developing countries due to the lack of waste treatment. Phytoremediation is an alternative for extracting or trapping micropollutants from contaminated soils by mining residues. The potentialities of Chrysopogon zizanioides (acclimated plant) and Andropogon gayanus (native plant) to accumulate arsenic (As), mercury (Hg), iron (Fe) and zinc (Zn) were studied in artisanal gold mine in Ouagadougou, Burkina Faso. The phytoremediation effectiveness of two plant species was studied in 75 pots of 30 liters each, containing mining residues from the artisanal gold processing site in the rural commune of Nimbrogo. The experiments cover three modalities: Tn - planted unpolluted soils; To – unplanted mine tailings and Tp – planted mine tailings arranged in a randomized manner. The pots were amended quarterly with compost to provide nutrients to the plants. The phytoremediation assessment consists of comparing the growth, biomass and capacity of these two herbaceous plants to extract or to trap Hg, Fe, Zn and As in mining residues in a controlled environment. The analysis of plant species parameters cultivated in mine tailings shows indices of relative growth of A. gayanus very significantly high (34.38%) compared to 20.37% for C.zizanioides. While biomass analysis reveals that C. zizanioides has greater foliage and root system growth than A. gayanus. The results after a culture time of 6 months showed that C. zizanioides and A. gayanus have the potential to accumulate Hg, Fe, Zn and As. Root biomass has a more significant accumulation than aboveground biomass for both herbaceous species. Although the BCF bioaccumulation factor values for both plants together are low (<1), the removal efficiency of Hg, Fe, Zn and As is 45.13%, 42.26%, 21.5% and 2.87% respectively in 24 weeks of culture with C. zizanioides. However, pots grown with A. gayanus gives an effectiveness rate of 43.55%; 41.52%; 2.87% and 1.35% respectively for Fe, Zn, Hg and As. The results indicate that the plant species studied have a strong phytoremediation potential, although that of A. gayanus is relatively less than C. zizanioides.Keywords: artisanal gold mine tailings, andropogon gayanus, chrysopogon zizanioides, phytoremediation
Procedia PDF Downloads 63904 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter
Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai
Abstract:
Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking
Procedia PDF Downloads 481903 Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology
Authors: Tanvi P. Medshinge, Prasad Vaidya, Monisha E. Royan
Abstract:
In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.Keywords: fluid dynamics, prototype design, natural ventilation, simulations, water table apparatus, wind incidence angles
Procedia PDF Downloads 226902 Selective Effect of Occipital Alpha Transcranial Alternating Current Stimulation in Perception and Working Memory
Authors: Andreina Giustiniani, Massimiliano Oliveri
Abstract:
Rhythmic activity in different frequencies could subserve distinct functional roles during visual perception and visual mental imagery. In particular, alpha band activity is thought to play a role in active inhibition of both task-irrelevant regions and processing of non-relevant information. In the present blind placebo-controlled study we applied alpha transcranial alternating current stimulation (tACS) in the occipital cortex both during a basic visual perception and a visual working memory task. To understand if the role of alpha is more related to a general inhibition of distractors or to an inhibition of task-irrelevant regions, we added a non visual distraction to both the tasks.Sixteen adult volunteers performed both a simple perception and a working memory task during 10 Hz tACS. The electrodes were placed over the left and right occipital cortex, the current intensity was 1 mA peak-to-baseline. Sham stimulation was chosen as control condition and in order to elicit the skin sensation similar to the real stimulation, electrical stimulation was applied for short periods (30 s) at the beginning of the session and then turned off. The tasks were split in two sets, in one set distracters were included and in the other set, there were no distracters. Motor interference was added by changing the answer key after subjects completed the first set of trials.The results show that alpha tACS improves working memory only when no motor distracters are added, suggesting a role of alpha tACS in inhibiting non-relevant regions rather than in a general inhibition of distractors. Additionally, we found that alpha tACS does not affect accuracy and hit rates during the visual perception task. These results suggest that alpha activity in the occipital cortex plays a different role in perception and working memory and it could optimize performance in tasks in which attention is internally directed, as in this working memory paradigm, but only when there is not motor distraction. Moreover, alpha tACS improves working memory performance by means of inhibition of task-irrelevant regions while it does not affect perception.Keywords: alpha activity, interference, perception, working memory
Procedia PDF Downloads 254901 Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys
Authors: Egoitz Aldanondo, Ekaitz Arruti, Amaia Iturrioz, Ivan Huarte, Fidel Zubiri
Abstract:
Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation.Keywords: AA2060-T8E30, AA2099-T83, AA2198-T3S, AA2198-T851, friction stir welding, laser beam welding
Procedia PDF Downloads 196900 An Efficient Hardware/Software Workflow for Multi-Cores Simulink Applications
Authors: Asma Rebaya, Kaouther Gasmi, Imen Amari, Salem Hasnaoui
Abstract:
Over these last years, applications such as telecommunications, signal processing, digital communication with advanced features (Multi-antenna, equalization..) witness a rapid evaluation accompanied with an increase of user exigencies in terms of latency, the power of computation… To satisfy these requirements, the use of hardware/software systems is a common solution; where hardware is composed of multi-cores and software is represented by models of computation, synchronous data flow (SDF) graph for instance. Otherwise, the most of the embedded system designers utilize Simulink for modeling. The issue is how to simplify the c code generation, for a multi-cores platform, of an application modeled by Simulink. To overcome this problem, we propose a workflow allowing an automatic transformation from the Simulink model to the SDF graph and providing an efficient schedule permitting to optimize the number of cores and to minimize latency. This workflow goes from a Simulink application and a hardware architecture described by IP.XACT language. Based on the synchronous and hierarchical behavior of both models, the Simulink block diagram is automatically transformed into an SDF graph. Once this process is successfully achieved, the scheduler calculates the optimal cores’ number needful by minimizing the maximum density of the whole application. Then, a core is chosen to execute a specific graph task in a specific order and, subsequently, a compatible C code is generated. In order to perform this proposal, we extend Preesm, a rapid prototyping tool, to take the Simulink model as entry input and to support the optimal schedule. Afterward, we compared our results to this tool results, using a simple illustrative application. The comparison shows that our results strictly dominate the Preesm results in terms of number of cores and latency. In fact, if Preesm needs m processors and latency L, our workflow need processors and latency L'< L.Keywords: hardware/software system, latency, modeling, multi-cores platform, scheduler, SDF graph, Simulink model, workflow
Procedia PDF Downloads 265899 Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products
Authors: Goksen Arik, Mihriban Korukluoglu
Abstract:
Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether isolates have the potential for biofilm production, and the second was to compare the validity of two different methods, which are known as “Tube method” and “96-well plate-based method”. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry.Keywords: biofilm, dairy products, lactic acid bacteria, yeast
Procedia PDF Downloads 261898 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule
Authors: David Nieto Simavilla, Wilco M. H. Verbeeten
Abstract:
The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity
Procedia PDF Downloads 180897 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture
Procedia PDF Downloads 193896 Testing Depression in Awareness Space: A Proposal to Evaluate Whether a Psychotherapeutic Method Based on Spatial Cognition and Imagination Therapy Cures Moderate Depression
Authors: Lucas Derks, Christine Beenhakker, Michiel Brandt, Gert Arts, Ruud van Langeveld
Abstract:
Background: The method Depression in Awareness Space (DAS) is a psychotherapeutic intervention technique based on the principles of spatial cognition and imagination therapy with spatial components. The basic assumptions are: mental space is the primary organizing principle in the mind, and all psychological issues can be treated by first locating and by next relocating the conceptualizations involved. The most clinical experience was gathered over the last 20 years in the area of social issues (with the social panorama model). The latter work led to the conclusion that a mental object (image) gains emotional impact when it is placed more central, closer and higher in the visual field – and vice versa. Changing the locations of mental objects in space thus alters the (socio-) emotional meaning of the relationships. The experience of depression seems always associated with darkness. Psychologists tend to see the link between depression and darkness as a metaphor. However, clinical practice hints to the existence of more literal forms of darkness. Aims: The aim of the method Depression in Awareness Space is to reduce the distress of clients with depression in the clinical counseling practice, as a reliable alternative method of psychological therapy for the treatment of depression. The method Depression in Awareness Space aims at making dark areas smaller, lighter and more transparent in order to identify the problem or the cause of the depression which lies behind the darkness. It was hypothesized that the darkness is a subjective side-effect of the neurological process of repression. After reducing the dark clouds the real problem behind the depression becomes more visible, allowing the client to work on it and in that way reduce their feelings of depression. This makes repression of the issue obsolete. Results: Clients could easily get into their 'sadness' when asked to do so and finding the location of the dark zones proved pretty easy as well. In a recent pilot study with five participants with mild depressive symptoms (measured on two different scales and tested against an untreated control group with similar symptoms), the first results were also very promising. If the mental spatial approach to depression can be proven to be really effective, this would be very good news. The Society of Mental Space Psychology is now looking for sponsoring of an up scaled experiment. Conclusions: For spatial cognition and the research into spatial psychological phenomena, the discovery of dark areas can be a step forward. Beside out of pure scientific interest, it is great to know that this discovery has a clinical implication: when darkness can be connected to depression. Also, darkness seems to be more than metaphorical expression. Progress can be monitored over measurement tools that quantify the level of depressive symptoms and by reviewing the areas of darkness.Keywords: depression, spatial cognition, spatial imagery, social panorama
Procedia PDF Downloads 169895 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine
Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa
Abstract:
Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid
Procedia PDF Downloads 181894 Anti-Graft Instruments and Their Role in Curbing Corruption: Integrity Pact and Its Impact on Indian Procurement
Authors: Jot Prakash Kaur
Abstract:
The paper aims to showcase that with the introduction of anti-graft instruments and willingness of the governments towards their implementation, a significant change can be witnessed in the anti-corruption landscape of any country. Since the past decade anti-graft instruments have been introduced by several international non-governmental organizations with the vision of curbing corruption. Transparency International’s ‘Integrity Pact’ has been one such initiative. Integrity Pact has been described as a tool for preventing corruption in public contracting. Integrity Pact has found its relevance in a developing country like India where public procurement constitutes 25-30 percent of Gross Domestic Product. Corruption in public procurement has been a cause of concern even though India has in place a whole architecture of rules and regulations governing public procurement. Integrity Pact was first adopted by a leading Oil and Gas government company in 2006. Till May 2015, over ninety organizations had adopted Integrity Pact, of which majority of them are central government units. The methodology undertaken to understand impact of Integrity Pact on Public procurement is through analyzing information received from important stakeholders of the instrument. Government, information was sought through Right to Information Act 2005 about the details of adoption of this instrument by various government organizations and departments. Contractor, Company websites and annual reports were used to find out the steps taken towards implementation of Integrity Pact. Civil Society, Transparency International India’s resource materials which include publications and reports on Integrity Pact were also used to understand the impact of Integrity Pact. Some of the findings of the study include organizations adopting Integrity pacts in all kinds of contracts such that 90% of their procurements fall under Integrity Pact. Indian State governments have found merit in Integrity Pact and have adopted it in their procurement contracts. Integrity Pact has been instrumental in creating a brand image of companies. External Monitors, an essential feature of Integrity Pact have emerged as arbitrators for the bidders and are the first line of procurement auditors for the organizations. India has cancelled two defense contracts finding it conflicting with the provisions of Integrity Pact. Some of the clauses of Integrity Pact have been included in the proposed Public Procurement legislation. Integrity Pact has slowly but steadily grown to become an integral part of big ticket procurement in India. Government’s commitment to implement Integrity Pact has changed the way in which public procurement is conducted in India. Public Procurement was a segment infested with corruption but with the adoption of Integrity Pact a number of clean up acts have been performed to make procurement transparent. The paper is divided in five sections. First section elaborates on Integrity Pact. Second section talks about stakeholders of the instrument and the role it plays in its implementation. Third section talks about the efforts taken by the government to implement Integrity Pact in India. Fourth section talks about the role of External Monitor as Arbitrator. The final section puts forth suggestions to strengthen the existing form of Integrity Pact and increase its reach.Keywords: corruption, integrity pact, procurement, vigilance
Procedia PDF Downloads 337893 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 159892 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite
Authors: Georgios Koronis, Arlindo Silva
Abstract:
This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites
Procedia PDF Downloads 203891 Stress Perception, Social Supports and Family Function among Military Inpatients with Adjustment Disorders in Taiwan
Authors: Huey-Fang Sun, Wei-Kai Weng, Mei-Kuang Chao, Hui-Shan Hsu, Tsai-Yin Shih
Abstract:
Psycho-social stress is important for mental illness and the presence of emotional and behavioral symptoms to an identifiable event is the central feature of adjustment disorders. However, whether patients with adjustment disorders have been raised in family with poor family functions and social supports and have higher stress perception than their peer group when they both experienced a similar stressful environment remains unknown. The specific aims of the study are to investigate the correlation among the family function, social supports and the level of stress perception and to test the hypothesis that military patients with adjustment disorders would have lower family function, lower social supports and higher stress perception than their healthy colleagues recruited in the same cohort for military services given their common exposure to similar stressful environments. Methods: The study was conducted in four hospitals of northern part of Taiwan from July 1, 2015 to June 30, 2017 and a matched case-control study design was used. The inclusion criteria for potential patient participants were psychiatric inpatients that serviced in military during the study period and met the diagnosis of adjustment disorders. Patients who had been admitted to psychiatric ward before or had illiteracy problem were excluded. A healthy military control sample matched by the same military service unit, gender, and recruited cohort was invited to participate the study as well. Totally 74 participants (37 patients and 37 controls) completed the consent forms and filled out the research questionnaires. Questionnaires used in the study included Perceived Stress Scale (PSS) as a measure of stress perception; Family APGAR as a measure of family function, and Multidimensional Scale of Perceived Social Support (MSPSS) as a measure of social supports. Pearson correlation analysis and t-test were applied for statistical analysis. Results: The analysis results showed that PSS level significantly negatively correlated with three social support subscales (family subscale, r= -.37, P < .05; friend subscale, r= -.38, P < .05; significant other subscale, r= -.39, P < .05). A negative correlation between PSS level and Family APGAR only reached a borderline significant level (P= .06). The t-test results for PSS scores, Family APGAR levels, and three subscale scores of MSPSS between patient and control participants were all significantly different (P < .001, P < .05, P < .05, P < .05, P < .05, respectively) and the patient participants had higher stress perception scores, lower social supports and lower family function scores than the healthy control participants. Conclusions: Our study suggested that family function and social supports were negatively correlated with patients’ subjective stress perception. Military patients with adjustment disorders tended to have higher stress perception and lower family function and social supports than those military peers who remained healthy and still provided services in their military units.Keywords: adjustment disorders, family function, social support, stress perception
Procedia PDF Downloads 192890 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity
Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang
Abstract:
In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software
Procedia PDF Downloads 365889 Cu₂(ZnSn)(S)₄ Electrodeposition from a Single Bath for Photovoltaic Applications
Authors: Mahfouz Saeed
Abstract:
Cu₂(ZnSn)(S)₄ (CTZS) offers potential advantages over CuInGaSe₂ (CIGS) as solar thin film because to its higher band gap. Preparing such photovoltaic materials by electrochemical techniques is particularly attractive due to the lower processing cost and the high throughput of such techniques. Several recent publications report CTZS electroplating; however, the electrochemical process still facing serious challenges such as a sulfur atomic ration which is about 50% of the total alloy. We introduce in this work an improved electrolyte composition which enables the direct electrodeposition of CTZS from a single bath. The electrolyte is significantly more dilute in comparison to common baths described in the literature. The bath composition we introduce is: 0.0032 M CuSO₄, 0.0021 M ZnSO₄, 0.0303 M SnCl₂, 0.0038 M Na₂S₂O₃, and 0.3 mM Na₂S₂O3. PHydrion is applied to buffer the electrolyte to pH=2, and 0.7 M LiCl is applied as supporting electrolyte. Electrochemical process was carried at a rotating disk electrode which provides quantitative characterization of the flow (room temperature). Comprehensive electrochemical behavior study at different electrode rotation rates are provided. The effects of agitation on atomic composition of the deposit and its adhesion to the molybdenum back contact are discussed. The post treatment annealing was conducted under sulfur atmosphere with no need for metals addition from the gas phase during annealing. The potential which produced the desired atomic ratio of CTZS at -0.82 V/NHE. Smooth deposit, with uniform composition across the sample surface and depth was obtained at 500 rpm rotation speed. Final sulfur atomic ratio was adjusted to 50.2% in order to have the desired atomic ration. The final composition was investigated using Energy-dispersive X-ray spectroscopy technique (EDS). XRD technique used to analyze CTZS crystallography and thickness. Complete and functional CTZS PV devices were fabricated by depositing all the required layers in the correct order and the desired optical properties. Acknowledgments: Case Western Reserve University for the technical help and for using their instruments.Keywords: photovoltaic, CTZS, thin film, electrochemical
Procedia PDF Downloads 239888 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation
Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda
Abstract:
A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation
Procedia PDF Downloads 431887 Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel
Authors: Farha Mizana Shamsudin, Shahidan Radiman, Yusof Abdullah, Nasri Abdul Hamid
Abstract:
Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study.Keywords: hot isostatic pressing, magnetization, microstructure, ODS ferritic steel
Procedia PDF Downloads 316886 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 88885 Eco-Friendly Softener Extracted from Ricinus communis (Castor) Seeds for Organic Cotton Fabric
Authors: Fisaha Asmelash
Abstract:
The processing of textiles to achieve a desired handle is a crucial aspect of finishing technology. Softeners can enhance the properties of textiles, such as softness, smoothness, elasticity, hydrophilicity, antistatic properties, and soil release properties, depending on the chemical nature used. However, human skin is sensitive to rough textiles, making softeners increasingly important. Although synthetic softeners are available, they are often expensive and can cause allergic reactions on human skin. This paper aims to extract a natural softener from Ricinus communis and produce an eco-friendly and user-friendly alternative due to its 100% herbal and organic nature. Crushed Ricinus communis seeds were soaked in a mechanical oil extractor for one hour with a 100g cotton fabric sample. The defatted cake or residue obtained after the extraction of oil from the seeds, also known as Ricinus communis meal, was obtained by filtering the raffinate and then dried at 1030c for four hours before being stored under laboratory conditions for the softening process. The softener was applied directly to 100% cotton fabric using the padding process, and the fabric was tested for stiffness, crease recovery, and drape ability. The effect of different concentrations of finishing agents on fabric stiffness, crease recovery, and drape ability was also analyzed. The results showed that the change in fabric softness depends on the concentration of the finish used. As the concentration of the finish was increased, there was a decrease in bending length and drape coefficient. Fabrics with a high concentration of softener showed a maximum decrease in drape coefficient and stiffness, comparable to commercial softeners such as silicon. The highest decrease in drape coefficient was found to be comparable with commercial softeners, silicon. Maximum increases in crease recovery were seen in fabrics treated with Ricinus communis softener at a concentration of 30gpl. From the results, the extracted softener proved to be effective in the treatment of 100% cotton fabricKeywords: ricinus communis, crease recovery, drapability, softeners, stiffness
Procedia PDF Downloads 91884 Study of the Montmorillonite Effect on PET/Clay and PEN/Clay Nanocomposites
Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour
Abstract:
Nanocomposite polymer / clay are relatively important area of research. These reinforced plastics have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters ie polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/ poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This was evidence that both PET/PEN and nPET/nPEN blends are compatible in the entire range of compositions. In addition, the nPET/nPEN blends showed lower Tc and higher Tm values than the corresponding neat PET/PEN blends. In conclusion, the results obtained indicate that n(PET/PEN) blends are different from the pure ones in nanostructure and physical behavior.Keywords: blends, exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing
Procedia PDF Downloads 296883 Wildlife Trade and Bushmeat Consumption in Benin City, Southern Nigeria: Conservation Implications and Threats to Biodiversity Sustainability
Authors: Sylvia O. Ogoanah, Khalifa Mustapha, Joshua E. Emedo
Abstract:
Despite the call for wildlife conservation and sustainability, wildlife trade and bushmeat consumption seem to have reached an all-time high in Benin City, Southern Nigeria. This necessitated the survey of wildlife trade, otherwise called bushmeat, in selected markets in Benin City, Southern Nigeria, between December 2015 and May 2016 (dry season) and June to September (rainy season). Although the eight markets randomly selected within the urban and peri-urban areas operate daily, visits were made weekly to prevent double counting of the same live specimen. On each visit, counts were made of live specimens seen while those cut in parts and dried were identified by the vendors before photographing and recording. Quantitative data analysis was done using SPSS 14 software programs. A total of two thousand five hundred and eighty-nine (2589) bushmeat specimens comprising six mammals and a reptile were recorded for the rainy season. These included the grasscutter (Thryonomis swinderianus) with an abundance of 37.9%, duikers (Sylvicapra grimma) 31.8%, porcupines (Artherurus africanus) 25.0 %, alligators (Alligator mississipienus) 3.2%, pangolins (Manis tricuspis) 0.85%, bush-pig (Potachoerus porcus) 0.7%, and the white-throated monkey (Cercopithecus erythrogaster) 0.5%, respectively. The dry season sampling recorded nine thousand seven hundred and ninety-three (9793) specimens comprising four mammals and one reptile. Species recorded included Thryonomis swinderianus (grasscutters) 35.8%, Artherurus africanus (porcupine) 30.1%, Sylvicapra grimmia (duikers) 21.8%, Alligator mississipiensis (alligators) 6.18% with juveniles 2.27% and Manis tricuspis (pangolin) 3.58%, The designated Central bush meat market as well as markets in the peri-urban areas recorded the highest number of specimens. The three dominant species in both rainy and dry seasons were the grasscutters, porcupines, and duikers, with the grasscutter having the highest dominance of 37.9% and 35.8%, respectively. There was a significant difference between the rainy and dry season samplings p=0.001. The increase in specimens collected in the dry season could be due to greater exposure due to reduced vegetation cover. The high number of specimens arising from weekly sampling from markets that operate daily could be used as an estimation of wildlife specimens captured over the period. This poses a great threat to wildlife conservation as juveniles, as well as endangered species, are hunted indiscriminately. Educating the people with emphasis on the importance of sustainability and conservation, rearing of the grasscutter, which is in high demand and enforcement of existing laws on wildlife trade offenses would help in reducing threats to wildlife conservation.Keywords: bushmeat consumption, conservation implications, Southern Nigeria, threats, wildlife trade
Procedia PDF Downloads 24882 Smart Help at the Workplace for Persons with Disabilities (SHW-PWD)
Authors: Ghassan Kbar, Shady Aly, Ibrahim Alsharawy, Akshay Bhatia, Nur Alhasan, Ronaldo Enriquez
Abstract:
The Smart Help for persons with disability (PWD) is a part of the project SMARTDISABLE which aims to develop relevant solution for PWD that target to provide an adequate workplace environment for them. It would support PWD needs smartly through smart help to allow them access to relevant information and communicate with other effectively and flexibly, and smart editor that assist them in their daily work. It will assist PWD in knowledge processing and creation as well as being able to be productive at the work place. The technical work of the project involves design of a technological scenario for the Ambient Intelligence (AmI) - based assistive technologies at the workplace consisting of an integrated universal smart solution that suits many different impairment conditions and will be designed to empower the Physically disabled persons (PDP) with the capability to access and effectively utilize the ICTs in order to execute knowledge rich working tasks with minimum efforts and with sufficient comfort level. The proposed technology solution for PWD will support voice recognition along with normal keyboard and mouse to control the smart help and smart editor with dynamic auto display interface that satisfies the requirements for different PWD group. In addition, a smart help will provide intelligent intervention based on the behavior of PWD to guide them and warn them about possible misbehavior. PWD can communicate with others using Voice over IP controlled by voice recognition. Moreover, Auto Emergency Help Response would be supported to assist PWD in case of emergency. This proposed technology solution intended to make PWD very effective at the work environment and flexible using voice to conduct their tasks at the work environment. The proposed solution aims to provide favorable outcomes that assist PWD at the work place, with the opportunity to participate in PWD assistive technology innovation market which is still small and rapidly growing as well as upgrading their quality of life to become similar to the normal people at the workplace. Finally, the proposed smart help solution is applicable in all workplace setting, including offices, manufacturing, hospital, etc.Keywords: ambient intelligence, ICT, persons with disability PWD, smart application, SHW
Procedia PDF Downloads 421881 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications
Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso
Abstract:
The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.Keywords: interferometry, MIMO RADAR, SAR, tomography
Procedia PDF Downloads 193880 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies
Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan
Abstract:
The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping
Procedia PDF Downloads 96879 The Gender Digital Divide in Education: The Case of Students from Rural Area from Republic of Moldova
Authors: Bărbuță Alina
Abstract:
The inter-causal relationship between social inequalities and the digital divide raises the relation issue of gender and information and communication technologies (ICT) - a key element in achieving sustainable development. In preparing generations as future digital citizens and for active socio-economic participation, ICT plays a key role in respecting gender equality. Although several studies over the years have shown that gender plays an important role in digital exclusion, in recent years, many studies with a focus on economically developed or developing countries identify an improvement in these aspects and a gap narrowing. By measuring students' digital competencies level, this paper aims to identify and analyse the existing gender digital inequalities among students. Our analyses are based on a sample of 1526 middle school students residing in rural areas from Republic of Moldova (54.2% girls, mean age 14,00, SD = 1.02). During the online survey they filled in a questionnaire adapted from the (yDSI) ”The Youth Digital Skills Indicator”. The instrument measures the level of five digital competence areas indicated in The European Digital Competence Framework (DigiCom 2.3.). Our results, based on t-test, indicate that depending on gender, there are no statistically significant differences regarding the levels of digital skills in 3 areas: Information navigation and processing; Communication and interaction; Problem solving. However, were identified significant differences in the level of digital skills in the area of ”Digital content creation” [t(1425) = 4.20, p = .000] and ”Safety” [t(1421) = 2.49, p = .000], with higher scores recorded by girls. Our results contradicts the general stereotype regarding the low level of digital competence among girls, in our sample girls scores being on pear with boys and even bigger in knowledge related to digital content creation and online safety skills. Additional investigations related to boys competence on digital safety are necessary as the implication of their low scores on this dimension may suggest boys exposure to digital threats.Keywords: digital divide, education, gender digital divide, digital literacy, remote learning
Procedia PDF Downloads 100