Search results for: code properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10281

Search results for: code properties

3531 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay

Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren

Abstract:

The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.

Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength

Procedia PDF Downloads 151
3530 Environment Saving and Efficiency of Diesel Heat-Insulated Combustion Chamber Using Semitransparent Ceramic Coatings

Authors: Victoria Yu. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Valeriy A. Tovstonog, Svyatoslav V. Cheranev

Abstract:

Long-term scientific forecasts confirm that diesel engines still will be the basis of the transport and stationary power in the near future. This is explained by their high efficiency and profitability compared to other types of heat engines. In the automotive industry carried basic researches are aimed at creating a new generation of diesel engines with reduced exhaust emissions (with stable performance) determining the minimum impact on the environment. The application of thermal barrier coatings (TBCs) and especially their modifications based on semitransparent ceramic materials allows solving this problem. For such researches, the preliminary stage of testing of physical characteristics materials and coatings especially with semitransparent properties the authors proposed experimental operating innovative radiative-and-convective cycling simulator. This setup contains original radiation sources (imitator) with tunable spectrum for modeling integral flux up to several MW/m2.

Keywords: environment saving, radiative and convective cycling simulator, semitransparent ceramic coatings, imitator radiant energy

Procedia PDF Downloads 270
3529 Investigation of the Properties of Biochar Obtained by Dry and Wet Torrefaction in a Fixed and in a Fluidized Bed

Authors: Natalia Muratova, Dmitry Klimov, Rafail Isemin, Sergey Kuzmin, Aleksandr Mikhalev, Oleg Milovanov

Abstract:

We investigated the processing of poultry litter into biochar using dry torrefaction methods (DT) in a fixed and fluidized bed of quartz sand blown with nitrogen, as well as wet torrefaction (WT) in a fluidized bed in a medium of water steam at a temperature of 300 °C. Torrefaction technology affects the duration of the heat treatment process and the characteristics of the biochar: the process of separating CO₂, CO, H₂ and CH₄ from a portion of fresh poultry litter during torrefaction in a fixed bed is completed after 2400 seconds, but in a fluidized bed — after 480 seconds. During WT in a fluidized bed of quartz sand, this process ends in 840 seconds after loading a portion of fresh litter, but in a fluidized bed of litter particles previously subjected to torrefaction, the process ends in 350 - 450 seconds. In terms of the ratio between (H/C) and (O/C), the litter obtained after DT and WT treatment corresponds to lignite. WT in a fluidized bed allows one to obtain biochar, in which the specific pore area is two times larger than the specific pore area of biochar obtained after DT in a fluidized bed. Biochar, obtained as a result of the poultry litter treatment in a fluidized bed using DT or WT method, is recommended to be used not only as a biofuel but also as an adsorbent or the soil fertilizer.

Keywords: biochar, poultry litter, dry and wet torrefaction, fixed bed, fluidized bed

Procedia PDF Downloads 161
3528 Applications of Nonlinear Models to Measure and Predict Thermo Physical Properties of Binary Liquid Mixtures1, 4 Dioxane with Bromo Benzene at Various Temperatures

Authors: R. Ramesh, M. Y. M. Yunus, K. Ramesh

Abstract:

The study conducted in this research are Viscosities, η, and Densities ,ρ, of 1, 4-dioxane with Bromobenzene at different mole fractions and various temperatures in the atmospheric pressure condition. From experimentations excess volumes, VE, and deviations in viscosities, Δη, of mixtures at infinite dilutions have been obtained. The measured systems exhibited positive values of VmE and negative values of Δη. The binary mixture 1, 4 dioxane + Bromobenzene show positive VE and negative Δη with increasing temperatures. The outcomes clearly indicate that weak interactions present in mixture. It is mainly because of number and position of methyl groups exist in these aromatic hydrocarbons. These measured data tailored to the nonlinear models to derive the binary coefficients. Standard deviations have been considered between the fitted outcomes and the calculated data is helpful deliberate mixing behavior of the binary mixtures. It can conclude that in our cases, the data found with the values correlated by the corresponding models very well. The molecular interactions existing between the components and comparison of liquid mixtures were also discussed.

Keywords: 1, 4 dioxane, bromobenzene, density, excess molar volume

Procedia PDF Downloads 413
3527 Fabrication of Biosensor Based on Layered Double Hydroxide/Polypyrrole/Carbon Paste Electrode for Determination of Anti-Hypertensive and Prostatic Hyperplasia Drug Terazosin

Authors: Amira M. Hassanein, Nehal A. Salahuddin, Atsunori Matsuda, Toshiaki Hattori, Mona N. Elfiky

Abstract:

New insights into the design of highly sensitive, carbon-based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide- Dodecyl Sulphate/Polypyrrole nanocomposites which were synthesized by in-situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant Dodecyl sulphate as a modifier. The morphology and surface area of the nanocomposites changed with the percentage of Pyrrole. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol.L-1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable, and free from interference by other commonly present excipients in drug formulations.

Keywords: layered double hydroxide, polypyrrole, terazosin hydrochloride, square-wave adsorptive anodic stripping voltammetry

Procedia PDF Downloads 223
3526 Direct Strength Method Approach for Indian Cold Formed Steel Sections with and Without Perforation for Compression Member

Authors: K. Raghu, Altafhusen P. Pinjar

Abstract:

Cold-formed steel section are extensively used in industry and many other non-industry constructions worldwide, it is relatively a new concept in India. Cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold‐formed steel (CFS) structural members are commonly manufactured with perforations to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of buildings. Current design methods available to engineers for predicting the strength of CFS members with perforations are prescriptive and limited to specific perforation locations, spacing, and sizes. The Direct Strength Method (DSM), a relatively new design method for CFS members validated for members with and without perforations, predicts the ultimate strength of general CFS members with the elastic buckling properties of the member cross section. The design compression strength and flexural strength of Indian (IS 811-1987) standard sections is calculated as per North American Specification (AISI-S100 2007) and software CUFSM 4.05.

Keywords: direct strength, cold formed, perforations, CUFSM

Procedia PDF Downloads 381
3525 Age–Related Changes of the Sella Turcica Morphometry in Adults Older Than 20-25 Years

Authors: Yu. I. Pigolkin, M. A. Garcia Corro

Abstract:

Age determination of unknown dead bodies in forensic personal identification is a complicated process which involves the application of numerous methods and techniques. Skeletal remains are less exposed to influences of environmental factors. In order to enhance the accuracy of forensic age estimation additional properties of bones correlating with age are required to be revealed. Material and Methods: Dimensional examination of the sella turcica was carried out on cadavers with the cranium opened by a circular vibrating saw. The sample consisted of a total of 90 Russian subjects, ranging in age from two months and 87 years. Results: The tendency of dimensional variations throughout life was detected. There were no observed gender differences in the morphometry of the sella turcica. The shared use of the sella turcica depth and length values revealed the possibility to categorize an examined sample in a certain age period. Conclusions: Based on the results of existing methods of age determination, the morphometry of the sella turcica can be an additional characteristic, amplifying the received values, and accordingly, increasing the accuracy of forensic biological age diagnosis.

Keywords: age–related changes in bone structures, forensic personal identification, sella turcica morphometry, body identification

Procedia PDF Downloads 277
3524 Association of Temperature Factors with Seropositive Results against Selected Pathogens in Dairy Cow Herds from Central and Northern Greece

Authors: Marina Sofia, Alexios Giannakopoulos, Antonia Touloudi, Dimitris C Chatzopoulos, Zoi Athanasakopoulou, Vassiliki Spyrou, Charalambos Billinis

Abstract:

Fertility of dairy cattle can be affected by heat stress when the ambient temperature increases above 30°C and the relative humidity ranges from 35% to 50%. The present study was conducted on dairy cattle farms during summer months in Greece and aimed to identify the serological profile against pathogens that could affect fertility and to associate the positive serological results at herd level with temperature factors. A total of 323 serum samples were collected from clinically healthy dairy cows of 8 herds, located in Central and Northern Greece. ELISA tests were performed to detect antibodies against selected pathogens that affect fertility, namely Chlamydophila abortus, Coxiella burnetii, Neospora caninum, Toxoplasma gondii and Infectious Bovine Rhinotracheitis Virus (IBRV). Eleven climatic variables were derived from the WorldClim version 1.4. and ArcGIS V.10.1 software was used for analysis of the spatial information. Five different MaxEnt models were applied to associate the temperature variables with the locations of seropositive Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV herds (one for each pathogen). The logistic outputs were used for the interpretation of the results. ROC analyses were performed to evaluate the goodness of fit of the models’ predictions. Jackknife tests were used to identify the variables with a substantial contribution to each model. The seropositivity rates of pathogens varied among the 8 herds (0.85-4.76% for Chl. abortus, 4.76-62.71% for N. caninum, 3.8-43.47% for C. burnetii, 4.76-39.28% for T. gondii and 47.83-78.57% for IBRV). The variables of annual temperature range, mean diurnal range and maximum temperature of the warmest month gave a contribution to all five models. The regularized training gains, the training AUCs and the unregularized training gains were estimated. The mean diurnal range gave the highest gain when used in isolation and decreased the gain the most when it was omitted in the two models for seropositive Chl.abortus and IBRV herds. The annual temperature range increased the gain when used alone and decreased the gain the most when it was omitted in the models for seropositive C. burnetii, N. caninum and T. gondii herds. In conclusion, antibodies against Chl. abortus, C. burnetii, N. caninum, T. gondii and IBRV were detected in most herds suggesting circulation of pathogens that could cause infertility. The results of the spatial analyses demonstrated that the annual temperature range, mean diurnal range and maximum temperature of the warmest month could affect positively the possible pathogens’ presence. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01078).

Keywords: dairy cows, seropositivity, spatial analysis, temperature factors

Procedia PDF Downloads 202
3523 Defect Induced Enhanced Photoresponse in Graphene

Authors: Prarthana Gowda, Tushar Sakorikar, Siva K. Reddy, Darim B. Ferry, Abha Misra

Abstract:

Graphene, a two-dimensional carbon allotrope has demonstrated excellent electrical, mechanical and optical properties. A tunable band gap of grapheme demonstrated broad band absorption of light with a response time of picoseconds, however it suffers a fast recombination of the photo generated carriers. Many reports have explored to overcome this problem; in this presentation, we discuss defect induced enhanced photoresponse in a few layer graphene (FLG) due to exposure of infrared (IR) radiation. The two and four-fold enhancement in the photocurrent is achieved by addition of multiwalled carbon nano tubes (MWCNT) to an FLG surface and also creating the wrinkles in the FLG (WG) respectively. In our study, it is also inferred that the photo current generation is highly dependent on the morphological defects on the graphene. It is observed that the FLG (without defects) generates the photo current instantaneously, and after a prolonged exposure to the IR radiation decays the generation rate. Importantly, the presence of MWCNT on FLG enhances the stability and WG presented both stable as well as enhanced photo response.

Keywords: graphene, multiwalled carbon nano tubes, wrinkled graphene, photo detector, photo current

Procedia PDF Downloads 418
3522 Street Naming and Property Addressing Systems for New Development in Ghana: A Case Study of Nkawkaw in the Kwahu West Municipality

Authors: Jonathan Nii Laryea Ashong, Samuel Opare

Abstract:

Current sustainable cities debate focuses on the formidable problems for the Ghana’s largest urban and rural agglomerations, the majority of all urban dwellers continue to reside in far smaller urban settlements. It is estimated that by year 2030, almost all the Ghana’s population growth will likely be intense in urban areas including Nkawkaw in the Kwahu West Municipality of Ghana. Nkawkaw is situated on the road and former railway between Accra and Kumasi, and lies about halfway between these cities. It is also connected by road to Koforidua and Konongo. According to the 2013 census, Nkawkaw has a settlement population of 61,785. Many international agencies, government and private architectures’ are been asked to adequately recognize the naming of streets and property addressing system among the 170 districts across Ghana. The naming of streets and numbering of properties is to assist Metropolitan, Municipal and District Assemblies to manage the processes for establishing coherent address system nationally. Street addressing in the Nkawkaw in the Kwahu West Municipality which makes it possible to identify the location of a parcel of land, public places or dwellings on the ground based on system of names and numbers, yet agreement on how to progress towards it remains elusive. Therefore, reliable and effective development control for proper street naming and property addressing systems are required. The Intelligent Addressing (IA) technology from the UK is being used to name streets and properties in Ghana. The intelligent addressing employs the technique of unique property Reference Number and the unique street reference number which would transform national security and other service providers’ ability to respond rapidly to distress calls. Where name change is warranted following the review of existing streets names, the Physical Planning Department (PPDs) shall, in consultation with the relevant traditional authorities and community leadership (or relevant major stakeholders), select a street name in accordance with the provisions of the policy and the processes outlined for street name change for new development. In the case of existing streets with no names, the respective PPDs shall, in consultation with the relevant traditional authorities and community leadership (or relevant major stakeholders), select a street name in accordance with the requirements set out in municipality. Naming of access ways proposed for new developments shall be done at the time of developing sector layouts (subdivision maps) for the designated areas. In the case of private gated developments, the developer shall submit the names of the access ways as part of the plan and other documentation forwarded to the Municipal District Assembly for approval. The names shall be reviewed first by the PPD to avoid duplication and to ensure conformity to the required standards before submission to the Assembly’s Statutory Planning Committee for approval. The Kwahu West Municipality is supposed to be self-sustaining, providing basic services to inhabitants as a result of proper planning layouts, street naming and property addressing system that prevail in the area. The implications of these future projections are discussed.

Keywords: Nkawkaw, Kwahu west municipality, street naming, property, addressing system

Procedia PDF Downloads 557
3521 Diverging Strategies for Processing Permissive Subjects in Dutch, German and English: Evidence from Event-Related Brain Potentials

Authors: Anne Renzel, Jens Bölte, Gunther de Vogelaer, Stefan Frank, Peter de Swart, Niko Busch

Abstract:

Permissive subjects are non-agentive subjects combined with action verbs in the active form (e.g., ‘A few years ago a penny would buy you two or three pins’, ‘The tent sleeps four people’), hardly found in German compared to English. This contrast can be related to processing constraints, proposing that distinct processing strategies account for varying efficiency of processing permissive subjects. The differences in processing strategies are linked to basic typological language properties, specifically basic word order. If a language has SVO order (like English), permissive subjects can be processed easier due to routinized look ahead parsing strategies. In contrast, if a language is SOV (like German), parsers are used to look back at parsing strategies, leading to difficulties in processing permissive subjects. The present study addresses the question of how to look ahead versus look back parsing strategies for permissive subjects depending on typological features like SVO/SOV. Additionally to English and German, we investigate Dutch, as it is clearly SOV but seems to allow more diverse roles in the grammatical subject than German. In order to demonstrate cross-linguistic differences in the processing of permissive subjects, we conduct an experiment where we record event-related brain potentials (ERPs) while native speakers of English, Dutch, and German read sentences with non-agentive permissive subjects and agentive control sentences. Test items were carefully designed considering, i.a. word frequency in the three languages. We hypothesize that in German, a non-agentive subject leads to an N400 effect on the following action verb, since in German as an SOV language, speakers apply look back strategies in processing, relying on sequence-independent non-word-order cues like case marking and animacy. Due to errors in form-to-meaning mappings, this could evoke surprisal effects, which are known to manifest in N400 amplitudes. In English, as an SVO language, speakers are more used to apply look ahead processing strategies and mostly exclusively rely on word order cues. Within the predictive coding framework grounded in research on semantic reversal anomalies (SRA, e.g., ‘The meal was devouring the kids’), we expect that the processing of permissive subjects in English elicits P600 effects. As regards Dutch, we should find N400 effects similar to German since speakers of Dutch should equally use look back strategies due to the SOV word order. However, research on SRA suggests differences in the processing of permissive subjects in Dutch and German. The results give insights into how fundamental differences in processing strategies are present in speakers of different languages and the question of whether these strategies correlate with contrasts in basic language properties. This allows for a typological classification of the West Germanic languages based on processing contrasts, which not only helps explain if and how distinct typological features between the related languages lead to varying strategies for processing grammatical structures but also sheds light on how language systems may evolve differently over time influenced by processing mechanisms. Also, the results enable us to contribute to the understanding of cross-linguistic trade-offs between linguistic variables and diachronic-causal relations from a efficiency-related processing perspective.

Keywords: ERPs, look ahead vs. look back, N400, P600, permissive subjects, semantics, sentence parsing, syntax, West Germanic languages, word order

Procedia PDF Downloads 0
3520 Effectiveness of Essential Oils as Inhibitors of Quorum Sensing Activity Using Biomonitor Strain Chromobacterium Violaceum

Authors: Ivana Cabarkapa, Zorica Tomicic, Olivera Duragic

Abstract:

Antimicrobial resistance represents one of the major challenges facing humanity in the last decades. Increasing antibiotic-resistant pathogens indicates the need for the development of alternative antibacterial drugs and new treatment strategies. One of the innovative emerging treatments in overcoming multidrug-resistant pathogens certainly represents the inhibition anti-quorum sensing system. For most of the food-borne pathogens, the expression of the virulence depends on their capability communication with other members of the population by means of quorum sensing (QS). QS represents a specific way of bacterial intercellular communication, which enabled owing to their ability to detect and to respond to cell population density by gene regulation. QS mechanisms are responsible for controls the pathogenesis, virulence luminescence, motility, sporulation and biofilm formation of many organisms by regulating gene expression. Therefore, research in this field is being an attractive target for the development of new natural antibacterial agents. Anti-QS compounds are known to have the ability to prohibit bacterial pathogenicity. Considering the importance of quorum sensing during bacterial pathogenesis, this research has been focused on evaluation anti - QS properties of four essential oils (EOs) Origanum heracleoticum, Origanum vulgare, Thymus vulgare, and Thymus serpyllum, using biomonitor strain of Chromobacterium violaceum CV026. Tests conducted on Luria Bertani agar supplemented with N hexanol DL homoserine lacton (HHL) 10µl/50ml of agar. The anti-QS potential of the EOs was assayed in a range of concentrations of 200 – 0.39 µl/ml using the disc diffusion method. EOs of Th. vulgaris and T. serpyllum were exhibited anti-QS activity indicated by a non- pigmented ring with a dilution-dependent manner. The lowest dilution of EOs T. vulgaris and T. serpyllum in which they exhibited visually detectable inhibition of violacein synthesis was 6.25 µl/ml for both tested EOs. EOs of O. heracleoticum and O. vulgare were displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by the outer non-pigmented ring, in a concentration-dependent manner. The lowest dilution of EOs of O. heracleoticum and O. vulgare in which exhibited visually detectable inhibition of violacein synthesis was 1.56 and 3.25 µl/ml, respectively. Considering that, the main constituents of the tested EOs represented by monoterpenes (carvacrol, thymol, γ-terpinene, and p-cymene), anti - QS properties of tested EOs can be mainly attributed to their activity. In particular, from the scientific literature, carvacrol and thymol show a sub-inhibitory effect against foodborne pathogens. Previous studies indicated that sub-lethal concentrations of carvacrol reduced the mobility of bacteria due to the ability of interference using QS mechanism between the bacterial cells, and thereby reducing the ability of biofilm formation The precise mechanism by which carvacrol inhibits biofilm formation is still not fully understood. Our results indicated that EOs displayed different active principles, i.e., antimicrobial activity indicated by the inner clear ring and anti-QS activity indicated by an outer non- pigmented ring with visually detectable inhibition of violacein. Preliminary results suggest that EOs represent a promising alternative for effective control of the emergence and spread of resistant pathogens.

Keywords: anti-quorum sensing activity, Chromobacterium violaceum, essential oils, violacein

Procedia PDF Downloads 142
3519 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study

Authors: Richard Renou, Laurent Soulard

Abstract:

Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.

Keywords: densification, molecular dynamics simulations, shock loading, silica glass

Procedia PDF Downloads 223
3518 Experimental Study of the Antibacterial Activity and Modeling of Non-isothermal Crystallization Kinetics of Sintered Seashell Reinforced Poly(Lactic Acid) And Poly(Butylene Succinate) Biocomposites Planned for 3D Printing

Authors: Mohammed S. Razali, Kamel Khimeche, Dahah Hichem, Ammar Boudjellal, Djamel E. Kaderi, Nourddine Ramdani

Abstract:

The use of additive manufacturing technologies has revolutionized various aspects of our daily lives. In particular, 3D printing has greatly advanced biomedical applications. While fused filament fabrication (FFF) technologies have made it easy to produce or prototype various medical devices, it is crucial to minimize the risk of contamination. New materials with antibacterial properties, such as those containing compounded silver nanoparticles, have emerged on the market. In a previous study, we prepared a newly sintered seashell filler (SSh) from bio-based seashells found along the Mediterranean coast using a suitable heat treatment process. We then prepared a series of polylactic acid (PLA) and polybutylene succinate (PBS) biocomposites filled with these SSh particles using a melt mixing technique with a twin-screw extruder to use them as feedstock filaments for 3D printing. The study consisted of two parts: evaluating the antibacterial activity of newly prepared biocomposites made of PLA and PBS reinforced with a sintered seashell in the first part and experimental and modeling analysis of the non-isothermal crystallization kinetics of these biocomposites in the second part. In the first part, the bactericidal activity of the biocomposites against three different bacteria, including Gram-negative bacteria such as (E. coli and Pseudomonas aeruginosa), as well as Gram-positive bacteria such as (Staphylococcus aureus), was examined. The PLA-based biocomposite containing 20 wt.% of SSh particles exhibited an inhibition zone with radial diameters of 8mm and 6mm against E. coli and Pseudo. Au, respectively, while no bacterial activity was observed against Staphylococcus aureus. In the second part, the focus was on investigating the effect of the sintered seashell filler particles on the non-isothermal crystallization kinetics of PLA and PBS 3D-printing composite materials. The objective was to understand the impact of the filler particles on the crystallization mechanism of both PLA and PBS during the cooling process of a melt-extruded filament in (FFF) to manage the dimensional accuracy and mechanical properties of the final printed part. We conducted a non-isothermal melt crystallization kinetic study of a series of PLA-SS and PBS-SS composites using differential scanning calorimetry at various cooling rates. We analyzed the obtained kinetic data using different crystallization kinetic models such as modified Avrami, Ozawa, and Mo's methods. Dynamic mode describes the relative crystallinity as a function of temperature; it found that time half crystallinity (t1/2) of neat PLA decreased from 17 min to 7.3 min for PLA+5 SSh and the (t1/2) of virgin PBS was reduced from 3.5 min to 2.8 min for the composite containing 5wt.% of SSh. We found that the coated SS particles with stearic acid acted as nucleating agents and had a nucleation activity, as observed through polarized optical microscopy. Moreover, we evaluated the effective energy barrier of the non-isothermal crystallization process using the Iso conversional methods of Flynn-Wall-Ozawa (F-W-O) and Kissinger-Akahira-Sunose (K-A-S). The study provides significant insights into the crystallization behavior of PLA and PBS biocomposites.

Keywords: avrami model, bio-based reinforcement, dsc, gram-negative bacteria, gram-positive bacteria, isoconversional methods, non-isothermal crystallization kinetics, poly(butylene succinate), poly(lactic acid), antbactirial activity

Procedia PDF Downloads 87
3517 Potential of Mineral Composition Reconstruction for Monitoring the Performance of an Iron Ore Concentration Plant

Authors: Maryam Sadeghi, Claude Bazin, Daniel Hodouin, Laura Perez Barnuevo

Abstract:

The performance of a separation process is usually evaluated using performance indices calculated from elemental assays readily available from the chemical analysis laboratory. However, the separation process performance is essentially related to the properties of the minerals that carry the elements and not those of the elements. Since elements or metals can be carried by valuable and gangue minerals in the ore and that each mineral responds differently to a mineral processing method, the use of only elemental assays could lead to erroneous or uncertain conclusions on the process performance. This paper discusses the advantages of using performance indices calculated from minerals content, such as minerals recovery, for process performance assessments. A method is presented that uses elemental assays to estimate the minerals content of the solids in various process streams. The method combines the stoichiometric composition of the minerals and constraints of mass conservation for the minerals through the concentration process to estimate the minerals content from elemental assays. The advantage of assessing a concentration process using mineral based performance indices is illustrated for an iron ore concentration circuit.

Keywords: data reconciliation, iron ore concentration, mineral composition, process performance assessment

Procedia PDF Downloads 224
3516 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment

Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar

Abstract:

Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate

Procedia PDF Downloads 325
3515 Enhancing Archaeological Sites: Interconnecting Physically and Digitally

Authors: Eleni Maistrou, D. Kosmopoulos, Carolina Moretti, Amalia Konidi, Katerina Boulougoura

Abstract:

InterArch is an ongoing research project that has been running since September 2020. It aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. The research project is co‐financed by the European Union and Greek national funds, through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE – INNOVATE (project code: Τ2ΕΔΚ-01659). It involves mutual collaboration between academic and cultural institutions and the contribution of an IT applications development company. The research will be completed by July 2023 and will run as a pilot project for the city of Ancient Messene, a place of outstanding natural beauty in the west of Peloponnese, which is considered one of the most important archaeological sites in Greece. The applied research project integrates an interactive approach to the natural environment, aiming at a manifold sensory experience. It combines the physical space of the archaeological site with the digital space of archaeological and cultural data while at the same time, it embraces storytelling processes by engaging an interdisciplinary approach that familiarizes the user with multiple semantic interpretations. The mingling of the real-world environment with its digital and cultural components by using augmented reality techniques could potentially transform the visit on-site into an immersive multimodal sensory experience. To this purpose, an extensive spatial analysis along with a detailed evaluation of the existing digital and non-digital archives is proposed in our project, intending to correlate natural landscape morphology (including archaeological material remains and environmental characteristics) with the extensive historical records and cultural digital data. On-site research was carried out, during which visitors’ itineraries were monitored and tracked throughout the archaeological visit using GPS locators. The results provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location. InterArch aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. Extensive spatial analysis, along with a detailed evaluation of the existing digital and non-digital archives, is used in our project, intending to correlate natural landscape morphology with the extensive historical records and cultural digital data. The results of the on-site research provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location.

Keywords: archaeological site, digital space, semantic interpretations, cultural heritage

Procedia PDF Downloads 74
3514 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 454
3513 Country Experience on Regulation of Traditional Medicine in Eritrea

Authors: Liya Abraham

Abstract:

Eritrea is located along the Red Sea, north of the Horn of Africa, between Djibouti and Sudan and has a population of about 3.2 million as of 2010. It has six administrative regions; Anseba, Debub, Debubawi K’eyih Bahri, Gash-Barka, Ma'akel, and Semenawi K’eyih Bahri. Eritrea has got its independence in 1991 after 30 years war of liberation. The country is blessed with various medicinal flora and fauna, and marine and terrestrial biodiversity. Traditional Medicine (TM) has been an integral part of the Eritrean culture for centuries. So far, more than 19 TM modalities have been recognized, and are broadly categorized as; herbal, procedure-based and spiritual. Despite the availability of modern medicine to the majority of the population, TM is still widely practiced. The rationale behind widespread use is accessibility, affordability and cultural acceptability. Hence, TM is of great contribution to the Eritrean health care system. As a matter of fact, harnessing the potential contribution of effective and safe TM in order to attain Universal Health Coverage (UHC) has been emphasized in the WHO TM strategy 2014-2023. The Eritrean TM, however, was operating without regulation and reliable scientific justification behind its safety and efficacy. Thus, the Ministry of Health (MoH), in recognition of the role of TM in primary healthcare and safeguard public health, established a regulatory body for TM so-called as Traditional Medicine Unit (TMU) in 2012. The mission of the unit is to ensure rational TM use through an integrated health service delivery system and contribute to the country’s economic and social development. The unit has established its national TM policy in 2017. The activities of the unit are guided by the National TM Advisory Committee (TMAC), responsible for the provision of technical assistance and advisory role. Moreover, the Legal Framework and Code of Ethics and Practice which provide a legal basis for the regulation of TM have also been drafted. In recognition of the importance of TM research and development, the unit launched a nationwide TM survey in 2017 and had surveyed two zones (Gash-Barka and Debub). The findings of the survey were subjected to a research dissemination workshop and publication in international journals. Furthermore, TM-related adverse events reporting tool (Green Form) aiming to guide regulatory interventions and researches have been established by the unit, and ever since reports are flowing. The unit has also been offering training to THPs, pharmacy students and health care professionals regarding TM and its regulatory activities. In addition, as part of the establishment of the national medicinal plants' database and herbal monograph, more than 329 and 30 medicinal plants, have been compiled respectively. In conclusion, TM is still widely accepted and practiced in Eritrea. The TMU ever since its establishment is endeavoring to ensure the safety and efficacy of the TM, and its integration in the mainstream health service delivery system.

Keywords: efficacy, regulation, safety, traditional medicine, traditional medicine unit, universal health coverage

Procedia PDF Downloads 190
3512 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: aerogel, aramid fabric, flexibility, thermal resistance

Procedia PDF Downloads 157
3511 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.

Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability

Procedia PDF Downloads 329
3510 Green Synthesized Palladium Loaded Titanium Nanotube Arrays for Simultaneous Azo-Dye Degradation and Hydrogen Production

Authors: Yen-Ping Peng, Ku-Fan Chen, Ken-Lin Chang, Jian Sun

Abstract:

In this study, palladium loaded titanium dioxide nanotube arrays (Pd/TNAs) was successfully synthesized by anodic oxidation etching method combined with microwave hydrothermal method, using tea or coffee as a green reductant. Pd/TNAs was employed as an electrode in a photoelectrochemcial (PEC) system to simultaneously remove azo-dye and to generate hydrogen in the anodic and cathodic chamber, respectively. The chemical and physical properties of as-synthesized Pd/TNAs were characterized by scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV-vis), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM image indicates the diameter and the length of Pd/TNAs were approximately 300 nm and 2.5 μm, respectively. XPS analyses indicate that 1.13% (atomic %) of Pd was loaded onto the surface of TNAs. UV-vis results show that the band gap of TNAs was reduced from 3.2 eV to 2.37 eV after Pd loading. In addition, the electrochemical performances of Pd/TNAs were investigated by photocurrent density test and electrochemical impedance spectroscopy (EIS). The photocurrent (4.0 mA/cm²) of Pd /TNAs was higher than that of the uncoated TNAs (1.4 mA/cm²) at a bias potential of 1 V (vs. Ag/AgCl), indicating that Pd/TNAs-C can effectively separate photogenerated electrons and holes. The mechanism of our PEC system was proposed and discussed in detail in this study.

Keywords: Pd/TNAs, photoelectrochemical, azo-dye degradation, hydrogen generation

Procedia PDF Downloads 426
3509 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 235
3508 Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment

Authors: Mehrdad Ebrahimi, Oliver Schmitz, Axel Schmidt, Peter Czermak

Abstract:

“Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions.

Keywords: ceramic membrane, membrane fouling, oil rejection, produced water treatment

Procedia PDF Downloads 190
3507 Flood Susceptibility Assessment of Mandaluyong City Using Analytic Hierarchy Process

Authors: Keigh D. Guinto, Ma. Romina M. Santos

Abstract:

One of the most catastrophic natural disasters in the Philippines is floods. Twelve (12) million people reside in Metro Manila, National Capital Region (NCR), prone to flooding. A flood can cause widespread devastation resulting in damaged properties and infrastructures and loss of life. By using the analytical hierarchy process, six (6) parameters were selected, namely elevation, slope, lithology, distance from the river, river network density, and flow accumulation. Ranking of these parameters demonstrates that distance from the river with 25.31% and river density with 17.30% ranked the highest causative factor to flooding. This is followed by flow accumulation with 16.72%, elevation with 15.33%, slope with 13.53%, and the least flood causative factor is lithology with 11.8%. The generated flood susceptibility map of Mandaluyong has three (3) classes: high susceptibility, moderate susceptibility, and low susceptibility. The flood susceptibility map generated in this study can be used as an aid for planning flood mitigation, land use planning, and general public awareness. This study can also be used for emergency management and can be applied in the disaster risk management of Mandaluyong.

Keywords: analytical hierarchy process, assessment, flood, geographic information system

Procedia PDF Downloads 214
3506 Determination of Stresses in Vlasov Beam Sections

Authors: Semih Erdogan

Abstract:

In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.

Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties

Procedia PDF Downloads 69
3505 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters

Authors: Rama Debbarma

Abstract:

The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.

Keywords: linear base isolator, earthquake, optimization, uncertain parameters

Procedia PDF Downloads 439
3504 Prediction and Analysis of Human Transmembrane Transporter Proteins Based on SCM

Authors: Hui-Ling Huang, Tamara Vasylenko, Phasit Charoenkwan, Shih-Hsiang Chiu, Shinn-Ying Ho

Abstract:

The knowledge of the human transporters is still limited due to technically demanding procedure of crystallization for the structural characterization of transporters by spectroscopic methods. It is desirable to develop bioinformatics tools for effective analysis of available sequences in order to identify human transmembrane transporter proteins (HMTPs). This study proposes a scoring card method (SCM) based method for predicting HMTPs. We estimated a set of propensity scores of dipeptides to be HMTPs using SCM from the training dataset (HTS732) consisting of 366 HMTPs and 366 non-HMTPs. SCM using the estimated propensity scores of 20 amino acids and 400 dipeptides -as HMTPs, has a training accuracy of 87.63% and a test accuracy of 66.46%. The five top-ranked dipeptides include LD, NV, LI, KY, and MN with scores 996, 992, 989, 987, and 985, respectively. Five amino acids with the highest propensity scores are Ile, Phe, Met, Gly, and Leu, that hydrophobic residues are mostly highly-scored. Furthermore, obtained propensity scores were used to analyze physicochemical properties of human transporters.

Keywords: dipeptide composition, physicochemical property, human transmembrane transporter proteins, human transmembrane transporters binding propensity, scoring card method

Procedia PDF Downloads 371
3503 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)

Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze

Abstract:

Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.

Keywords: groundwater, vulnerability, DRASTIC model, pollution

Procedia PDF Downloads 211
3502 Nanohybrids for Energy Storage Devices

Authors: O. Guellati, A. Harat, F. Djefaflia, N. Habib, A. Nait-Merzoug, J. El Haskouri, D. Momodu, N. Manyala, D. Bégin, M. Guerioune

Abstract:

We report a facile and low-cost free-template synthesis method was used to synthesize mesoporous smart multifunctional nanohybrids based on Graphene/PANI nanofibers micro/nanostructures with very interesting physic-chemical properties and faradic electrochemical behavior of these products was investigated. These nanohybrid products have been characterized quantitatively and qualitatively using different techniques, such as XRD / FTIR, Raman, XPS spectroscopy, Field Emission SEM and High-Resolution TEM microscopy, BET textural analysis, electrochemical measurements (CV, CD, EIS). Moreover, the electrochemical measurements performed in a 6 M KOH aqueous electrolyte depicted excellent electrochemical performance ascribed to the optimized composition of hydroxides et PANI nanofibers. An exceptionally notable specific capacitance between 800  and 2000 F. g-1 was obtained at 5  mV. s-1 scan rate for these synthesized products depends on the optimized growth conditions. We found much better nanohybrids by reinforcing hydroxides or conduction polymer nanofibers with carbonaceous nanomaterials depicting their potential as suitable materials for energy storage devices.

Keywords: nanohybrid materials, conducting polymers, carbonaceous nanomaterials, supercapacitors, energy storage

Procedia PDF Downloads 75