Search results for: multi walled carbon nanotubes (MWCNTs)
481 Compression-Extrusion Test to Assess Texture of Thickened Liquids for Dysphagia
Authors: Jesus Salmeron, Carmen De Vega, Maria Soledad Vicente, Mireia Olabarria, Olaia Martinez
Abstract:
Dysphagia or difficulty in swallowing affects mostly elder people: 56-78% of the institutionalized and 44% of the hospitalized. Liquid food thickening is a necessary measure in this situation because it reduces the risk of penetration-aspiration. Until now, and as proposed by the American Dietetic Association in 2002, possible consistencies have been categorized in three groups attending to their viscosity: nectar (50-350 mPa•s), honey (350-1750 mPa•s) and pudding (>1750 mPa•s). The adequate viscosity level should be identified for every patient, according to her/his impairment. Nevertheless, a systematic review on dysphagia diet performed recently indicated that there is no evidence to suggest that there is any transition of clinical relevance between the three levels proposed. It was also stated that other physical properties of the bolus (slipperiness, density or cohesiveness, among others) could influence swallowing in affected patients and could contribute to the amount of remaining residue. Texture parameters need to be evaluated as possible alternative to viscosity. The aim of this study was to evaluate the instrumental extrusion-compression test as a possible tool to characterize changes along time in water thickened with various products and in the three theoretical consistencies. Six commercial thickeners were used: NM® (NM), Multi-thick® (M), Nutilis Powder® (Nut), Resource® (R), Thick&Easy® (TE) and Vegenat® (V). All of them with a modified starch base. Only one of them, Nut, also had a 6,4% of gum (guar, tara and xanthan). They were prepared as indicated in the instructions of each product and dispensing the correspondent amount for nectar, honey and pudding consistencies in 300 mL of tap water at 18ºC-20ºC. The mixture was stirred for about 30 s. Once it was homogeneously spread, it was dispensed in 30 mL plastic glasses; always to the same height. Each of these glasses was used as a measuring point. Viscosity was measured using a rotational viscometer (ST-2001, Selecta, Barcelona). Extrusion-compression test was performed using a TA.XT2i texture analyzer (Stable Micro Systems, UK) with a 25 mm diameter cylindrical probe (SMSP/25). Penetration distance was set at 10 mm and a speed of 3 mm/s. Measurements were made at 1, 5, 10, 20, 30, 40, 50 and 60 minutes from the moment samples were mixed. From the force (g)–time (s) curves obtained in the instrumental assays, maximum force peak (F) was chosen a reference parameter. Viscosity (mPa•s) and F (g) showed to be highly correlated and had similar development along time, following time-dependent quadratic models. It was possible to predict viscosity using F as an independent variable, as they were linearly correlated. In conclusion, compression-extrusion test could be an alternative and a useful tool to assess physical characteristics of thickened liquids.Keywords: compression-extrusion test, dysphagia, texture analyzer, thickener
Procedia PDF Downloads 369480 MCD-017: Potential Candidate from the Class of Nitroimidazoles to Treat Tuberculosis
Authors: Gurleen Kour, Mowkshi Khullar, B. K. Chandan, Parvinder Pal Singh, Kushalava Reddy Yumpalla, Gurunadham Munagala, Ram A. Vishwakarma, Zabeer Ahmed
Abstract:
New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). Apart from in-vitro potency against the target, physiochemical properties and pharmacokinetic properties play an imperative role in the process of drug discovery. We have identified novel nitroimidazole derivatives with potential activity against mycobacterium tuberculosis. One lead candidates, MCD-017, which showed potent activity against H37Rv strain (MIC=0.5µg/ml) and was further evaluated in the process of drug development. Methods: Basic physicochemical parameters like solubility and lipophilicity (LogP) were evaluated. Thermodynamic solubility was determined in PBS buffer (pH 7.4) using LC/MS-MS. The partition coefficient (Log P) of the compound was determined between octanol and phosphate buffered saline (PBS at pH 7.4) at 25°C by the microscale shake flask method. The compound followed Lipinski’s rule of five, which is predictive of good oral bioavailability and was further evaluated for metabolic stability. In-vitro metabolic stability was determined in rat liver microsomes. The hepatotoxicity of the compound was also determined in HepG2 cell line. In vivo pharmacokinetic profile of the compound after oral dosing was also obtained using balb/c mice. Results: The compound exhibited favorable solubility and lipophilicity. The physical and chemical properties of the compound were made use of as the first determination of drug-like properties. The compound obeyed Lipinski’s rule of five, with molecular weight < 500, number of hydrogen bond donors (HBD) < 5 and number of hydrogen bond acceptors(HBA) not more then 10. The log P of the compound was less than 5 and therefore the compound is predictive of exhibiting good absorption and permeation. Pooled rat liver microsomes were prepared from rat liver homogenate for measuring the metabolic stability. 99% of the compound was not metabolized and remained intact. The compound did not exhibit cytoxicity in hepG2 cells upto 40 µg/ml. The compound revealed good pharmacokinetic profile at a dose of 5mg/kg administered orally with a half life (t1/2) of 1.15 hours, Cmax of 642ng/ml, clearance of 4.84 ml/min/kg and a volume of distribution of 8.05 l/kg. Conclusion : The emergence of multi drug resistance (MDR) and extensively drug resistant (XDR) Tuberculosis emphasize the requirement of novel drugs active against tuberculosis. Thus, the need to evaluate physicochemical and pharmacokinetic properties in the early stages of drug discovery is required to reduce the attrition associated with poor drug exposure. In summary, it can be concluded that MCD-017 may be considered a good candidate for further preclinical and clinical evaluations.Keywords: mycobacterium tuberculosis, pharmacokinetics, physicochemical properties, hepatotoxicity
Procedia PDF Downloads 457479 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale
Authors: Sascha E. Oswald, Jan Busch
Abstract:
The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment
Procedia PDF Downloads 246478 Assessing the Severity of Traffic Related Air Pollution in South-East London to School Pupils
Authors: Ho Yin Wickson Cheung, Liora Malki-Epshtein
Abstract:
Outdoor air pollution presents a significant challenge for public health globally, especially in urban areas, with road traffic acting as the primary contributor to air pollution. Several studies have documented the antagonistic relation between traffic-related air pollution (TRAP) and the impact on health, especially to the vulnerable group of population, particularly young pupils. Generally, TRAP could cause damage to their brain, restricting the ability of children to learn and, more importantly, causing detrimental respiratory issues in later life. Butlittle is known about the specific exposure of children at school during the school day and the impact this may have on their overall exposure to pollution at a crucial time in their development. This project has set out to examine the air quality across primary schools in South-East London and assesses the variability of data found based on their geographic location and surroundings. Nitrogen dioxide, PM contaminants, and carbon dioxide were collected with diffusion tubes and portable monitoring equipment for eight schools across three local areas, that are Greenwich, Lewisham, and Tower Hamlets. This study first examines the geographical features of the schools surrounding (E.g., coverage of urban road structure and green infrastructure), then utilize three different methods to capture pollutants data. Moreover, comparing the obtained results with existing data from monitoring stations to understand the differences in air quality before and during the pandemic. Furthermore, most studies in this field have unfortunately neglected human exposure to pollutants and calculated based on values from fixed monitoring stations. Therefore, this paper introduces an alternative approach by calculating human exposure to air pollution from real-time data obtained when commuting within related areas (Driving routes and field walking). It is found that schools located highly close to motorways are generally not suffering from the most air pollution contaminants. Instead, one with the worst traffic congested routes nearby might also result in poor air quality. Monitored results also indicate that the annual air pollution values have slightly decreased during the pandemic. However, the majority of the data is currently still exceeding the WHO guidelines. Finally, the total human exposures for NO2 during commuting in the two selected routes were calculated. Results illustrated the total exposure for route 1 were 21,730 μm/m3 and 28,378.32 μm/m3, and for route 2 were 30,672 μm/m3 and 16,473 μm/m3. The variance that occurred might be due to the difference in traffic volume that requires further research. Exposure for NO2 during commuting was plotted with detailed timesteps that have shown their peak usually occurred while commuting. These have consolidated the initial assumption to the extremeness of TRAP. To conclude, this paper has yielded significant benefits to understanding air quality across schools in London with the new approach of capturing human exposure (Driving routes). Confirming the severity of air pollution and promoting the necessity of considering environmental sustainability for policymakers during decision making to protect society's future pillars.Keywords: air pollution, schools, pupils, congestion
Procedia PDF Downloads 119477 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 83476 Welfare and Sustainability in Beef Cattle Production on Tropical Pasture
Authors: Andre Pastori D'Aurea, Lauriston Bertelli Feranades, Luis Eduardo Ferreira, Leandro Dias Pinto, Fabiana Ayumi Shiozaki
Abstract:
The aim of this study was to improve the production of beef cattle on tropical pasture without harming this environment. On tropical pastures, cattle's live weight gain is lower than feedlot, and forage production is seasonable, changing from season to season. Thus, concerned with sustainable livestock production, the Premix Company has developed strategies to improve the production of beef cattle on tropical pasture to ensure sustainability of welfare and production. There are two important principles in this productivity system: 1) increase individual gains with use of better supplementation and 2) increase the productivity units with better forage quality like corn silage or other forms of forage conservations, actually used only in winter, and adding natural additives in the diet. This production system was applied from June 2017 to May 2018 in the Research Center of Premix Company, Patrocínio Paulista, São Paulo State, Brazil. The area used had 9 hectares of pasture of Brachiaria brizantha. 36 steers Nellore were evaluated for one year. The initial weight was 253 kg. The parameters used were daily average gain and gain per area. This indicated the corrections to be made and helped design future fertilization. In this case, we fertilized the pasture with 30 kg of nitrogen per animal divided into two parts. The diet was pasture and protein-energy supplements (0.4% of live weight). The supplement used was added with natural additive Fator P® – Premix Company). Fator P® is an additive composed by amino acids (lysine, methionine and tyrosine, 16400, 2980 and 3000 mg.kg-1 respectively), minerals, probiotics (Saccharomyces cerevisiae, 7 x 10E8 CFU.kg-1) and essential fatty acids (linoleic and oleic acids, 108.9 and 99g.kg-1 respectively). Due to seasonal changes, in the winter we supplemented the diet by increasing the offer of forage, supplementing with maize silage. It was offered 1% of live weight in silage corn and 0.4% of the live weight in protein-energetic supplements with additive Fator P ®. At the end of the period, the productivity was calculated by summing the individual gains for the area used. The average daily gain of the animals were 693 grams per day and was produced 1.005 kg /hectare/year. This production is about 8 times higher than the average of Brazilian meat national production. To succeed in this project, it is necessary to increase the gains per area, so it is necessary to increase the capacity per area. Pasture management is very important to the project's success because the dietary decisions were taken from the quantity and quality of the forage. We, therefore, recommend the use of animals in the growth phase because the response to supplementation is greater in that phase and we can allocate more animals per area. This system's carbon footprint reduces emissions by 61.2 percent compared to the Brazilian average. This beef cattle production system can be efficient and environmentally friendly to the natural. Another point is that bovines will benefit from their natural environment without competing or having an impact on human food production.Keywords: cattle production, environment, pasture, sustainability
Procedia PDF Downloads 149475 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 72474 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems
Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen Münch, Elke K. Arendt
Abstract:
Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient
Procedia PDF Downloads 80473 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak
Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi
Abstract:
This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak
Procedia PDF Downloads 154472 Disability Management and Occupational Health Enhancement Program in Hong Kong Hospital Settings
Authors: K. C. M. Wong, C. P. Y. Cheng, K. Y. Chan, G. S. C. Fung, T. F. O. Lau, K. F. C. Leung, J. P. C. Fok
Abstract:
Hospital Authority (HA) is the statutory body to manage all public hospitals in Hong Kong. Occupational Care Medicine Service (OMCS) is an in-house multi-disciplinary team responsible for injury management in HA. Hospital administrative services (AS) provides essential support in hospital daily operation to facilitate the provision of quality healthcare services. An occupational health enhancement program in Tai Po Hospital (TPH) domestic service supporting unit (DSSU) was piloted in 2013 with satisfactory outcome, the keys to success were staff engagement and management support. Riding on the success, the program was rolled out to another 5 AS departments of Alice Ho Miu Ling Nethersole Hospital (AHNH) and TPH in 2015. This paper highlights the indispensable components of disability management and occupational health enhancement program in hospital settings. Objectives: 1) Facilitate workplace to support staff with health affecting work problem, 2) Enhance staff’s occupational health. Methodology: Hospital Occupational Safety and Health (OSH) team and AS departments (catering, linen services, and DSSU) of AHNH and TPH worked closely with OMCS. Focus group meetings and worksite visits were conducted with frontline staff engagement. OSH hazards were identified with corresponding OSH improvement measures introduced, e.g., invention of high dusting device to minimize working at height; tailor-made linen cart to minimize back bending at work, etc. Specific MHO trainings were offered to each AS department. A disability management workshop was provided to supervisors in order to enhance their knowledge and skills in return-to-work (RTW) facilitation. Based on injured staff's health condition, OMCS would provide work recommendation, and RTW plan was formulated with engagement of staff and their supervisors. Genuine communication among stakeholders with expectation management paved the way for realistic goals setting and success in our program. Outcome: After implementation of the program, a significant drop of 26% in musculoskeletal disorders related sickness absence day was noted in 2016 as compared to the average of 2013-2015. The improvement was postulated by innovative OSH improvement measures, teamwork, staff engagement and management support. Staff and supervisors’ feedback were very encouraging that 90% respondents rated very satisfactory in program evaluation. This program exemplified good work sharing among departments to support staff in need.Keywords: disability management, occupational health, return to work, occupational medicine
Procedia PDF Downloads 213471 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till
Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum
Abstract:
Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia
Procedia PDF Downloads 148470 Aerobic Biodegradation of a Chlorinated Hydrocarbon by Bacillus Cereus 2479
Authors: Srijata Mitra, Mobina Parveen, Pranab Roy, Narayan Chandra Chattopadhyay
Abstract:
Chlorinated hydrocarbon can be a major pollution problem in groundwater as well as soil. Many people interact with these chemicals on daily accidentally or by professionally in the laboratory. One of the most common sources for Chlorinated hydrocarbon contamination of soil and groundwater are industrial effluents. The wide use and discharge of Trichloroethylene (TCE), a volatile chlorohydrocarbon from chemical industry, led to major water pollution in rural areas. TCE is an mainly used as an industrial metal degreaser in industries. Biotransformation of TCE to the potent carcinogen vinyl chloride (VC) by consortia of anaerobic bacteria might have role for the above purpose. For these reasons, the aim of current study was to isolate and characterized the genes involved in TCE metabolism and also to investigate the in silico study of those genes. To our knowledge, only one aromatic dioxygenase system, the toluene dioxygenase in Pseudomonas putida F1 has been shown to be involved in TCE degradation. This is first instance where Bacillus cereus group being used in biodegradation of trichloroethylene. A novel bacterial strain 2479 was isolated from oil depot site at Rajbandh, Durgapur (West Bengal, India) by enrichment culture technique. It was identified based on polyphasic approach and ribotyping. The bacterium was gram positive, rod shaped, endospore forming and capable of degrading trichloroethylene as the sole carbon source. On the basis of phylogenetic data and Fatty Acid Methyl Ester Analysis, strain 2479 should be placed within the genus Bacillus and species cereus. However, the present isolate (strain 2479) is unique and sharply different from the usual Bacillus strains in its biodegrading nature. Fujiwara test was done to estimate that the strain 2479 could degrade TCE efficiently. The gene for TCE biodegradation was PCR amplified from genomic DNA of Bacillus cereus 2479 by using todC1 gene specific primers. The 600bp amplicon was cloned into expression vector pUC I8 in the E. coli host XL1-Blue and expressed under the control of lac promoter and nucleotide sequence was determined. The gene sequence was deposited at NCBI under the Accession no. GU183105. In Silico approach involved predicting the physico-chemical properties of deduced Tce1 protein by using ProtParam tool. The tce1 gene contained 342 bp long ORF encoding 114 amino acids with a predicted molecular weight 12.6 kDa and the theoretical pI value of the polypeptide was 5.17, molecular formula: C559H886N152O165S8, total number of atoms: 1770, aliphatic index: 101.93, instability index: 28.60, Grand Average of Hydropathicity (GRAVY): 0.152. Three differentially expressed proteins (97.1, 40 and 30 kDa) were directly involved in TCE biodegradation, found to react immunologically to the antibodies raised against TCE inducible proteins in Western blot analysis. The present study suggested that cloned gene product (TCE1) was capable of degrading TCE as verified chemically.Keywords: cloning, Bacillus cereus, in silico analysis, TCE
Procedia PDF Downloads 400469 Physico-Mechanical Behavior of Indian Oil Shales
Authors: K. S. Rao, Ankesh Kumar
Abstract:
The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior
Procedia PDF Downloads 347468 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana
Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta
Abstract:
Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.Keywords: bioeconomy, lipids, microalgae, proteins, saccharides
Procedia PDF Downloads 246467 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass
Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García
Abstract:
The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass
Procedia PDF Downloads 236466 Spatial Analysis in the Impact of Aquifer Capacity Reduction on Land Subsidence Rate in Semarang City between 2014-2017
Authors: Yudo Prasetyo, Hana Sugiastu Firdaus, Diyanah Diyanah
Abstract:
The phenomenon of the lack of clean water supply in several big cities in Indonesia is a major problem in the development of urban areas. Moreover, in the city of Semarang, the population density and growth of physical development is very high. Continuous and large amounts of underground water (aquifer) exposure can result in a drastically aquifer supply declining in year by year. Especially, the intensity of aquifer use in the fulfilment of household needs and industrial activities. This is worsening by the land subsidence phenomenon in some areas in the Semarang city. Therefore, special research is needed to know the spatial correlation of the impact of decreasing aquifer capacity on the land subsidence phenomenon. This is necessary to give approve that the occurrence of land subsidence can be caused by loss of balance of pressure on below the land surface. One method to observe the correlation pattern between the two phenomena is the application of remote sensing technology based on radar and optical satellites. Implementation of Differential Interferometric Synthetic Aperture Radar (DINSAR) or Small Baseline Area Subset (SBAS) method in SENTINEL-1A satellite image acquisition in 2014-2017 period will give a proper pattern of land subsidence. These results will be spatially correlated with the aquifer-declining pattern in the same time period. Utilization of survey results to 8 monitoring wells with depth in above 100 m to observe the multi-temporal pattern of aquifer change capacity. In addition, the pattern of aquifer capacity will be validated with 2 underground water cavity maps from observation of ministries of energy and natural resources (ESDM) in Semarang city. Spatial correlation studies will be conducted on the pattern of land subsidence and aquifer capacity using overlapping and statistical methods. The results of this correlation will show how big the correlation of decrease in underground water capacity in influencing the distribution and intensity of land subsidence in Semarang city. In addition, the results of this study will also be analyzed based on geological aspects related to hydrogeological parameters, soil types, aquifer species and geological structures. The results of this study will be a correlation map of the aquifer capacity on the decrease in the face of the land in the city of Semarang within the period 2014-2017. So hopefully the results can help the authorities in spatial planning and the city of Semarang in the future.Keywords: aquifer, differential interferometric synthetic aperture radar (DINSAR), land subsidence, small baseline area subset (SBAS)
Procedia PDF Downloads 183465 Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning
Authors: M. E. Semenov, U. Zh. Mirzakimov, A. S. Stoporev, R. S. Pavelev, M. A. Varfolomeev
Abstract:
Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclave study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate. This work was carried out in the framework of the program Priority-2030.Keywords: gas hydrate, gas storage, promotor, associated petroleum gas
Procedia PDF Downloads 73464 Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device
Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung
Abstract:
Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.Keywords: DSHD (Displacement Semi-Active Hydraulic Damper), AIC (Active Interaction Control Device), shake table test, full scale structure test, sub-structure, main-structure
Procedia PDF Downloads 519463 Simo-syl: A Computer-Based Tool to Identify Language Fragilities in Italian Pre-Schoolers
Authors: Marinella Majorano, Rachele Ferrari, Tamara Bastianello
Abstract:
The recent technological advance allows for applying innovative and multimedia screen-based assessment tools to test children's language and early literacy skills, monitor their growth over the preschool years, and test their readiness for primary school. Several are the advantages that a computer-based assessment tool offers with respect to paper-based tools. Firstly, computer-based tools which provide the use of games, videos, and audio may be more motivating and engaging for children, especially for those with language difficulties. Secondly, computer-based assessments are generally less time-consuming than traditional paper-based assessments: this makes them less demanding for children and provides clinicians and researchers, but also teachers, with the opportunity to test children multiple times over the same school year and, thus, to monitor their language growth more systematically. Finally, while paper-based tools require offline coding, computer-based tools sometimes allow obtaining automatically calculated scores, thus producing less subjective evaluations of the assessed skills and provide immediate feedback. Nonetheless, using computer-based assessment tools to test meta-phonological and language skills in children is not yet common practice in Italy. The present contribution aims to estimate the internal consistency of a computer-based assessment (i.e., the Simo-syl assessment). Sixty-three Italian pre-schoolers aged between 4;10 and 5;9 years were tested at the beginning of the last year of the preschool through paper-based standardised tools in their lexical (Peabody Picture Vocabulary Test), morpho-syntactical (Grammar Repetition Test for Children), meta-phonological (Meta-Phonological skills Evaluation test), and phono-articulatory skills (non-word repetition). The same children were tested through Simo-syl assessment on their phonological and meta-phonological skills (e.g., recognise syllables and vowels and read syllables and words). The internal consistency of the computer-based tool was acceptable (Cronbach's alpha = .799). Children's scores obtained in the paper-based assessment and scores obtained in each task of the computer-based assessment were correlated. Significant and positive correlations emerged between all the tasks of the computer-based assessment and the scores obtained in the CMF (r = .287 - .311, p < .05) and in the correct sentences in the RCGB (r = .360 - .481, p < .01); non-word repetition standardised test significantly correlates with the reading tasks only (r = .329 - .350, p < .05). Further tasks should be included in the current version of Simo-syl to have a comprehensive and multi-dimensional approach when assessing children. However, such a tool represents a good chance for the teachers to early identifying language-related problems even in the school environment.Keywords: assessment, computer-based, early identification, language-related skills
Procedia PDF Downloads 185462 Estimating Age in Deceased Persons from the North Indian Population Using Ossification of the Sternoclavicular Joint
Authors: Balaji Devanathan, Gokul G., Raveena Divya, Abhishek Yadav, Sudhir K. Gupta
Abstract:
Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen.Keywords: age estimation, sternoclavicular joint, medial clavicle, computed tomography
Procedia PDF Downloads 46461 Role of Platelet Volume Indices in Diabetes Related Vascular Angiopathies
Authors: Mitakshara Sharma, S. K. Nema, Sanjeev Narang
Abstract:
Diabetes mellitus (DM) is a group of metabolic disorders characterized by metabolic abnormalities, chronic hyperglycaemia and long term macrovascular & microvascular complications. Vascular complications are due to platelet hyperactivity and dysfunction, increased inflammation, altered coagulation and endothelial dysfunction. Large proportion of patients with Type II DM suffers from preventable vascular angiopathies, and there is need to develop risk factor modifications and interventions to reduce impact of complications. These complications are attributed to platelet activation, recognised by increase in Platelet Volume Indices (PVI) including Mean Platelet Volume (MPV) and Platelet Distribution Width (PDW). The current study is prospective analytical study conducted over 2 years. Out of 1100 individuals, 930 individuals fulfilled inclusion criteria and were segregated into three groups on basis of glycosylated haemoglobin (HbA1C): - (a) Diabetic, (b) Non-Diabetic and (c) Subjects with Impaired fasting glucose (IFG) with 300 individuals in IFG and non-diabetic groups & 330 individuals in diabetic group. Further, diabetic group was divided into two groups on the basis of presence or absence of known diabetes related vascular complications. Samples for HbA1c and PVI were collected using Ethylene diamine tetraacetic acid (EDTA) as anticoagulant and processed on SYSMEX-X-800i autoanalyser. The study revealed gradual increase in PVI from non-diabetics to IFG to diabetics. PVI were markedly increased in diabetic patients. MPV and PDW of diabetics, IFG and non diabetics were (17.60 ± 2.04)fl, (11.76 ± 0.73)fl, (9.93 ± 0.64)fl and (19.17 ± 1.48)fl, (15.49 ± 0.67)fl, (10.59 ± 0.67)fl respectively with a significant p value 0.00 and a significant positive correlation (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). MPV & PDW of subjects with diabetes related complications were higher as compared to those without them and were (17.51±0.39)fl & (15.14 ± 1.04)fl and (20.09 ± 0.98) fl & (18.96 ± 0.83)fl respectively with a significant p value 0.00. There was a significant positive correlation between PVI and duration of diabetes across the groups (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). However, a significant negative correlation was found between glycaemic levels and total platelet count (PC- HbA1c r =-0.164). This is multi-parameter and comprehensive study with an adequately powered study design. It can be concluded from our study that PVI are extremely useful and important indicators of impending vascular complications in all patients with deranged glycaemic control. Introduction of automated cell counters has facilitated the availability of PVI as routine parameters. PVI is a useful means for identifying larger & active platelets which play important role in development of micro and macro angiopathic complications of diabetes leading to mortality and morbidity. PVI can be used as cost effective markers to predict and prevent impending vascular events in patients with Diabetes mellitus especially in developing countries like India. PVI, if incorporated into protocols for management of diabetes, could revolutionize care and curtail the ever increasing cost of patient management.Keywords: diabetes, IFG, HbA1C, MPV, PDW, PVI
Procedia PDF Downloads 259460 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation
Authors: A. K. Tekile, I. L. Kim, J. Y. Lee
Abstract:
Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.Keywords: stagnant, ultrasonic irradiation, water flow, water quality
Procedia PDF Downloads 194459 Household Perspectives and Resistance to Preventive Relocation in Flood Prone Areas: A Case Study in the Polwatta River Basin, Southern Sri Lanka
Authors: Ishara Madusanka, So Morikawa
Abstract:
Natural disasters, particularly floods, pose severe challenges globally, affecting both developed and developing countries. In many regions, especially Asia, riverine floods are prevalent and devastating. Integrated flood management incorporates structural and non-structural measures, with preventive relocation emerging as a cost-effective and proactive strategy for areas repeatedly impacted by severe flooding. However, preventive relocation is often hindered by economic, psychological, social, and institutional barriers. This study investigates the factors influencing resistance to preventive relocation and evaluates the role of flood risk information in shaping relocation decisions through risk perception. A conceptual model was developed, incorporating variables such as Flood Risk Information (FRI), Place Attachment (PA), Good Living Conditions (GLC), and Adaptation to Flooding (ATF), with Flood Risk Perception (FRP) serving as a mediating variable. The research was conducted in Welipitiya in the Polwatta river basin, Matara district, Sri Lanka, a region experiencing recurrent flood damage. For this study, an experimental design involving a structured questionnaire survey was utilized, with 185 households participating. The treatment group received flood risk information, including flood risk maps and historical data, while the control group did not. Data were collected in 2023 and analyzed using independent sample t-tests and Partial Least Squares Structural Equation Modeling (PLS-SEM). PLS-SEM was chosen for its ability to model latent variables, handle complex relationships, and suitability for exploratory research. Multi-group Analysis (MGA) assessed variations across different flood risk areas. Findings indicate that flood risk information had a limited impact on flood risk perception and relocation decisions, though its effect was significant in specific high-risk areas. Place attachment was a significant factor influencing relocation decisions across the sample. One potential reason for the limited impact of flood risk information on relocation decisions could be the lack of specificity in the information provided. The results suggest that while flood risk information alone may not significantly influence relocation decisions, it is crucial in specific contexts. Future studies and practitioners should focus on providing more detailed risk information and addressing psychological factors like place attachments to enhance preventive relocation efforts.Keywords: flood risk communication, flood risk perception, place attachment, preventive relocation, structural equation modeling
Procedia PDF Downloads 34458 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test
Procedia PDF Downloads 221457 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management
Authors: Gokul Prasad, Pennan Chinnasamy
Abstract:
The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer
Procedia PDF Downloads 48456 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System
Authors: A. Chávez, A. Rodríguez, F. Pinzón
Abstract:
Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.Keywords: sludge, landfill, leachate, SBR
Procedia PDF Downloads 273455 The Impact of Sensory Overload on Students on the Autism Spectrum in Italian Inclusive Classrooms: Teachers' Perspectives and Training Needs
Authors: Paola Molteni, Luigi d’Alonzo
Abstract:
Background: Sensory issues are now considered one of the key aspects in defining and diagnosing autism, changing the perspectives on behavioural analysis and intervention in mainstream educational services. However, Italian teachers’ training is yet not specific on the topic of autism and its sensory-related effects and this research investigates the teacher’s capability in understanding the student’s needs and his/her challenging behaviours considering sensory perceptions. Objectives: The research aims to analyse mainstream schools teachers’ awareness on students’ sensory perceptions and how this affects classroom inclusion and learning process. The research questions are: i) Are teachers able to identify student’s sensory issues?; ii) Are trained teachers more able to identify sensory problems then untrained ones?; iii) What is the impact of sensory issues on inclusion in mainstream classrooms?; iv) What should teachers know about autistic sensory dimensions? Methods: This research was designed as a pilot study that involves a multi-methods approach, including action and collaborative research methodology. The designed research allows the researcher to catch the complexity of a province school district (from kindergarten to high school) through a deep detailed analysis of selected aspects. The researcher explored the questions described above through 133 questionnaires and 6 focus groups. The qualitative and quantitative data collected during the research were analysed using the Interpretative Phenomenological Analysis (IPA). Results: Mainstream schools teachers are not able to confidently recognise sensory issues of children included in the classroom. The research underlines: how professionals with no specific training on autism are not able to recognise sensory problems in students on the spectrum; how hearing and sight issues have higher impact on classroom inclusion and student’s learning process; how a lack of understanding is often followed by misinterpretations of the impact of sensory issues and challenging behaviours. Conclusions: As this research has shown, promoting and enhancing the importance of understanding sensory issues related to autism is fundamental to enable mainstream schools teachers to define educational and life-long plans able to properly answer the student’s needs and support his/her real inclusion in the classroom. This study is a good example of how the educational research can meet and help the daily practice in working with people on the autism spectrum and support the training design for mainstream school teachers: the emerging need of designed preparation on sensory issues is fundamental to be considered when planning school district in-service training programmes, specifically declined for inclusive services.Keywords: autism spectrum condition, scholastic inclusion, sensory overload, teacher's training
Procedia PDF Downloads 319454 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 103453 A Comparison of the Microbiology Profile for Periprosthetic Joint Infection (PJI) of Knee Arthroplasty and Lower Limb Endoprostheses in Tumour Surgery
Authors: Amirul Adlan, Robert A McCulloch, Neil Jenkins, MIchael Parry, Jonathan Stevenson, Lee Jeys
Abstract:
Background and Objectives: The current antibiotic prophylaxis for oncological patients is based upon evidence from primary arthroplasty despite significant differences in both patient group and procedure. The aim of this study was to compare the microbiology organisms responsible for PJI in patients who underwent two-stage revision for infected primary knee replacement with those of infected oncological endoprostheses of the lower limb in a single institution. This will subsequently guide decision making regarding antibiotic prophylaxis at primary implantation for oncological procedures and empirical antibiotics for infected revision procedures (where the infecting organism(s) are unknown). Patient and Methods: 118 patients were treated with two-stage revision surgery for infected knee arthroplasty and lower limb endoprostheses between 1999 and 2019. 74 patients had two-stage revision for PJI of knee arthroplasty, and 44 had two-stage revision of lower limb endoprostheses. There were 68 males and 50 females. The mean age for the knee arthroplasty cohort and lower limb endoprostheses cohort were 70.2 years (50-89) and 36.1 years (12-78), respectively (p<0.01). Patient host and extremity criteria were categorised according to the MSIS Host and Extremity Staging System. Patient microbiological culture, the incidence of polymicrobial infection and multi-drug resistance (MDR) were analysed and recorded. Results: Polymicrobial infection was reported in 16% (12 patients) from knee arthroplasty PJI and 14.5% (8 patients) in endoprostheses PJI (p=0.783). There was a significantly higher incidence of MDR in endoprostheses PJI, isolated in 36.4% of cultures, compared to knee arthroplasty PJI (17.2%) (p=0.01). Gram-positive organisms were isolated in more than 80% of cultures from both cohorts. Coagulase-negative Staphylococcus (CoNS) was the commonest gram-positive organism, and Escherichia coli was the commonest Gram-negative organism in both groups. According to the MSIS staging system, the host and extremity grade of knee arthroplasty PJI cohort were significantly better than endoprostheses PJI(p<0.05). Conclusion: Empirical antibiotic management of PJI in orthopaedic oncology is based upon PJI in arthroplasty despite differences in both host and microbiology. Our results show a significant increase in MDR pathogens within the oncological group despite CoNS being the most common infective organism in both groups. Endoprosthetic patients presented with poorer host and extremity criteria. These factors should be considered when managing this complex patient group, emphasising the importance of broad-spectrum antibiotic prophylaxis and preoperative sampling to ensure appropriate perioperative antibiotic cover.Keywords: microbiology, periprosthetic Joint infection, knee arthroplasty, endoprostheses
Procedia PDF Downloads 118452 No-Par Shares Working in European LLCs
Authors: Agnieszka P. Regiec
Abstract:
Capital companies are based on monetary capital. In the traditional model, the capital is the sum of the nominal values of all shares issued. For a few years within the European countries, the limited liability companies’ (LLC) regulations are leaning towards liberalization of the capital structure in order to provide higher degree of autonomy regarding the intra-corporate governance. Reforms were based primarily on the legal system of the USA. In the USA, the tradition of no-par shares is well-established. Thus, as a point of reference, the American legal system is being chosen. Regulations of Germany, Great Britain, France, Netherlands, Finland, Poland and the USA will be taken into consideration. The analysis of the share capital is important for the development of science not only because the capital structure of the corporation has significant impact on the shareholders’ rights, but also it reflects on relationships between creditors of the company and the company itself. Multi-level comparative approach towards the problem will allow to present a wide range of the possible outcomes stemming from the novelization. The dogmatic method was applied. The analysis was based on the statutes, secondary sources and judicial awards. Both the substantive and the procedural aspects of the capital structure were considered. In Germany, as a result of the regulatory competition, typical for the EU, the structure of LLCs was reshaped. New LLC – Unternehmergesellschaft, which does not require a minimum share capital, was introduced. The minimum share capital for Gesellschaft mit beschrankter Haftung was lowered from 25 000 to 10 000 euro. In France the capital structure of corporations was also altered. In 2003, the minimum share capital of société à responsabilité limitée (S.A.R.L.) was repealed. In 2009, the minimum share capital of société par actions simplifiée – in the “simple” version of S.A.R.L. was also changed – there is no minimum share capital required by a statute. The company has to, however, indicate a share capital without the legislator imposing the minimum value of said capital. In Netherlands the reform of the Besloten Vennootschap met beperkte aansprakelijkheid (B.V.) was planned with the following change: repeal of the minimum share capital as the answer to the need for higher degree of autonomy for shareholders. It, however, preserved shares with nominal value. In Finland the novelization of yksityinen osakeyhtiö took place in 2006 and as a result the no-par shares were introduced. Despite the fact that the statute allows shares without face value, it still requires the minimum share capital in the amount of 2 500 euro. In Poland the proposal for the restructuration of the capital structure of the LLC has been introduced. The proposal provides among others: devaluation of the capital to 1 PLN or complete liquidation of the minimum share capital, allowing the no-par shares to be issued. In conclusion: American solutions, in particular, balance sheet test and solvency test provide better protection for creditors; European no-par shares are not the same as American and the existence of share capital in Poland is crucial.Keywords: balance sheet test, limited liability company, nominal value of shares, no-par shares, share capital, solvency test
Procedia PDF Downloads 185