Search results for: reluctance machines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 761

Search results for: reluctance machines

131 Innovate, Educate, and Transform, Tailoring Sustainable Waste Handling Solutions for Nepal’s Small Populated Municipalities: Insights From Chandragiri Municipality

Authors: Anil Kumar Baral

Abstract:

The research introduces a ground-breaking approach to waste management, emphasizing innovation, education, and transformation. Using Chandragiri Municipality as a case study, the study advocates a shift from traditional to progressive waste management strategies, contributing an inventive waste framework, sustainability advocacy, and a transformative blueprint. The waste composition analysis highlights Chandragiri's representative profile, leading to a comprehensive plan addressing challenges and recommending a transition to a profitable waste treatment model, supported by relevant statistics. The data-driven approach incorporates the official data of waste Composition from Chandragiri Municipality as secondary data and incorporates the primary data from Chandragiri households, ensuring a nuanced perspective. Discussions on implementation, viability, and environmental preservation underscore the dual benefit of sustainability. The study includes a comparative analysis, monitoring, and evaluation framework, examining international relevance and collaboration, and conducting a social and environmental impact assessment. The results indicate the necessity for creative changes in Chandragiri's waste practices, recommending separate treatment centers in wards level rather than Municipal level, composting machines, and a centralized waste treatment plant. Educational reforms involve revising school curricula and awareness campaigns. The transformation's success hinges on reducing waste size, efficient treatment center operation, and ongoing public literacy. The conclusion summarizes key findings, envisioning a future with sustainable waste management practices deeply embedded in the community fabric.

Keywords: innovate, educate, transform, municipality, method

Procedia PDF Downloads 46
130 Dynamic Stability of a Wings for Drone Aircraft Subjected to Parametric Excitation

Authors: Iyd Eqqab Maree, Habil Jurgen Bast

Abstract:

Vibration control of machines and structures incorporating viscoelastic materials in suitable arrangement is an important aspect of investigation. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. Multilayered cantilever sandwich beam like structures can be used in aircrafts and other applications such as robot arms for effective vibration control. These members may experience parametric instability when subjected to time dependant forces. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. The purpose of the present work is to investigate the dynamic stability of a three layered symmetric sandwich beam (Drone Aircraft wings ) subjected to an end periodic axial force . Equations of motion are derived using finite element method (MATLAB software). It is observed that with increase in core thickness parameter fundamental buckling load increases. The fundamental resonant frequency and second mode frequency parameter also increase with increase in core thickness parameter. Fundamental loss factor and second mode loss factor also increase with increase in core thickness parameter. Increase in core thickness parameter enhances the stability of the beam. With increase in core loss factor also the stability of the beam enhances. There is a very good agreement of the experimental results with the theoretical findings.

Keywords: steel cantilever beam, viscoelastic material core, loss factor, transition region, MATLAB R2011a

Procedia PDF Downloads 473
129 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking

Authors: Sneha Kumari, Ravi Krishnan Elangovan

Abstract:

This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chip

Keywords: actin, cargo, IVMA, myosin motors and single-molecule system

Procedia PDF Downloads 87
128 Applying Cognitive Psychology to Education: Translational Educational Science

Authors: Hammache Nadir

Abstract:

The scientific study of human learning and memory is now more than 125 years old. Psychologists have conducted thousands of experiments, correlational analyses, and field studies during this time, in addition to other research conducted by those from neighboring fields. A huge knowledge base has been carefully built up over the decades. Given this backdrop, we may ask ourselves: What great changes in education have resulted from this huge research base? How has the scientific study of learning and memory changed practices in education from those of, say, a century ago? Have we succeeded in building a translational educational science to rival medical science (in which biological knowledge is translated into medical practice) or types of engineering (in which, e.g., basic knowledge in chemistry is translated into products through chemical engineering)? The answer, I am afraid, is rather mixed. Psychologists and psychological research have influenced educational practice, but in fits and starts. After all, some of the great founders of American psychology—William James, Edward L. Thorndike, John Dewey, and others—are also revered as important figures in the history of education. And some psychological research and ideas have made their way into education—for instance, computer-based cognitive tutors for some specific topics have been developed in recent years—and in years past, such practices as teaching machines, programmed learning, and, in higher education, the Keller Plan were all important. These older practices have not been sustained. Was that because they failed or because of a lack of systematic research showing they were effective? At any rate, in 2012, we cannot point to a well-developed translational educational science in which research about learning and memory, thinking and reasoning, and related topics is moved from the lab into controlled field trials (like clinical trials in medicine) and the tested techniques, if they succeed, are introduced into broad educational practice. We are just not there yet, and one question that arises is how we could achieve a translational educational science.

Keywords: affective, education, cognition, pshychology

Procedia PDF Downloads 346
127 Reliability Analysis of Variable Stiffness Composite Laminate Structures

Authors: A. Sohouli, A. Suleman

Abstract:

This study focuses on reliability analysis of variable stiffness composite laminate structures to investigate the potential structural improvement compared to conventional (straight fibers) composite laminate structures. A computational framework was developed which it consists of a deterministic design step and reliability analysis. The optimization part is Discrete Material Optimization (DMO) and the reliability of the structure is computed by Monte Carlo Simulation (MCS) after using Stochastic Response Surface Method (SRSM). The design driver in deterministic optimization is the maximum stiffness, while optimization method concerns certain manufacturing constraints to attain industrial relevance. These manufacturing constraints are the change of orientation between adjacent patches cannot be too large and the maximum number of successive plies of a particular fiber orientation should not be too high. Variable stiffness composites may be manufactured by Automated Fiber Machines (AFP) which provides consistent quality with good production rates. However, laps and gaps are the most important challenges to steer fibers that effect on the performance of the structures. In this study, the optimal curved fiber paths at each layer of composites are designed in the first step by DMO, and then the reliability analysis is applied to investigate the sensitivity of the structure with different standard deviations compared to the straight fiber angle composites. The random variables are material properties and loads on the structures. The results show that the variable stiffness composite laminate structures are much more reliable, even for high standard deviation of material properties, than the conventional composite laminate structures. The reason is that the variable stiffness composite laminates allow tailoring stiffness and provide the possibility of adjusting stress and strain distribution favorably in the structures.

Keywords: material optimization, Monte Carlo simulation, reliability analysis, response surface method, variable stiffness composite structures

Procedia PDF Downloads 519
126 Trends of Cancer Patients Who Underwent Curative/radical Radiotherapy at Radiotherapy Center, Tikur Anbessa Specialized Hospital

Authors: Emeshaw Damtew Zebene, Edom Seife, Hagos Tesfay, Gurja Belay

Abstract:

Background: cancer incidence and mortality has grown rapidly throughout the world. Aging of the population, urbanization, physical inactivity, economic growth followed by smoking and drinking contributed a lot for the increased incidence of cancer all over the globe. Objective: the aim of this study was to assess a one-year trend of cancer patients who underwent curative/radical radiotherapy at radiotherapy center, Tikur Anbessa specialized hospital, Ethiopia. Methodology: We performed a prospective descriptive study of cancer patients treated with LINAC at Tikur Anbessa specialized hospital, Addis Ababa, Ethiopia, from April 2021- March 2022. A standardized questionnaire was used to collect sociodemographic and clinical characteristics of the patients. Descriptive statistics and chi-square results were generated using SPSS version 24. The level of significance was obtained at 0.05. Results: Sixty-four (64) curative/radical patients-44 females and 20 males were analyzed. Majority, 27(42.2%), of the patients age range from 45 to 64, and 45(70%) of them were urban residents where a group of higher gynecologic cancer was observed.78% of the patients were with locally advanced cancer, and 54(84.4%) of them had no awareness about cancer. Generally, head & neck cancer were found the most prevalent cancer 20(31.3%), and the leading cause of cancer among women was cervical cancer 17(38.6%), where about half 7(15.9%) of them were HIV positive. Conclusion: Our finding revealed that most of curative/radical patients presented at a locally advanced stage of the disease. Hence, maintaining the already available teletherapy machines and installing additional radiotherapy centers may help in treating the patients at the early stage of the disease. Since almost all of our study participants did not have information about cancer, awareness raising mechanisms should be done. Additionally, understanding differences in cancer incidence between urban and rural is important. Key words: Cancer, Curative/radical, Radiotherapy, Tikur Anbessa Specialized Hospital

Keywords: cancer, curative/radical, radiotherapy, tkur anbessa specialized hospital

Procedia PDF Downloads 83
125 Optimum Turbomachine Preliminary Selection for Power Regeneration in Vapor Compression Cool Production Plants

Authors: Sayyed Benyamin Alavi, Giovanni Cerri, Leila Chennaoui, Ambra Giovannelli, Stefano Mazzoni

Abstract:

Primary energy consumption and emissions of pollutants (including CO2) sustainability call to search methodologies to lower power absorption for unit of a given product. Cool production plants based on vapour compression are widely used for many applications: air conditioning, food conservation, domestic refrigerators and freezers, special industrial processes, etc. In the field of cool production, the amount of Yearly Consumed Primary Energy is enormous, thus, saving some percentage of it, leads to big worldwide impact in the energy consumption and related energy sustainability. Among various techniques to reduce power required by a Vapour Compression Cool Production Plant (VCCPP), the technique based on Power Regeneration by means of Internal Direct Cycle (IDC) will be considered in this paper. Power produced by IDC reduces power need for unit of produced Cool Power by the VCCPP. The paper contains basic concepts that lead to develop IDCs and the proposed options to use the IDC Power. Among various selections for using turbo machines, Best Economically Available Technologies (BEATs) have been explored. Based on vehicle engine turbochargers, they have been taken into consideration for this application. According to BEAT Database and similarity rules, the best turbo machine selection leads to the minimum nominal power required by VCCPP Main Compressor. Results obtained installing the prototype in “ad hoc” designed test bench will be discussed and compared with the expected performance. Forecasts for the upgrading VCCPP, various applications will be given and discussed. 4-6% saving is expected for air conditioning cooling plants and 15-22% is expected for cryogenic plants.

Keywords: Refrigeration Plant, Vapour Pressure Amplifier, Compressor, Expander, Turbine, Turbomachinery Selection, Power Saving

Procedia PDF Downloads 426
124 Evaluation of Pelargonium Extract and Oil as Eco-Friendly Corrosion Inhibitor for Steel in Acidic Chloride Solutions and Pharmacological Properties

Authors: Ahmed Chetouani

Abstract:

Corrosion is a natural occurring process where it can be defined as the deterioration of materials properties due to its interaction with its environment. Corrosion can lead to failures in plant infrastructure and machines which are usually costly to repair. In terms of loss of contaminated products which will cause environmental damage and possibly costly in terms of human health. The driving force that causes metals to corrode is due to the natural consequence of their temporary existence in metallic form. There is a growing trend in utilizing plant extracts and pharmaceutical compounds as corrosion inhibitors. Exquisite identification of the essential oil of aerial parts of Pelargonium was obtained using hydrodistillation and identification using GC (gas chromatography) and GC/MS (gas chromatography-mass spectrometry). The oil was predominated by Citronellol (22.8%). The inhibitory effect of essential oil and extract of Pelargonium was estimated on the corrosion of mild steel in 1M hydrochloric acid (HCl) using weight loss, Electrochemical Impedance Spectroscopy (EIS) and Tafel polarization curves. Inhibition was found to increase with increasing concentration of the essential oil and extract of Pelargonium. The effect of temperature on the corrosion behaviour of mild steel in 1M HCl with addition of essential oil and extract was also studied and the thermodynamic parameters were determined and discussed. Values of inhibition efficiency were calculated from weight loss, Tafel polarization curves, and EIS. All results are in good agreement. Polarization curves showed that essential oil and extract of Pelargonium behave as mixed type inhibitors in hydrochloric acid. The results obtained showed that the essential oil and extract of Pelargonium could serve as an effective inhibitor of the corrosion of mild steel in Hydrochloric acid solution. To avoid any surprise of toxicity, the majority compounds have been studied by using POM analyses.

Keywords: corrosion inhibition, mild steel, pelargonium oil, extract, electrochemical system, hydrodistillation, side effects, POM Analyses

Procedia PDF Downloads 401
123 Feasibility Study on Hybrid Multi-Stage Direct-Drive Generator for Large-Scale Wind Turbine

Authors: Jin Uk Han, Hye Won Han, Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

Direct-drive generators for large-scale wind turbine, which are divided into AFPM(Axial Flux Permanent Magnet) and RFPM(Radial Flux Permanent Magnet) type machine, have attracted interest because of a higher energy density in comparison with gear train type generators. Each type of the machines provides distinguishable geometrical features such as narrow width with a large diameter for the AFPM-type machine and wide width with a certain diameter for the RFPM-type machine. When the AFPM-type machine is applied, an increase of electric power production through a multi-stage arrangement in axial direction is easily achieved. On the other hand, the RFPM-type machine can be applied by using its geometric feature of wide width. In this study, a hybrid two-stage direct-drive generator for 6.2MW class wind turbine was proposed, in which the two-stage AFPM-type machine for 5 MW was composed of two models arranged in axial direction with a hollow shape topology of the rotor with annular disc, the stator and the main shaft mounted on coupled slew bearings. In addition, the RFPM-type machine for 1.2MW was installed at the empty space of the rotor. Analytic results obtained from an electro-magnetic and structural interaction analysis showed that the structural weight of the proposed hybrid two-stage direct-drive generator can be achieved as 155tonf in a condition satisfying the requirements of structural behaviors such as allowable air-gap clearance and strength. Therefore, it was sure that the 6.2MW hybrid two-stage direct-drive generator is competitive than conventional generators. (NRF grant funded by the Korea government MEST, No. 2017R1A2B4005405).

Keywords: AFPM-type machine, direct-drive generator, electro-magnetic analysis, large-scale wind turbine, RFPM-type machine

Procedia PDF Downloads 167
122 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 21
121 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 135
120 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer, a Case Study

Authors: Adinarayana S., Sudhakar I.

Abstract:

Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor. Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyser are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.

Keywords: FFT analyser, condition monitoring, vibration spectrum, time wave form

Procedia PDF Downloads 388
119 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy

Authors: John Dorrell, Matthew Ambrosia, Abilash

Abstract:

This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.

Keywords: bitcoin, mining, economics, energy

Procedia PDF Downloads 33
118 Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans

Authors: Jeffrey A. Lavarias, Jessie C. Elauria, Arnold R. Elepano, Engelbert K. Peralta, Delfin C. Suministrado

Abstract:

Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement.

Keywords: cocoa beans, optimization, RSM, shelling parameters

Procedia PDF Downloads 358
117 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer- a Case Study

Authors: Adi Narayana S Sudhakar. I

Abstract:

Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor .Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyzer are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non-drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.

Keywords: FFT analyser, condition monitoring, vibration spectrum, time spectrum accelerometer

Procedia PDF Downloads 451
116 Evaluation and Selection of Contractors in Construction Projects with a View Supply Chain Management and Utilization of Promthee

Authors: Sara Najiazarpour, Mahsa Najiazarpour

Abstract:

There are many problems in contracting projects and their performance. At each project stage and due to different reasons, these problems affect cost, time and overall project quality. Hence, in order to increase the efficiency and performance in all levels of the chain and with supply chain management approach, there will be a coordination from the beginning of a project (contractor selection) to the end of project (handover of project). Contractor selection is the foremost part of construction projects which in this multi-criteria decision-making, the best contractor is determined by expert judgment, different variables and their priorities. In this paper for selecting the best contractor, numerous criteria were collected by asking from adept experts and then among them, 16 criteria with highest frequency were considered for questionnaire. This questionnaire was distributed between experts. Cronbach's alpha coefficient was obtained as 72%. Then based on Borda's function 12 important criteria was selected which was categorized in four main criteria and related sub-criteria as follow: Environmental factors and physical equipment: procurement and materials (supplier), company's machines, contractor’s proposed cost estimate - financial capacity: bank turnover and company's assets, the income of tax declaration in last year, Ability to compensate for losses or delays - past performance- records and technical expertise: experts and key personnel, the past technical backgrounds and experiences, employer satisfaction of previous contracts, the number of similar projects was done - standards: rank and field of expertise which company is qualified for and its validity, availability and number of permitted projects done. Then with PROMTHEE method, the criteria were normalized and monitored, finally the best alternative was selected. In this research, qualitative criteria of each company is became a quantitative criteria. Finally, information of some companies was evaluated and the best contractor was selected based on all criteria and their priorities.

Keywords: contractor evaluation and selection, project development, supply chain management, PROMTHEE method

Procedia PDF Downloads 72
115 Internal Power Recovery in Cryogenic Cooling Plants, Part II: Compressor Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The electrical power consumption related to refrigeration systems is evaluated to be in the order of 15% of the total electricity consumption worldwide. For this reason, in the last years several energy saving techniques have been suggested to reduce the power demand of refrigeration and air conditioning plants. The research work deals with the development of an innovative internal power recovery system for industrial cryogenic cooling plants. Such system is based on a Compressor-Expander Group (CEG). Both the expander and the compressor have been designed starting from automotive turbocharging components, strongly modified to take refrigerant fluid properties and specific system requirements into consideration. A preliminary choice of the machines (radial compressors and expanders) among existing components available on the market was realised according to the rules of the similarity theory. Once the expander was selected, it was strongly modified and performance verified by means of steady-state 3D CFD simulations. This paper focuses the attention on the development of the second CEG main component: the compressor. Once the preliminary selection has been done, the compressor geometry has been modified to take the new boundary conditions into account. In particular, the impeller has been machined to address the required total enthalpy increase. Such evaluation has been carried out by means of a simplified 1D model. Moreover, a vaneless diffuser has been added, modifying the shape of casing rear and front disks. To verify the performance of the modified compressor geometry and suggest improvements, a numerical fluid dynamic model has been set up and the commercial Ansys-CFX software has been used to perform steady-state 3D simulations. In this work, all the numerical results will be shown, highlighting critical aspects and suggesting further developments to increase compressor performance and flexibility.

Keywords: vapour compression systems, energy saving, refrigeration plant, organic fluids, centrifugal compressor

Procedia PDF Downloads 217
114 Development of Fixture for Pipe to Pipe Friction Stir Welding of Dissimilar Materials

Authors: Aashutosh A. Tadse, Kush Mehta, Hardik Vyas

Abstract:

Friction Stir Welding is a process in which an FSW tool produces friction heat and thus penetrates through the junction and upon rotation carries out the weld by exchange of material within the 2 metals being welded. It involves holding the workpieces stiff enough to bear the force of the tool moving across the junction to carry out a successful weld. The weld that has flat plates as workpieces, has a quite simpler geometry in terms of fixture holding them. In the case of FSW of pipes, the pipes need to be held firm with the chucks and jaws according to the diameter of the pipes being welded; the FSW tool is then revolved around the pipes to carry out the weld. Machine requires a larger area and it becomes more costly because of such a setup. To carry out the weld on the Milling machine, the newly designed fixture must be set-up on the table of milling machine and must facilitate rotation of pipes by the motor being shafted to one end of the fixture, and the other end automatically rotated because of the rotating jaws held tight enough with the pipes. The set-up has tapered cones as the jaws that would go in the pipes thus holding it with the help of its knurled surface providing the required grip. The process has rotation of pipes with the stationary rotating tool penetrating into the junction. The FSW on pipes in this process requires a very low RPM of pipes to carry out a fine weld and the speed shall change with every combination of material and diameter of pipes, so a variable speed setting motor shall serve the purpose. To withstand the force of the tool, an attachment to the shaft is provided which will be diameter specific that will resist flow of material towards the center during the weld. The welded joint thus carried out will be proper to required standards and specifications. Current industrial requirements state the need of space efficient, cost-friendly and more generalized form of fixtures and set-ups of machines to be put up. The proposed design considers every mentioned factor and thus proves to be positive in the same.

Keywords: force of tool, friction stir welding, milling machine, rotation of pipes, tapered cones

Procedia PDF Downloads 113
113 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors

Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller

Abstract:

In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.

Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault

Procedia PDF Downloads 53
112 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 327
111 Minimization of the Abrasion Effect of Fiber Reinforced Polymer Matrix on Stainless Steel Injection Nozzle through the Application of Laser Hardening Technique

Authors: Amessalu Atenafu Gelaw, Nele Rath

Abstract:

Currently, laser hardening process is becoming among the most efficient and effective hardening technique due to its significant advantages. The source where heat is generated, the absence of cooling media, self-quenching property, less distortion nature due to localized heat input, environmental friendly behavior and less time to finish the operation are among the main benefits to adopt this technology. This day, a variety of injection machines are used in plastic, textile, electrical and mechanical industries. Due to the fast growing of composite technology, fiber reinforced polymer matrix becoming optional solution to use in these industries. Due, to the abrasion nature of fiber reinforced polymer matrix composite on the injection components, many parts are outdated before the design period. Niko, a company specialized in injection molded products, suffers from the short lifetime of the injection nozzles of the molds, due to the use of fiber reinforced and, therefore, more abrasive polymer matrix. To prolong the lifetime of these molds, hardening the susceptible component like the injecting nozzles was a must. In this paper, the laser hardening process is investigated on Unimax, a type of stainless steel. The investigation to get optimal results for the nozzle-case was performed in three steps. First, the optimal parameters for maximum possible hardenability for the investigated nozzle material is investigated on a flat sample, using experimental testing as well as thermal simulation. Next, the effect of an inclination on the maximum temperature is analyzed both by experimental testing and validation through simulation. Finally, the data combined and applied for the nozzle. This paper describes possible strategies and methods for laser hardening of the nozzle to reach hardness of at least 720 HV for the material investigated. It has been proven, that the nozzle can be laser hardened to over 900 HV with the option of even higher results when more precise positioning of the laser can be assured.

Keywords: absorptivity, fiber reinforced matrix, laser hardening, Nd:YAG laser

Procedia PDF Downloads 156
110 Designing the Management Plan for Health Care (Medical) Wastes in the Cities of Semnan, Mahdishahr and Shahmirzad

Authors: Rasouli Divkalaee Zeinab, Kalteh Safa, Roudbari Aliakbar

Abstract:

Introduction: Medical waste can lead to the generation and transmission of many infectious and contagious diseases due to the presence of pathogenic agents, thereby necessitating the need for special management to collect, decontaminate, and finally dispose of such products. This study aimed to design a centralized health care (medical) waste management program for the cities of Semnan, Mahdishahr, and Shahmirzad. Methods: This descriptive-analytical study was conducted for six months in the cities of Semnan, Mahdishahr, and Shahmirzad. In this study, the quantitative and qualitative characteristics of the generated wastes were determined by taking samples from all medical waste production centers. Then, the equipment, devices, and machines required for separate collection of the waste from the production centers and for their subsequent decontamination were estimated. Next, the investment costs, current costs, and working capital required for collection, decontamination, and final disposal of the wastes were determined. Finally, the payment for proper waste management of each category of medical waste-producing centers was determined. Results: 1021 kilograms of medical waste are produced daily in the cities of Semnan, Mahdishahr, and Shahmirzad. It was estimated that a 1000-liter autoclave, a machine for collecting medical waste, four 60-liter bins, four 120-liter bins, and four 1200-liter bins were required for implementing the study plan. Also, the estimated total annual medical waste management costs for Semnan City were determined (23,283,903,720 Iranian Rials). Conclusion: The study results showed that establishing a proper management system for medical wastes generated in the three studied cities will cost between 334,280 and 1,253,715 Iranian Rials in fees for the medical centers. The findings of this study provided comprehensive data regarding medical wastes from the generation point to the landfill site, which is vital for the government and the private sector.

Keywords: clinics, decontamination, management, medical waste

Procedia PDF Downloads 78
109 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 24
108 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes

Authors: Lucas Paganin, Viliam Makis

Abstract:

With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.

Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart

Procedia PDF Downloads 91
107 NanoSat MO Framework: Simulating a Constellation of Satellites with Docker Containers

Authors: César Coelho, Nikolai Wiegand

Abstract:

The advancement of nanosatellite technology has opened new avenues for cost-effective and faster space missions. The NanoSat MO Framework (NMF) from the European Space Agency (ESA) provides a modular and simpler approach to the development of flight software and operations of small satellites. This paper presents a methodology using the NMF together with Docker for simulating constellations of satellites. By leveraging Docker containers, the software environment of individual satellites can be easily replicated within a simulated constellation. This containerized approach allows for rapid deployment, isolation, and management of satellite instances, facilitating comprehensive testing and development in a controlled setting. By integrating the NMF lightweight simulator in the container, a comprehensive simulation environment was achieved. A significant advantage of using Docker containers is their inherent scalability, enabling the simulation of hundreds or even thousands of satellites with minimal overhead. Docker's lightweight nature ensures efficient resource utilization, allowing for deployment on a single host or across a cluster of hosts. This capability is crucial for large-scale simulations, such as in the case of mega-constellations, where multiple traditional virtual machines would be impractical due to their higher resource demands. This ability for easy horizontal scaling based on the number of simulated satellites provides tremendous flexibility to different mission scenarios. Our results demonstrate that leveraging Docker containers with the NanoSat MO Framework provides a highly efficient and scalable solution for simulating satellite constellations, offering not only significant benefits in terms of resource utilization and operational flexibility but also enabling testing and validation of ground software for constellations. The findings underscore the importance of taking advantage of already existing technologies in computer science to create new solutions for future satellite constellations in space.

Keywords: containerization, docker containers, NanoSat MO framework, satellite constellation simulation, scalability, small satellites

Procedia PDF Downloads 49
106 Measurement Technologies for Advanced Characterization of Magnetic Materials Used in Electric Drives and Automotive Applications

Authors: Lukasz Mierczak, Patrick Denke, Piotr Klimczyk, Stefan Siebert

Abstract:

Due to the high complexity of the magnetization in electrical machines and influence of the manufacturing processes on the magnetic properties of their components, the assessment and prediction of hysteresis and eddy current losses has remained a challenge. In the design process of electric motors and generators, the power losses of stators and rotors are calculated based on the material supplier’s data from standard magnetic measurements. This type of data does not include the additional loss from non-sinusoidal multi-harmonic motor excitation nor the detrimental effects of residual stress remaining in the motor laminations after manufacturing processes, such as punching, housing shrink fitting and winding. Moreover, in production, considerable attention is given to the measurements of mechanical dimensions of stator and rotor cores, whereas verification of their magnetic properties is typically neglected, which can lead to inconsistent efficiency of assembled motors. Therefore, to enable a comprehensive characterization of motor materials and components, Brockhaus Measurements developed a range of in-line and offline measurement technologies for testing their magnetic properties under actual motor operating conditions. Multiple sets of experimental data were obtained to evaluate the influence of various factors, such as elevated temperature, applied and residual stress, and arbitrary magnetization on the magnetic properties of different grades of non-oriented steel. Measured power loss for tested samples and stator cores varied significantly, by more than 100%, comparing to standard measurement conditions. Quantitative effects of each of the applied measurement were analyzed. This research and applied Brockhaus measurement methodologies emphasized the requirement for advanced characterization of magnetic materials used in electric drives and automotive applications.

Keywords: magnetic materials, measurement technologies, permanent magnets, stator and rotor cores

Procedia PDF Downloads 140
105 Radar Fault Diagnosis Strategy Based on Deep Learning

Authors: Bin Feng, Zhulin Zong

Abstract:

Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.

Keywords: radar system, fault diagnosis, deep learning, radar fault

Procedia PDF Downloads 90
104 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving

Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries

Abstract:

Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.

Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion

Procedia PDF Downloads 197
103 Simulation Based Analysis of Gear Dynamic Behavior in Presence of Multiple Cracks

Authors: Ahmed Saeed, Sadok Sassi, Mohammad Roshun

Abstract:

Gears are important components with a vital role in many rotating machines. One of the common gear failure causes is tooth fatigue crack; however, its early detection is still a challenging task. The objective of this study is to develop a numerical model that simulates the effect of teeth cracks on the resulting gears vibrations and permits consequently to perform an early fault detection. In contrast to other published papers, this work incorporates the possibility of multiple simultaneous cracks with different depths. As cracks alter significantly the stiffness of the tooth, finite element software is used to determine the stiffness variation with respect to the angular position, for different combinations of crack orientation and depth. A simplified six degrees of freedom nonlinear lumped parameter model of a one-stage spur gear system is proposed to study the vibration with and without cracks. The model developed for calculating the stiffness with the crack permitted to update the physical parameters of the second-degree-of-freedom equations of motions describing the vibration of the gearbox. The vibration simulation results of the gearbox were by obtained using Simulink/Matlab. The effect of one crack with different levels was studied thoroughly. The change in the mesh stiffness and the vibration response were found to be consistent with previously published works. In addition, various statistical time domain parameters were considered. They showed different degrees of sensitivity toward the crack depth. Multiple cracks were also introduced at different locations and the vibration response along with the statistical parameters were obtained again for a general case of degradation (increase in crack depth, crack number and crack locations). It was found that although some parameters increase in value as the deterioration level increases, they show almost no change or even decrease when the number of cracks increases. Therefore, the use of any statistical parameters could be misleading if not considered in an appropriate way.

Keywords: Spur gear, cracked tooth, numerical simulation, time-domain parameters

Procedia PDF Downloads 266
102 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 104