Search results for: motor for washing machine
3284 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 2033283 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 823282 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 1003281 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 533280 The Application of Transcranial Direct Current Stimulation (tDCS) Combined with Traditional Physical Therapy to Address Upper Limb Function in Chronic Stroke: A Case Study
Authors: Najmeh Hoseini
Abstract:
Strokerecovery happens through neuroplasticity, which is highly influenced by the environment, including neuro-rehabilitation. Transcranial direct current stimulation (tDCS) may enhance recovery by modulating neuroplasticity. With tDCS, weak direct currents are applied noninvasively to modify excitability in the cortical areas under its electrodes. Combined with functional activities, this may facilitate motor recovery in neurologic disorders such as stroke. The purpose of this case study was to examine the effect of tDCS combined with 30 minutes of traditional physical therapy (PT)on arm function following a stroke. A 29-year-old male with chronic stroke involving the left middle cerebral artery territory went through the treatment protocol. Design The design included 5 weeks of treatment: 1 week of traditional PT, 2 weeks of sham tDCS combined with traditional PT, and 2 weeks of tDCS combined with traditional PT. PT included functional electrical stimulation (FES) of wrist extensors followed by task-specific functional training. Dual hemispheric tDCS with 1 mA intensity was applied on the sensorimotor cortices for the first 20 min of the treatment combined with FES. Assessments before and after each treatment block included Modified Ashworth Scale, ChedokeMcmaster Arm and Hand inventory, Action Research Arm Test (ARAT), and the Box and Blocks Test. Results showed reduced spasticity in elbow and wrist flexors only after tDCS combination weeks (+1 to 0). The patient demonstrated clinically meaningful improvements in gross motor and fine motor control over the duration of the study; however, components of the ARAT that require fine motor control improved the greatest during the experimental block. Average time improvement compared to baseline was26.29 s for tDCS combination weeks, 18.48 s for sham tDCS, and 6.83 for PT standard of care weeks. Combining dual hemispheric tDCS with the standard of care PT demonstrated improvements in hand dexterity greater than PT alone in this patient case.Keywords: tDCS, stroke, case study, physical therapy
Procedia PDF Downloads 953279 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 2443278 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface
Authors: Ping Tan, Xiaomeng Su, Yi Shen
Abstract:
The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean
Procedia PDF Downloads 1263277 Effect of Cerebellar High Frequency rTMS on the Balance of Multiple Sclerosis Patients with Ataxia
Authors: Shereen Ismail Fawaz, Shin-Ichi Izumi, Nouran Mohamed Salah, Heba G. Saber, Ibrahim Mohamed Roushdi
Abstract:
Background: Multiple sclerosis (MS) is a chronic, inflammatory, mainly demyelinating disease of the central nervous system, more common in young adults. Cerebellar involvement is one of the most disabling lesions in MS and is usually a sign of disease progression. It plays a major role in the planning, initiation, and organization of movement via its influence on the motor cortex and corticospinal outputs. Therefore, it contributes to controlling movement, motor adaptation, and motor learning, in addition to its vast connections with other major pathways controlling balance, such as the cerebellopropriospinal pathways and cerebellovestibular pathways. Hence, trying to stimulate the cerebellum by facilitatory protocols will add to our motor control and balance function. Non-invasive brain stimulation, both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), has recently emerged as effective neuromodulators to influence motor and nonmotor functions of the brain. Anodal tDCS has been shown to improve motor skill learning and motor performance beyond the training period. Similarly, rTMS, when used at high frequency (>5 Hz), has a facilitatory effect on the motor cortex. Objective: Our aim was to determine the effect of high-frequency rTMS over the cerebellum in improving balance and functional ambulation of multiple sclerosis patients with Ataxia. Patients and methods: This was a randomized single-blinded placebo-controlled prospective trial on 40 patients. The active group (N=20) received real rTMS sessions, and the control group (N=20) received Sham rTMS using a placebo program designed for this treatment. Both groups received 12 sessions of high-frequency rTMS over the cerebellum, followed by an intensive exercise training program. Sessions were given three times per week for four weeks. The active group protocol had a frequency of 10 Hz rTMS over the cerebellar vermis, work period 5S, number of trains 25, and intertrain interval 25s. The total number of pulses was 1250 pulses per session. The control group received Sham rTMS using a placebo program designed for this treatment. Both groups of patients received an intensive exercise program, which included generalized strengthening exercises, endurance and aerobic training, trunk abdominal exercises, generalized balance training exercises, and task-oriented training such as Boxing. As a primary outcome measure the Modified ICARS was used. Static Posturography was done with: Patients were tested both with open and closed eyes. Secondary outcome measures included the expanded Disability Status Scale (EDSS) and 8 Meter walk test (8MWT). Results: The active group showed significant improvements in all the functional scales, modified ICARS, EDSS, and 8-meter walk test, in addition to significant differences in static Posturography with open eyes, while the control group did not show such differences. Conclusion: Cerebellar high-frequency rTMS could be effective in the functional improvement of balance in MS patients with ataxia.Keywords: brain neuromodulation, high frequency rTMS, cerebellar stimulation, multiple sclerosis, balance rehabilitation
Procedia PDF Downloads 903276 Improvement of GVPI Insulation System Characteristics by Curing Process Modification
Authors: M. Shadmand
Abstract:
The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time.Keywords: insulation system, GVPI, PDC, aging
Procedia PDF Downloads 2683275 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study
Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang
Abstract:
Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks
Procedia PDF Downloads 2033274 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 863273 Industrial Practical Training for Mechanical Engineering Students: A Multidisciplinary Approach
Authors: Bashiru Olayinka Adisa, Najeem Lateef
Abstract:
The integrated knowledge in the application of mechanical engineering, microprocessor and electronic sensor technologies is becoming the basic skill of a modern engineer in machinery based processes. To meet this objective, we have developed a cross-disciplinary industrial training to teach essential hard technical and soft project skills to the mechanical engineering students in mid-curriculum. Ten groups of students were selected to participate in a 150 hour program. The students were required to design and build a robot with ability to follow tracks and pick/place target blocks in specific locations. The students were trained to integrate the knowledge of computer aid design, electronics, sensor theories and motor technology to fabricate a workable robot as a major outcome of this course. On completion of the project, students competed for top robot honors by demonstrating their robots' movements and performance in pick/place to a panel of judges.Keywords: electronics, sensor theories and motor, robot, technology
Procedia PDF Downloads 2783272 Analytical Modeling of Equivalent Magnetic Circuit in Multi-segment and Multi-barrier Synchronous Reluctance Motor
Authors: Huai-Cong Liu,Tae Chul Jeong,Ju Lee
Abstract:
This paper describes characteristic analysis of a synchronous reluctance motor (SynRM)’s rotor with the Multi-segment and Multi-layer structure. The magnetic-saturation phenomenon in SynRM is often appeared. Therefore, when modeling analysis of SynRM the calculation of nonlinear magnetic field needs to be considered. An important influence factor on the convergence process is how to determine the relative permeability. An improved method, which ensures the calculation, is convergence by linear iterative method for saturated magnetic field. If there are inflection points on the magnetic curve,an optimum convergence method of solution for nonlinear magnetic field was provided. Then the equivalent magnetic circuit is calculated, and d,q-axis inductance can be got. At last, this process is applied to design a 7.5Kw SynRM and its validity is verified by comparing with the result of finite element method (FEM) and experimental test data.Keywords: SynRM, magnetic-saturation, magnetic circuit, analytical modeling
Procedia PDF Downloads 5033271 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine
Authors: Bessaad Taieb, Benbouali Abderrahmen
Abstract:
Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine
Procedia PDF Downloads 953270 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1143269 The Diurnal and Seasonal Relationships of Pedestrian Injuries Secondary to Motor Vehicles in Young People
Authors: Amina Akhtar, Rory O'Connor
Abstract:
Introduction: There remains significant morbidity and mortality in young pedestrians hit by motor vehicles, even in the era of pedestrian crossings and speed limits. The aim of this study was to compare incidence and injury severity of motor vehicle-related pedestrian trauma according to time of day and season in a young population, based on the supposition that injuries would be more prevalent during dusk and dawn and during autumn and winter. Methods: Data was retrieved for patients between 10-25 years old from the National Trauma Audit and Research Network (TARN) database who had been involved as pedestrians in motor vehicle accidents between 2015-2020. The incidence of injuries, their severity (using the Injury Severity Score [ISS]), hospital transfer time, and mortality were analysed according to the hours of daylight, darkness, and season. Results: The study identified a seasonal pattern, showing that autumn was the predominant season and led to 34.9% of injuries, with a further 25.4% in winter in comparison to spring and summer, with 21.4% and 18.3% of injuries, respectively. However, visibility alone was not a sufficient factor as 49.5% of injuries occurred during the time of darkness, while 50.5% occurred during daylight. Importantly, the greatest injury rate (number of injuries/hour) occurred between 1500-1630, correlating to school pick-up times. A further significant relationship between injury severity score (ISS) and daylight was demonstrated (p-value= 0.0124), with moderate injuries (ISS 9-14) occurring most commonly during the day (72.7%) and more severe injuries (ISS>15) occurred during the night (55.8%). Conclusion: We have identified a relationship between time of day and the frequency and severity of pedestrian trauma in young people. In addition, particular time groupings correspond to the greatest injury rate, suggesting that reduced visibility coupled with school pick-up times may play a significant role. This could be addressed through a targeted public health approach to implementing change. We recommend targeted public health measures to improve road safety that focus on these times and that increase the visibility of children combined with education for drivers.Keywords: major trauma, paediatric trauma, road traffic accidents, diurnal pattern
Procedia PDF Downloads 1013268 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System
Authors: Mamta M. Barapatre, V. N. Sahare
Abstract:
Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept
Procedia PDF Downloads 2783267 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 4093266 DAG Design and Tradeoff for Full Live Virtual Machine Migration over XIA Network
Authors: Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, Haiying Jiang
Abstract:
Traditional TCP/IP network is showing lots of shortages and research for future networks is becoming a hotspot. FIA (Future Internet Architecture) and FIA-NP (Next Phase) are supported by US NSF for future Internet designing. Moreover, virtual machine migration is a significant technique in cloud computing. As a network application, it should also be supported in XIA (expressive Internet Architecture), which is in both FIA and FIA-NP projects. This paper is an experimental study aims at verifying the feasibility of VM migration over XIA. We present three ways to maintain VM connectivity and communication states concerning DAG design and routing table modification. VM migration experiments are conducted intra-AD and inter-AD with KVM instances. The procedure is achieved by a migration control protocol which is suitable for the characters of XIA. Evaluation results show that our solutions can well supports full live VM migration over XIA network respectively, keeping services seamless.Keywords: DAG, downtime, virtual machine migration, XIA
Procedia PDF Downloads 8553265 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students
Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle
Abstract:
The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education
Procedia PDF Downloads 973264 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine
Procedia PDF Downloads 1083263 Speech Disorders as Predictors of Social Participation of Children with Cerebral Palsy in the Primary Schools of the Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić–Jovanović, Srećko Potić, Sanja Tomić
Abstract:
The name cerebral palsy comes from the word cerebrum, which means the brain and the word palsy, which means seizure, and essentially refers to the movement disorder. In the clinical picture of cerebral palsy, basic neuromotor disorders are associated with other various disorders: behavioural, intellectual, speech, sensory, epileptic seizures, and bone and joint deformities. Motor speech disorders are among the most common difficulties present in people with cerebral palsy. Social participation represents an interaction between an individual and their social environment. Quality of social participation of the students with cerebral palsy at school is an important indicator of their successful participation in adulthood. One of the most important skills for the undisturbed social participation is ability of good communication. The aim of the study was to determine relation between social participation of students with cerebral palsy and presence of their speech impairment in primary schools in the Czech Republic. The study was performed in the Czech Republic in mainstream schools and schools established for the pupils with special education needs. We analysed 75 children with cerebral palsy aged between six and twelve years attending up to sixth grade by using the first and the third part of the school function assessment questionnaire as the main instrument. The other instrument we used in the research is the Gross motor function classification system–five–level classification system, which measures degree of motor functions of children and youth with cerebral palsy. Funding for this study was provided by the Grant Agency of Charles University in Prague.Keywords: cerebral palsy, social participation, speech disorders, The Czech Republic, the school function assessment
Procedia PDF Downloads 2853262 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 313261 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents
Authors: Swati Bajpai, S. P. K Jena
Abstract:
Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.Keywords: adolescents, body mass index, neurocognition, obesity
Procedia PDF Downloads 4873260 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1333259 Direct Translation vs. Pivot Language Translation for Persian-Spanish Low-Resourced Statistical Machine Translation System
Authors: Benyamin Ahmadnia, Javier Serrano
Abstract:
In this paper we compare two different approaches for translating from Persian to Spanish, as a language pair with scarce parallel corpus. The first approach involves direct transfer using an statistical machine translation system, which is available for this language pair. The second approach involves translation through English, as a pivot language, which has more translation resources and more advanced translation systems available. The results show that, it is possible to achieve better translation quality using English as a pivot language in either approach outperforms direct translation from Persian to Spanish. Our best result is the pivot system which scores higher than direct translation by (1.12) BLEU points.Keywords: statistical machine translation, direct translation approach, pivot language translation approach, parallel corpus
Procedia PDF Downloads 4873258 Construction of a Radial Centrifuge Pump for Agricultural Applications
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
With the evolution of the productive processes, demonstrated mainly by the presence every time larger of the irrigation and to crescent it disputes for water, accompanied by your shortage (distances every time larger), there is need to project facilities that can provide supply of water with larger speed and efficiency. Being like this, the presence of hydraulic pumps in an irrigation project or water supply for small communities, is of highest importance, and the knowledge of the fundamental parts to your good operation it deserves the due attention and care. Hydraulic pumps are machines of flow, whose function is to supply energy for the water, in order to press down her, through the conversion of mechanical energy of your originating from rotor a motor the combustion or of an electric motor. This way, the hydraulic pumps are had as generating hydraulic machines. The objective of this work was to project and to build a radial centrifugal pump for agricultural application in small communities.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigation
Procedia PDF Downloads 3713257 Real-Time Neuroimaging for Rehabilitation of Stroke Patients
Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge
Abstract:
Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation
Procedia PDF Downloads 3873256 Autoignition Delay Characterstic of Hydrocarbon (n-Pentane) from Lean to Rich Mixtures
Authors: Sunil Verma
Abstract:
This report is concerned with study of autoignition delay characterstics of n-pentane. Experiments are done for different equivalents ratio on Rapid compression machine. Dependence of autoignition delay period is clearly explained from lean to rich mixtures. Equivalence ratio is varied from 0.33 to 0.6.Keywords: combustion, autoignition, ignition delay, rapid compression machine
Procedia PDF Downloads 3513255 Performances Analysis and Optimization of an Adsorption Solar Cooling System
Authors: Nadia Allouache
Abstract:
The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling
Procedia PDF Downloads 439