Search results for: infinite feature selection
3305 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design
Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong
Abstract:
This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring
Procedia PDF Downloads 873304 Defects Estimation of Embedded Systems Components by a Bond Graph Approach
Authors: I. Gahlouz, A. Chellil
Abstract:
The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.Keywords: estimation, bond graph, controllability, observability
Procedia PDF Downloads 4133303 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 1473302 A Geometric Based Hybrid Approach for Facial Feature Localization
Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik
Abstract:
Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.Keywords: biometrics, face recognition, facial landmarks, image processing
Procedia PDF Downloads 4123301 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 3413300 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm
Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio
Abstract:
The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.Keywords: algorithm, CoAP, DoS, IoT, machine learning
Procedia PDF Downloads 803299 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions
Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz
Abstract:
The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.Keywords: free particle, point canonical transformation method, position-dependent mass, staggered mass distribution
Procedia PDF Downloads 4033298 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 543297 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1893296 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots
Procedia PDF Downloads 5463295 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing
Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek
Abstract:
The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map
Procedia PDF Downloads 3843294 The Hubs of Transformation Dictated by the Innovation Wave: Boston as a Case Study. Exploring How Design is Emerging as an Essential Feature in the Process of Laboratorisation of Cities
Authors: Luana Parisi, Sohrab Donyavi
Abstract:
Cities have become the nodes of global networks, standing at the intersection points of the flows of capital, goods, workers, businesses and travellers, making them the spots where innovation, progress and economic development occur. The primary challenge for them is to create the most fertile ecosystems for triggering innovation activities. Design emerges as an essential feature in this process of laboratorisation of cities. This paper aims at exploring the spatial hubs of transformation within the knowledge economy, providing an overview of the current models of innovation spaces, before focusing on the innovation district of one of the cities that are riding the innovation wave, namely, Boston, USA. Useful lessons will be drawn from the case study of the innovation district in Boston, allowing to define precious tools for policymakers, in the form of a range of factors that define the broad strategy able to implement the model successfully. A mixed methodology is implemented, including information from observations, exploratory interviews to key stakeholders and on-desk data.Keywords: Innovation District, innovation ecosystem, economic development, urban regeneration
Procedia PDF Downloads 1243293 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5583292 Criminal Law Instruments to Counter Corporate Crimes in Poland
Authors: Dorota Habrat
Abstract:
In Polish law, the idea of the introduction of corporate responsibility for crimes is becoming more popular and creates a lot of questions. The need to introduce into the Polish legal system liability of corporate (collective entities) has resulted, among others, from the Polish Republic's international commitments, in particular related to membership in the European Union. The Act of 28 October 2002 on the liability of collective entities for acts prohibited under penalty is one of the example of adaptation of Polish law to Community law. Introduction to Polish law a criminal nature liability of corporations (legal persons) has resulted in a lot of controversy and lack of acceptance from both the scientific community as well as the judiciary. The responsibility of collective entities under the Act has a criminal nature. The main question concerns the ability of the collective entity to be brought to guilt under criminal law sense. Polish criminal law knows only the responsibility of individual persons. So far, guilt as a personal feature of action, based on the ability of the offender to feel in his psyche, could be considered only in relation to the individual person, while the said Act destroyed this conviction. Guilt of collective entity must be proven under at least one of the three possible forms: the guilt in the selection or supervision and so called organizational guilt. The next question is how the principle of proportionality in relation to criminal measures in response of collective entities should be considered. It should be remembered that the legal subjectivity of collective entities, including their rights and freedoms, is an emanation of the rights and freedoms of individual persons which create collective entities and through these entities implement their rights and freedoms. The adopted Act largely reflects the international legal regulations but also contains the unknown and original legislative solutions.Keywords: criminal corporate responsibility, Polish criminal law, legislative solutions, Act of 28 October 2002
Procedia PDF Downloads 5053291 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant
Authors: Cigdem Safak Saglam
Abstract:
Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.Keywords: thermal power plant, lignite coal, pretreatment, demineralization, electrodialysis, recycling, ash dampening
Procedia PDF Downloads 4823290 An Evaluation Model for Automatic Map Generalization
Authors: Quynhan Tran, Hong Fan, Quockhanh Pham
Abstract:
Automatic map generalization is a well-known problem in cartography. The development of map generalization research accompanied the development of cartography. The traditional map is plotted manually by cartographic experts. The paper studies none-scale automation generalization of resident polygons and house marker symbol, proposes methodology to evaluate the result maps based on minimal spanning tree. In this paper, the minimal spanning tree before and after map generalization is compared to evaluate whether the generalization result maintain the geographical distribution of features. The minimal spanning tree in vector format is firstly converted into a raster format and the grid size is 2mm (distance on the map). The statistical number of matching grid before and after map generalization and the ratio of overlapping grid to the total grids is calculated. Evaluation experiments are conduct to verify the results. Experiments show that this methodology can give an objective evaluation for the feature distribution and give specialist an hand while they evaluate result maps of none-scale automation generalization with their eyes.Keywords: automatic cartography generalization, evaluation model, geographic feature distribution, minimal spanning tree
Procedia PDF Downloads 6363289 Investigating Complement Clause Choice in Written Educated Nigerian English (ENE)
Authors: Juliet Udoudom
Abstract:
Inappropriate complement selection constitutes one of the major features of non-standard complementation in the Nigerian users of English output of sentence construction. This paper investigates complement clause choice in Written Educated Nigerian English (ENE) and offers some results. It aims at determining preferred and dispreferred patterns of complement clause selection in respect of verb heads in English by selected Nigerian users of English. The complementation data analyzed in this investigation were obtained from experimental tasks designed to elicit complement categories of Verb – Noun -, Adjective – and Prepositional – heads in English. Insights from the Government – Binding relations were employed in analyzing data, which comprised responses obtained from one hundred subjects to a picture elicitation exercise, a grammaticality judgement test, and a free composition task. The findings indicate a general tendency for clausal complements (CPs) introduced by the complementizer that to be preferred by the subjects studied. Of the 235 tokens of clausal complements which occurred in our corpus, 128 of them representing 54.46% were CPs headed by that, while whether – and if-clauses recorded 31.07% and 8.94%, respectively. The complement clause-type which recorded the lowest incidence of choice was the CP headed by the Complementiser, for with a 5.53% incident of occurrence. Further findings from the study indicate that semantic features of relevant embedding verb heads were not taken into consideration in the choice of complementisers which introduce the respective complement clauses, hence the that-clause was chosen to complement verbs like prefer. In addition, the dispreferred choice of the for-clause is explicable in terms of the fact that the respondents studied regard ‘for’ as a preposition, and not a complementiser.Keywords: complement, complement clause complement selection, complementisers, government-binding
Procedia PDF Downloads 1883288 Variant Selection and Pre-transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel
Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury
Abstract:
Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its micro structure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation
Procedia PDF Downloads 4893287 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3323286 The Effect of Program Type on Mutation Testing: Comparative Study
Authors: B. Falah, N. E. Abakouy
Abstract:
Due to its high computational cost, mutation testing has been neglected by researchers. Recently, many cost and mutants’ reduction techniques have been developed, improved, and experimented, but few of them has relied the possibility of reducing the cost of mutation testing on the program type of the application under test. This paper is a comparative study between four operators’ selection techniques (mutants sampling, class level operators, method level operators, and all operators’ selection) based on the program code type of each application under test. It aims at finding an alternative approach to reveal the effect of code type on mutation testing score. The result of our experiment shows that the program code type can affect the mutation score and that the programs using polymorphism are best suited to be tested with mutation testing.Keywords: equivalent mutant, killed mutant, mutation score, mutation testing, program code type, software testing
Procedia PDF Downloads 5553285 Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin
Authors: P. Aarumugam, N. Krishnamoorthy, K. Gunasekaran
Abstract:
The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms.Keywords: Anopheles stephensi, deltamethrin, functional mortality, synthetic pyrethroids
Procedia PDF Downloads 3963284 Selection Criteria in the Spanish Secondary Education Content and Language Integrated Learning (CLIL) Programmes and Their Effect on Code-Switching in CLIL Methodology
Authors: Dembele Dembele, Philippe
Abstract:
Several Second Language Acquisition (SLA) studies have stressed the benefits of Content and Language Integrated Learning (CLIL) and shown how CLIL students outperformed their non-CLIL counterparts in many L2 skills. However, numerous experimental CLIL programs seem to have mainly targeted above-average and rather highly motivated language learners. The need to understand the impact of the student’s language proficiency on code-switching in CLIL instruction motivated this study. Therefore, determining the implications of the students’ low-language proficiency for CLIL methodology, as well as the frequency with which CLIL teachers use the main pedagogical functions of code-switching, seemed crucial for a Spanish CLIL instruction on a large scale. In the mixed-method approach adopted, ten face-to-face interviews were conducted in nine Valencian public secondary education schools, while over 30 CLIL teachers also contributed with their experience in two online survey questionnaires. The results showed the crucial role language proficiency plays in the Valencian CLIL/Plurilingual selection criteria. The presence of a substantial number of low-language proficient students in CLIL groups, which in turn implied important methodological consequences, was another finding of the study. Indeed, though the pedagogical use of L1 was confirmed as an extended practice among CLIL teachers, more than half of the participants perceived that code-switching impaired attaining their CLIL lesson objectives. Therein, the dissertation highlights the need for more extensive empirical research on how code-switching could prove beneficial in CLIL instruction involving low-language proficient students while maintaining the maximum possible exposure to the target language.Keywords: CLIL methodology, low language proficiency, code switching, selection criteria, code-switching functions
Procedia PDF Downloads 813283 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction
Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun
Abstract:
The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.Keywords: usability, qualitative data, text-processing algorithm, natural language processing
Procedia PDF Downloads 2853282 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity
Authors: Muna Alghabshi, Edmana Krishnan
Abstract:
A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method
Procedia PDF Downloads 3153281 Phonological and Syntactic Evidence from Arabic in Favor of Biolinguistics
Authors: Marwan Jarrah
Abstract:
This research paper provides two pieces of phonological and syntactic evidence from Arabic for biolinguistics perspective of language processing. The first piece of evidence concerns the instances where a singular noun is converted to a plural noun in Arabic. Based on the findings of several research papers, this study shows that a singular word does not lose any of its moras when it is pluralized either regularly or irregularly. This mora conservation principle complies with the general physical law of the conservation of mass which states that mass is neither created nor destroyed but changed from one form into another. The second piece of evidence concerns the observation that when the object in some Arabic dialects including Jordanian Arabic and Najdi Arabic is a topic and positioned in situ (i.e. after the verb), the verb agrees with it, something that generates an agreeing inflection marker of the verb that agrees in Number, Person, and Gender with the in-situ topicalized object. This interaction between the verb and the object in such cases is invoked because of the extra feature the object bears, i.e. TOPIC feature. We suggest that such an interaction complies with the general natural law that elements become active when they, e.g., get an additional electron, when the mass number is not equal to the atomic number.Keywords: biolinguistics, Arabic, physics, interaction
Procedia PDF Downloads 2303280 Towards an Adversary-Aware ML-Based Detector of Spam on Twitter Hashtags
Authors: Niddal Imam, Vassilios G. Vassilakis
Abstract:
After analysing messages posted by health-related spam campaigns in Twitter Arabic hashtags, we found that these campaigns use unique hijacked accounts (we call them adversarial hijacked accounts) as adversarial examples to fool deployed ML-based spam detectors. Existing ML-based models build a behaviour profile for each user to detect hijacked accounts. This approach is not applicable for detecting spam in Twitter hashtags since they are computationally expensive. Hence, we propose an adversary-aware ML-based detector, which includes a newly designed feature (avg posts) to improve the detection of spam tweets posted by the adversarial hijacked accounts at a tweet-level in trending hashtags. The proposed detector was designed considering three key points: robustness, adaptability, and interpretability. The new feature leverages the account’s temporal patterns (i.e., account age and number of posts). It is faster to compute compared to features discussed in the literature and improves the accuracy of detecting the identified hijacked accounts by 73%.Keywords: Twitter spam detection, adversarial examples, evasion attack, adversarial concept drift, account hijacking, trending hashtag
Procedia PDF Downloads 783279 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise
Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang
Abstract:
Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment
Procedia PDF Downloads 3033278 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach
Authors: Yoftahe Nigussie Worku
Abstract:
This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.Keywords: safety consideration, efficiency, production methods, material selection
Procedia PDF Downloads 663277 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber
Authors: J. E. O. Hernandez
Abstract:
In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming
Procedia PDF Downloads 1933276 Identifying Applicant Potential Through Admissions Testing
Authors: Belinda Brunner
Abstract:
Objectives: Communicate common test constructs of well-known higher education admissions tests. Discuss influences on admissions test construct definition and design and discuss research on related to factors influencing success in academic study. Discuss how admissions tests can be used to identify relevant talent. Examine how admissions test can be used to facilitate educational mobility and inform selection decisions when the prerequisite curricula is not standardized Observations: Generally speaking, constructs of admissions tests can be placed along a continuum from curriculum-related knowledge to more general reasoning abilities. For example, subject-specific achievement tests are more closely aligned to a prescribed curriculum, while reasoning tests are typically not associated with a specific curriculum. This session will draw reference from the test-constructs of well-known international higher education admissions tests, such as the UK clinical aptitude test (UKCAT) which is used for medicine and dentistry admissions. Conclusions: The purpose of academic admissions testing is to identify potential students with the prerequisite skills set needed to succeed in the academic environment, but how can the test construct help achieve this goal? Determination of the appropriate test construct for tests used in the admissions selection decisions should be influenced by a number of factors, including the preceding academic curricula, other criteria influencing the admissions decision, and the principal purpose for testing. Attendees of this session will learn the types of aptitudes and knowledge that are assessed higher education admissions tests and will have the opportunity to gain insight into how careful and deliberate consideration of the desired test constructs can aid in identifying potential students with the greatest likelihood of success in medical school.Keywords: admissions, measuring success, selection, identify skills
Procedia PDF Downloads 488