Search results for: gender classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4648

Search results for: gender classification

4018 Suicide Attempts and Gender: A Qualitative Analysis in Cuba

Authors: Alejandro Arnaldo Barroso Martinez

Abstract:

Unlike sex, which is constituted by anatomic-physiological differences, gender is a social construction. Our thoughts and behaviors as females and males are not etched in stone by our biology but rather from how society expects us to think and behave based on our sex assignment in the womb. Social expectations, values, and roles are taken on by individuals and shape the ways considered acceptable and linked to our bodies, feelings, and interpersonal relationships. Furthermore, these evolve into dire consequences for those who do not meet these disciplinary, economic, and cultural standards. Then, the social learning of gender identity implies the individual’s psychological sense of being, and it might be highly linked to a sense of life and suicide attempts. As a result, suicide has been considered a gender issue with differences in the rates and means used by men and women worldwide. Nevertheless, there has been a misunderstanding of the meaning of being male or female in a particular context and how it becomes a risk process for suicide attempts. For this reason, the general objective of the current research is to explain how this process occurs in Cuba. From a Critical Sociology and Social Psychology, a qualitative methodology was developed through six case studies and qualitative in-depth interviews. The analysis is focused on the sequence and interplay between two dimensions of meaning: signifiers and voices. Findings show that the risk process of suicide attempts in Cuba means some patriarchal beliefs and practices as part of informal educational models and some positivist practices in mental health attention. Findings also show that community relations create a sense of belonging, and it is a protection against suicide attempts in Cuba. Those frames of signifiers and voices explain in both males and females but differently when and how they are suffering from isolation, violence, the normalization of emotional awareness, and emotional distress expression. Suicide prevention programs should take gender learning into account as a cultural process.

Keywords: social constructions, gender identity, meanings, suicide attempt

Procedia PDF Downloads 214
4017 The confluence of Societal Dogmas and Extremist (Religious) Ideologies: A Case Study of Male Youth Involved in Violent Extremism in Sargodha and Jhang, Punjab

Authors: Tehmina Aslam

Abstract:

South-Asian societies elicit a male-dominant hierarchy, socio-economically and politico-religiously. The aim of the study was to examine the contribution of gender to violent extremism in order to devise means for its control in Pakistan. A qualitative case study based on interviews was conducted of de-radicalized former militants who were affiliated to militant organizations such as Sipahe Sahaba Pakistan, Lashkare Jhangvi, Laskhare Taibah, and Jaishe Mohammad, and who resided in Sargodha and Jhang, cities of the Punjab. The study exuded three main findings: first, gender alone was insufficient to motivate a male youth to resort to violent extremism; second, gender segregation made a male youth more vulnerable to an extremist ideology; and third, male gender was more prone to the influence of an extremist misguided religious ideology that pandered to male chauvinistic (societal dogmas constructing a male identity) needs and offered a male youth an opportunity to reinforce male dominance in society. The conclusion drawn was that the confluence of societal dogmas and extremist (religious) ideologies offered the major resistance against preventing violent extremism and, without dealing with both of them simultaneously, the tendency in male youth to resorting to violent extremism could not be dissipated.

Keywords: violent extremism, countering violent extremism, preventing violent extremism, youth

Procedia PDF Downloads 136
4016 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 93
4015 The Diverse Experiences of Men Living with Disabilities Participating in Violence Prevention Interventions in Africa and Asia: Men as Victims; Men as Perpetrators

Authors: Ingrid van der Heijden, Kristen Dunkle, Rachel Jewkes

Abstract:

Background: Emerging literature on prevalence shows that men with disabilities are four more times likely than men without disabilities to experience sexual violence during their lifetime. However, compared to women with disabilities, men with disabilities still have lesser experiences of violence. While empirical evidence on the prevalence of victimization of men with disabilities is emerging, there is scarcer evidence highlighting disabled men’s perpetration of different forms of violence, particularly intimate partner violence. We can assume that men are likely to be both perpetrators and victims of violence, making more complex the causes and risks of violence. Gender norms and disability stigma play important roles in men’s experiences of violence. Men may be stigmatized because of their inability to attain hegemonic masculine ideals of strength, control over women and sexual conquest, which makes them more susceptible to emotional, physical and sexual abuse. Little to no evidence exists of men with disabilities’ experiences of perpetration of intimate partner violence, family violence or community violence. So far studies on male victimization do not succeed to offer contextual evidence that would highlight why and how men with disabilities perpetrate and/or are victims of sexual or other forms of violence. Objective: The overall aim to highlight men with disabilities’ experiences of both victimization and perpetration, and how living up to normative and hegemonic ideals of masculinity and ‘ability’ shape their experiences. It will include: identifying how gender and impairments intersect and shape their experiences of violence; identifying the contexts of and risks for violence; identifying the impacts and consequences of violence on their lives (including mental health impacts), and identifying obstacles and enablers to support and interventions to prevent violence. Methodology: In-depth qualitative interviews with 20 men with disabilities participating in interventions conducted by the What Works Global Programme for violence prevention (DIFD) in Africa and Asia. Men with a range of disabilities will be invited to share their lifetime experiences of violence. Implications for Practice: The data from this study will be used to start thinking about strategies to include men with disabilities in violence prevention strategies for both men and women. Limitations: Because men will be participating in interventions, it is assumed that they will not have severe impairments that hamper their cognitive or physical ability to participate in the intervention activities - and therefore will be able to participate in the in-depth interviews. Of course, this is a limitation of the study as it does not include those men with severe disabilities – measured by the World Health Organization’s International Classification of Functioning - who may be more vulnerable and at higher risk of experiencing violence, and who are less likely to be able to access services and interventions.

Keywords: gender, men with disabilities, perpetration of violence, victimization

Procedia PDF Downloads 323
4014 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 182
4013 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs

Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa

Abstract:

Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.

Keywords: classification models, egg weight, fertilised eggs, multiple linear regression

Procedia PDF Downloads 87
4012 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 163
4011 Vénus Noire: A (Post)Colonial Gaze

Authors: Hania Pasandi

Abstract:

Over his first three films, Abdellatif Kechiche established himself as one of the most celebrated directors at work in twenty-first-century French cinema. While his first three movies, La Faute à Voltaire (2000), L’Esquive (2003), and La Graine et le mulet (2007) tell stories about individuals of the Maghrebi origin or descent struggling to find their place in the contemporary French Republic, his 2010’s movie, Vénus noire (2010) recounts the true story of the so-called ‘Hottentot Venus’, Saartjie Baartman, who became famous after her stage appearances in London and Paris in the early eighteenth century. The movie shows the complex ways in which gender and ethnicity can combine in exclusionary discourse. This paper studies gender and racial identities, the irony of science theorisation about ethnicities through the male colonial gaze on a heavily exhibited woman. This paper explores how Vénus Noire engages the spectator’s own corporeal awareness of violence and calls attention to the othering practices of (post)colonial times.

Keywords: gender, (post)colonial gaze, other, violence

Procedia PDF Downloads 140
4010 Twenty-First Century Masculinities in Popular Romance Genre

Authors: Eirini Arvanitaki

Abstract:

The popular romance novel has the ability to withstand the test of time by carefully adjusting its contents to the twenty-first century and modern society. At the same time, it manages to preserve unaltered its traditional foundations (heteronormativity, heterosexual love, monogamy). This paper focuses on the projection of the hero’s masculinity in a selection of post-millennial popular romance narratives and attempts to discover if, and to what extent, this projection reinforces or challenges patriarchal ideas about gender. In the majority of these narratives, the hero is often presented as a hegemonic alpha male. However, hegemonic masculinity is not a fixed concept. Rather, it is subject to continuous change, which allows for the emergence of various dominant masculinities. With this in mind, and through a close textual analysis approach and a gender reading of romance narratives, the paper suggests that to a certain extent, the romance hero could be described as a platform onto which different forms of dominant masculinity are displayed and highlights that these masculinities do not necessarily clash, depend on, or function as a prerequisite for each other.

Keywords: gender, literary projections, masculinity, twenty-first century popular romance narratives

Procedia PDF Downloads 136
4009 Cross-Sectional Analysis of Sustainability Activities in the Pharmaceutical Companies

Authors: Kanika Saxena, Sunita Balani

Abstract:

Purpose - The aim of the study is to compare the reported sustainability activities in areas of emission, water management and gender equality, currently undertaken by the seven major pharmaceutical companies. Methodology: The published corporate sustainability activity reports for the year 2017 for seven pharmaceutical companies have been studied. The two main criteria for the inclusion of pharmaceutical companies in this study are that they are globally recognized and active in the field of sustainability reporting. Company’s actions and initiatives have been grouped under three categories: (i) Emissions (ii) Water management (iii) Gender Equality in terms of employee workforce. Findings: Based on the sustainability reports, quantification and grading of the companies showed interesting results. Johnson & Johnson and Bayer are leading their activities under emissions and water management categories. The number of activities under emission and water management in case of Eli Lily, Roche, Sanofi, Pfizer and GlaxoSmithKline were 19, 16, 16, 11 and 6 respectively. Johnson & Johnson and Eli Lily are leading in taking the initiatives to curb the problem of emissions as compared with other 5 companies. Under the category of gender equality in terms of employee workforce, Eli Lily is leading the group of sampled companies with 47% of women employee workforce globally followed by Sanofi with 46.2% (42.2% of managers) female employees. It has also been observed that in some of the reports, gender diversification in the workforce has not been mentioned though the total number of employees were mentioned. Conclusion: This study could serve as the informative material for future in-depth industry-specific studies in order to find out the participation of the pharmaceutical companies in the reporting of the sustainability activities especially in reference to emission, water management and gender equality in the workforce. In addition to it, this can be helpful as a reference point for other companies in the pharmaceutical sector who are yet to explore the field of sustainability initiatives and reporting. Due to the limited scope of this study, only seven major players of the pharmaceutical sector who are active in the field of sustainability have been considered.

Keywords: emission, gender equality workforce, pharmaceutical, sustainability, water management

Procedia PDF Downloads 161
4008 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 494
4007 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 303
4006 Human Resource Development Climate (HRDC) in Nigerian Banks: General and Gender Perceptions

Authors: Akinyemi Benjamin

Abstract:

This study investigates the prevailing HRDC Nigerian commercial banks as perceived by employees in general. The perceptional differences on the state of HRDC by gender category are also examined. Using Abraham and Rao’s HRDC 38-item questionnaire, data from 310 respondents, with 303 valid responses, were entered into excel sheet and analysed to determine frequencies, mean scores, standard deviation and percentages for four variables: HRDC, general climate, HRD mechanism, and OCTAPAC culture. Results of analysis indicate that generally, employees perceive the overall HRDC and its three dimensions of general climate, HRD mechanism and OCTAPAC culture to be at an average or moderate level. The perceptions of both male and female subjects also indicate an average HRDC level although participants report slightly higher scores than their male subjects but these scores are still at an average level on all the dimensions of HRDC measured. The implications of this result for organizations in general and the banking industry in particular are discussed.

Keywords: HRDC, HRD mechanism, general climate, OCTAPAC culture, gender

Procedia PDF Downloads 417
4005 Little Girls and Big Stories: A Thematic Analysis of Gender Representations in Selected Asian Room to Read Storybooks

Authors: Cheeno Marlo Sayuno

Abstract:

Room to Read is an international nonprofit organization aimed at empowering young readers through literature and literacy education. In particular, the organization is focused on girls’ education in schools and bettering their social status through crafting stories and making sure that these stories are accessible to them. In 2019, Room to Read visited the Philippines and partnered with Philippine children’s literature publishers Adarna House, Lampara Books, Anvil Publishing, and OMF-Hiyas with the goal of producing contextualized stories that Filipino children can read. The result is a set of 20 storybooks developed by Filipino writers and illustrators, the author of this paper included. The project led to narratives of experiences in storybook production from conceptualization to publication, towards translations and reimagining in online repository, storytelling, and audiobook formats. During the production process, we were particularly reminded of gender representations, child’s rights, and telling stories that can empower the children in vulnerable communities, who are the beneficiaries of the project. The storybooks, along with many others produced in Asia and the world, are available online through the literacycloud.org website of Room to Read. In this study, the goal is to survey the stories produced in Asia and look at how gender is represented in the storybooks. By analyzing both the texts and the illustrations of the storybooks produced across Asian countries, themes of portrayals of young boys and girls, their characteristics and narratives, and how they are empowered in the stories are identified, with the goal of mapping how Room to Read is able to address the problem of access to literacy among young girls and ensuring them that they can do anything, the way they are portrayed in the stories. The paper hopes to determine how gender is represented in Asian storybooks produced by the international nonprofit organization Room to Read. Thematic textual analysis was used as methodology, where the storybooks are analyzed qualitatively to identify arising themes of gender representation. This study will shed light on the importance of responsible portrayal of gender in storybooks and how it can impact and empower children. The results of the study can also aid writers and illustrators in developing gender-sensitive storybooks.

Keywords: room to read, asian storybooks, young girls, thematic analysis, child empowerment, literacy, education

Procedia PDF Downloads 79
4004 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
4003 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 101
4002 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 203
4001 Exploring the Carer Gender Support Gap: Results from Freedom of Information Requests to Adult Social Services in England

Authors: Stephen Bahooshy

Abstract:

Our understanding of gender inequality has advanced in recent years. Differences in pay and societal gendered behaviour expectations have been emphasized. It is acknowledged globally that gender shapes everyone’s experiences of health and social care, including access to care, use of services and products, and the interaction with care providers. NHS Digital in England collects data from local authorities on the number of carers and people with support needs and the services they access. This data does not provide a gender breakdown. Caring can have many positive and negative impacts on carers’ health and wellbeing. For example, caring can improve physical health, provide a sense of pride and purpose, and reduced stress levels for those who undertake a caring role by choice. Negatives of caring include financial concerns, social isolation, a reduction in earnings, and not being recognized as a carer or involved and consulted by health and social care professionals. Treating male and female carers differently is by definition unequitable and precludes one gender from receiving the benefits of caring whilst potentially overburdening the other with the negatives of caring. In order to explore the issue on a preliminary basis, five local authorities who provide statutory adult social care services in England were sent Freedom of Information requests in 2019. The authorities were selected to include county councils and London boroughs. The authorities were asked to provide data on the amount of money spent on care at home packages to people over 65 years, broken down by gender and carer gender for each financial year between 2013 and 2019. Results indicated that in each financial year, female carers supporting someone over 65 years received less financial support for care at home support packages than male carers. Over the six-year period, this difference equated to a £9.5k deficit in financial support received on average per female carer when compared to male carers. An example of a London borough with the highest disparity presented an average weekly spend on care at home for people over 65 with a carer of £261.35 for male carers and £165.46 for female carers. Consequently, female carers in this borough received on average £95.89 less per week in care at home support than male carers. This highlights a real and potentially detrimental disparity in the care support received to female carers in order to support them to continue to care in parts of England. More research should be undertaken in this area to better explore this issue and to understand if these findings are unique to these social care providers or part of a wider phenomenon. NHS Digital should request local authorities collect data on gender in the same way that large employers in the United Kingdom are required by law to provide data on staff salaries by gender. People who allocate social care packages of support should consider the impact of gender when allocating support packages to people with support needs and who have carers to reduce any potential impact of gender bias on their decision-making.

Keywords: caregivers, carers, gender equality, social care

Procedia PDF Downloads 165
4000 Limiting Factors to Gender Identity in the Irene Salami-Agunloye’s Emotan

Authors: Adebayo John Badeji

Abstract:

This study examines some limiting factors in the dramaturgy of Irene Salami- Agunloye's Emotan. These factors are cultural, socio-political, and religious beliefs that play significant roles in gender balance, such that it establishes inequality between the sexes, giving male attributes greater value than that female ones subconsciously. This work draws its findings from the textual analysis method, and Stiwanism was employed as our theoretical framework. The theory is further discussed in the body of the work. By analysis, we subject this work to critical content analysis. Our findings revealed that most African feminist ideologies employ the ideology of revolt, which may not work on African soil. The play projects women's and men's issues in politics. This study exposes us to the fact that gender inequality is created by the male’s dominance in society. Also, the African women’s imitation of the cultural dictates of their fellow counterparts abroad is also affecting their own perspective on African soil. The study concludes that the African woman is looking at her freedom from the view of her counterparts in Europe and America, which is not right. As argued by Irene salami, women were active in societal development in Africa. This study, therefore, recommends that she should look at African women from the African perspective. This is because Queen Amina of Zazzau, Queen Idia of Benin, and Queen Moremi of Ife ruled when there were men, and they excelled.

Keywords: gender, identity, Emotan, factors

Procedia PDF Downloads 127
3999 Girl Child Education: A Veritable Tool to Gender Equality and Empowerment

Authors: Egena Obaje Innocent

Abstract:

In Africa generally and Nigeria in particular one the major setbacks for the girl-child is her deprivation or denial if you like to equal opportunity to education. In most Nigerian communities which are male dominated parents make no pretense of their preference of the male children when it come to the choice of who to send to school between the male and female child. Indeed, certain inhibiting cultural and religious practices are the root cause of this annually. It is against this background that this paper looked at the phenomenon the girl-child education, causes of the negligent its effects on the girl child and nation remedies and conclusion.

Keywords: education, empowerment, girl child, gender equality

Procedia PDF Downloads 471
3998 The Impact of Vocal and Physical Attractiveness on the Employment Interview

Authors: Alexandra Roy

Abstract:

This research examines how physical and vocal attractiveness affect impressions of an applicant and whether these impressions are affected by gender or job type. Findings, based on two samples, indicate that individuals with less attractiveness voice and physical appearance were viewed as less suitable job applicants and as possessing more negative characteristics than those others. These negative impressions were pervasive and unaffected by either applicant gender or job type. Specifically, we found that job candidates with an attractive voice or physique were perceived as more extroverted, less agreeable, less conscientious, less trustworthy less competent, less sociable and less recruitable. Results are robust to various sensitivity checks.

Keywords: discrimination, nonverbal, hiring, attractiveness

Procedia PDF Downloads 225
3997 "Groomers, Pedos, and Perverts": Strategies for Queer People and Allies to Combat Discourses of Hate

Authors: Todd G. Morrison, C. J. Bishop, Melanie A. Morrison

Abstract:

An upsurge of hatred directed at sexual- and gender-marginalized persons (SGMPs) has been documented in numerous Western nations. The denial of gender-affirmative care for trans youth; the banning of books containing queer content (no matter how innocuous); the boycotting of products affiliated with queer influencers and with pride celebrations; and the silencing of sexual- and gender-marginalized teachers and academics (and their allies) constitute key ways in which this hatred now manifests itself. The health consequences for SGMPs living in environments characterized by hatred of queer people include elevated rates of depression, anxiety, suicidality, and substance misuse. Given these sequelae, in this paper, the authors outline the challenges that academics experience when adopting an advocacy role. The authors also provide an overview of specific strategies that SGMPs may find helpful when engaging with persons committed to harming queer people.

Keywords: queer people, resistance, minority rights, hate speech

Procedia PDF Downloads 60
3996 Transgressing Gender Norms in Addiction Treatment

Authors: Sara Matsuzaka

Abstract:

At the center of emerging policy debates on the rights of transgender individuals in public accommodations is the collision of gender binary views with transgender perspectives that challenge conventional gender norms. The results of such socio-political debates could have significant ramifications for the policies and infrastructures of public and private institutions nationwide, including within the addiction treatment field. Despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in addiction treatment programs. Inpatient addiction treatment centers were originally designed to treat heterosexual cisgender populations and, as such, feature gender segregated housing, bathrooms, and counseling sessions. Such heteronormative structural barriers, combined with exposures to stigmatic al attitudes, may dissuade transgender populations from benefiting from the addiction treatment they so direly need. A literature review is performed to explore the mechanisms by which gender segregation alienates transgender populations within inpatient addiction treatment. The constituent parts of the current debate on the rights of transgender individuals in public accommodations are situated the context of inpatient addiction treatment facilities. Minority Stress Theory is used as a theoretical framework for understanding substance abuse issues among transgender populations as a maladaptive behavioral response for coping with chronic stressors related to gender minority status and intersecting identities. The findings include that despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in and benefiting from addiction treatment. These barriers are present in the form of anticipated or real interpersonal stigma and discrimination by service providers and structural stigma in the form of policy and programmatic components in addiction treatment that marginalize transgender populations. Transphobic manifestations within addiction treatment may dissuade transgender individuals from seeking help, if not reinforce a lifetime of stigmatic experience, potentially exacerbating their substance use issues. Conclusive recommendations for social workers and addiction treatment professionals include: (1) dismantling institutional policies around gender segregation that alienate transgender individuals, (2) developing policies that provide full protections for transgender clients against discrimination based on their gender identity, and (3) implementing trans-affirmative cultural competency training requirements for all staff. Directions for future research are provided.

Keywords: addiction treatment, gender segregation, stigma, transgender

Procedia PDF Downloads 211
3995 High School Transgender Students in Brazil: The Difficulties of Staying in School and the Psychological Implications in a Hostile School Environment

Authors: Aline Giardin, Maria Rosa Chitolina

Abstract:

Our research conducted in 8 different schools in the city of Rio Grande do Sul, Brazil, we can clearly see that, even in modern times, where the search for equality between men and women is already over 60 years of struggle in this world where you show Much more than two genres and in this world that is proving that sex is not just biological, are confronted with sexist and phallocentric situations in our Schools, and among our students. The sample consisted of 503 students with a mean age between 13 and 21 years. 107 students identified themselves as gay, lesbian, bisexual or transgender. The remainder was identified as heterosexual or none at all. Compared to LGBT students, transgender students faced the school's more hostile climates, while non-transgender female students were less likely to experience anti-LGBT victimization. In addition, transgender students experienced more negative experiences at school compared to students whose gender expression adhered to traditional gender norms. Transgender students were more likely to feel insecure at school, with 80.0% of transgender students reporting that they felt insecure at school because of their gender identity. Female students in our research reported lower frequencies of victimization based on sexual orientation and gender identity and were less likely to feel insecure at school. In all indicators of discrimination in school, high school students have outperformed elementary school students and have had fewer resources and supports related to LGBT. High school students reported higher rates of victimization on sexual orientation and gender expression than elementary school students. For example, about one-third (35.5%) of high school students suffered regular physical Very often) based on their sexual orientation, compared to less than a quarter (21.4%) of primary school students. The whole premise here is to perceive the phallocentrism and sexism hidden in our schools. Opposition between the sexes is not reflexive or articulates a biological fact, but a social construction.

Keywords: transgender students, school, psychological implications, discrimination

Procedia PDF Downloads 458
3994 Gender Bias and the Role It Plays in Student Evaluation of Instructors

Authors: B. Garfolo, L. Kelpsh, R. Roak, R. Kuck

Abstract:

Often, student ratings of instructors play a significant role in the career path of an instructor in higher education. So then, how does a student view the effectiveness of instructor teaching? This question has been address by literally thousands of studies found in the literature. Yet, why does this question still persist? A literature review reveals that while it is true that student evaluations of instructors can be biased, there is still a considerable amount of work that needs to be done in understanding why. As student evaluations of instructors can be used in a variety of settings (formative or summative) it is critical to understand the nature of the bias. The authors believe that not only is some bias possible in student evaluations, it should be expected for the simple reason that a student evaluation is a human activity and as such, relies upon perception and interpersonal judgment. As such, student ratings are affected by the same factors that can potentially affect any rater’s judgment, such as stereotypes based on gender, culture, race, etc. Previous study findings suggest that student evaluations of teacher effectiveness differ between male and female raters. However, even though studies have shown that instructor gender does play an important role in influencing student ratings, the exact nature and extent of that role remains the subject of debate. Researchers, in their attempt to define good teaching, have looked for differences in student evaluations based on a variety of characteristics such as course type, class size, ability level of the student and grading practices in addition to instructor and student characteristics (gender, age, etc.) with inconsistent results. If a student evaluation represents more than an instructor’s teaching ability, for example, a physical characteristic such as gender, then this information must be taken into account if the evaluation is to have meaning with respect to instructor assessment. While the authors concede that it is difficult or nearly impossible to separate gender from student perception of teaching practices in person, it is, however, possible to shield an instructor’s gender identity with respect to an online teaching experience. The online teaching modality presents itself as a unique opportunity to experiment directly with gender identity. The analysis of the differences of online behavior of individuals when they perceive that they are interacting with a male or female could provide a wealth of data on how gender influences student perceptions of teaching effectiveness. Given the importance of the role student ratings play in hiring, retention, promotion, tenure, and salary deliberations in academic careers, this question warrants further attention as it is important to be aware of possible bias in student evaluations if they are to be used at all with respect to any academic considerations. For experimental purposes, the author’s constructed and online class where each instructors operate under two different gender identities. In this study, each instructor taught multiple sections of the same class using both a male identity and a female identity. The study examined student evaluations of teaching based on certain student and instructor characteristics in order to determine if and where male and female students might differ in their ratings of instructors based on instructor gender. Additionally, the authors examined if there are differences between undergraduate and graduate students' ratings with respect to the experimental criteria.

Keywords: gender bias, ethics, student evaluations, student perceptions, online instruction

Procedia PDF Downloads 266
3993 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
3992 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
3991 Accumulated Gender-Diverse Co-signing Experience, Knowledge Sharing, and Audit Quality

Authors: Anxuan Xie, Chun-Chan Yu

Abstract:

Survey evidence provides support that auditors can gain professional knowledge not only from client firms but also from teammates they work with. Furthermore, given that knowledge is accumulated in nature, along with the reality that auditors today must work in an environment of increased diversity, whether the attributes of teammates will influence the effects of knowledge sharing and accumulation and ultimately influence an audit partner’s audit quality should be interesting research issues. We test whether the gender of co-signers will moderate the effect of a lead partner’s cooperative experiences on financial restatements. Furthermore, if the answer is “yes”, we further investigate the underlying reasons. We use data from Taiwan because, according to Taiwan’s law, engagement partners, who are basically two certificate public accountants from the same audit firm, are required to disclose (i.e., sign) their names in the audit report of public companies since 1983. Therefore, we can trace each engagement partner’s historic direct cooperative (co-signing) records and get large-sample data. We find that the benefits of knowledge sharing manifest primarily via co-signing audit reports with audit partners of different gender from the lead engagement partners, supporting the argument that in an audit setting, accumulated gender-diverse working relationship is positively associated with knowledge sharing, and therefore improve lead engagements’ audit quality. This study contributes to the extant literature in the following ways. First, we provide evidence that in the auditing setting, the experiences accumulated from cooperating with teammates of a different gender from the lead partner can improve audit quality. Given that most studies find evidence of negative effects of surface-level diversity on team performance, the results of this study support the prior literature that the association between diversity and knowledge sharing actually hinges on the context (e.g., organizational culture, task complexity) and “bridge” (a pre-existing commonality among team members that can smooth the process of diversity toward favorable results) among diversity team members. Second, this study also provides practical insights with respect to the audit firms’ policy of knowledge sharing and deployment of engagement partners. For example, for audit firms that appreciate the merits of knowledge sharing, the deployment of auditors of different gender within an audit team can help auditors accumulate audit-related knowledge, which will further benefit the future performance of those audit firms. Moreover, nowadays, client firms also attach importance to the diversity of their engagement partners. As their policy goals, lawmakers and regulators also continue to promote a gender-diverse working environment. The findings of this study indicate that for audit firms, gender diversity will not be just a means to cater to those groups. Third, for audit committees or other stakeholders, they can evaluate the quality of existing (or potential) lead partners by tracking their co-signing experiences, especially whether they have gender-diverse co-signing experiences.

Keywords: co-signing experiences, audit quality, knowledge sharing, gender diversity

Procedia PDF Downloads 85
3990 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 16
3989 The Use of Knowledge Management Systems and Information Communication Technology Service Desk Management to Minimize the Digital Divide Experienced in the Museum Sector

Authors: Ruel A. Welch

Abstract:

Since the introduction of ServiceNow, the UK’s Science Museum Group’s (SMG) ICT service desk portal. There has not been an analysis of the tools available to SMG staff for just-in-time knowledge acquisition (knowledge management systems) and reporting ICT incidents with a focus on an aspect of professional identity, namely, gender. This study is conducted in the milieu of UK museums, galleries, arts, academic, charitable, and cultural heritage sectors. Numerous authors suggest that males and females experience ICT usage differently. Therefore, it is important for SMG to investigate the apparent disparities so that solutions can be derived to minimize this digital divide if one exists. It is acknowledged at SMG that there are challenges with keeping up with an ever-changing digital landscape. Subsequently, this entails the rapid upskilling of staff and developing an infrastructure that supports just-in-time technological knowledge acquisition and reporting technology-related issues. This problem was addressed by analyzing ServiceNow ICT incident reports and reports from knowledge articles from a six-month period from February to July. This study found a statistically significant relationship between gender and reporting an ICT incident. There is also a significant relationship between gender and the priority level of ICT incidents. Interestingly, there is no statistically significant relationship between gender and reading knowledge articles. Additionally, there is no statistically significant relationship between gender and reporting an ICT incident related to the knowledge article that was read by staff. The knowledge acquired from this study is useful to service desk management practice as it will help to inform the creation of future knowledge articles and ICT incident reporting processes.

Keywords: digital divide, ICT service desk practice, knowledge management systems, workplace learning

Procedia PDF Downloads 127