Search results for: boundary element method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21031

Search results for: boundary element method

14491 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 92
14490 Behavior of Composite Reinforced Concrete Circular Columns with Glass Fiber Reinforced Polymer I-Section

Authors: Hiba S. Ahmed, Abbas A. Allawi, Riyadh A. Hindi

Abstract:

Pultruded materials made of fiber-reinforced polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, and other structural sections. These FRP materials are starting to compete with steel as structural materials because of their great resistance, low self-weight, and cheap maintenance costs-especially in corrosive conditions. This study aimed to evaluate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) of the hybrid columns built by combining (GFRP) profiles with concrete columns because of their low cost and high structural efficiency. To achieve the aims of this study, nine circular columns with a diameter of (150 mm) and a height of (1000mm) were cast using normal concrete with compression strength equal to (35 MPa). The research involved three different types of reinforcement: hybrid circular columns type (IG) with GFRP I-section and 1% of the reinforcement ratio of steel bars, hybrid circular columns type (IS) with steel I-section and 1% of the reinforcement ratio of steel bars, (where the cross-section area of I-section for GFRP and steel was the same), compared with reference column (R) without I-section. To investigate the ultimate capacity, axial and lateral deformation, strain in longitudinal and transverse reinforcement, and failure mode of the circular column under different loading conditions (concentric and eccentric) with eccentricities of 25 mm and 50 mm, respectively. In the second part, an analytical finite element model will be performed using ABAQUS software to validate the experimental results.

Keywords: composite, columns, reinforced concrete, GFRP, axial load

Procedia PDF Downloads 37
14489 High Gain Broadband Plasmonic Slot Nano-Antenna

Authors: H. S. Haroyan, V. R. Tadevosyan

Abstract:

High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.

Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.

Procedia PDF Downloads 358
14488 Establishing Reference Intervals for Routine Coagulation Tests

Authors: Santina Sahibon, Sivasooriar Sivaneson, Martin Giddy, Nelson Nheu, Siti Sazeelah, Choo Kok Ming, Thuhairah Abdul Rahman, Fatmawati Binti Kamal

Abstract:

Introduction: Establishing population-based reference intervals (RI) are essential when evaluating laboratory test results and for method verification. Our laboratory initiated an exercise to establish RI for routine coagulation profile as part of the method verification procedure and to determine any differences in RI between three analyzers planned to be used in the laboratory. Methodology: 145 blood samples were collected and analysed for activated partial thromboplastin time (aPTT), prothrombin time (PT), international normalized ratio (INR), and fibrinogen] using three coagulation analysers which were CA104, CA660, and CS-2500 (Sysmex, USA). RI was established at 2.5th and 97.5th percentiles. Results: The RI for aPTT between C104, C660 and CS-2500 are (RI: 20.5-30.2 sec), (RI: 21.5-29.2 sec) and (RI: 22.7-30.3 sec) respectively. The RI for PT were (RI: 7.5-10.3 sec), (RI: 9.2- 11.1 sec) and (RI: 9.8-11.9 sec) for C104, CA660 and CS-2500 respectively. INR had an RI of (RI: 0.87- 1.16), (RI: 0.89-1.10) and (0.90-1.11) respectively on CA104, C660 and CS-2500. Fibrinogen RI was (RI: 2.04-4.62 g/L) and (2.05-4.76 g/L) on the CA660 and CS-2500, respectively. Conclusion: The RI was similar across the analytical platforms for aPTT, INR, and fibrinogen. However, CA104 showed lower RI compared to the other two analysers for PT. This highlights the potential variability in results between instruments that need to be addressed when verifying RI.

Keywords: coagulation, reference interval, APTT, PT, INR, fibrinogen

Procedia PDF Downloads 169
14487 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 397
14486 Estimation of Noise Barriers for Arterial Roads of Delhi

Authors: Sourabh Jain, Parul Madan

Abstract:

Traffic noise pollution has become a challenging problem for all metro cities of India due to rapid urbanization, growing population and rising number of vehicles and transport development. In Delhi the prime source of noise pollution is vehicular traffic. In Delhi it is found that the ambient noise level (Leq) is exceeding the standard permissible value at all the locations. Noise barriers or enclosures are definitely useful in obtaining effective deduction of traffic noise disturbances in urbanized areas. US’s Federal Highway Administration Model (FHWA) and Calculation of Road Traffic Noise (CORTN) of UK are used to develop spread sheets for noise prediction. Spread sheets are also developed for evaluating effectiveness of existing boundary walls abutting houses in mitigating noise, redesigning them as noise barriers. Study was also carried out to examine the changes in noise level due to designed noise barrier by using both models FHWA and CORTN respectively. During the collection of various data it is found that receivers are located far away from road at Rithala and Moolchand sites and hence extra barrier height needed to meet prescribed limits was less as seen from calculations and most of the noise diminishes by propagation effect.On the basis of overall study and data analysis, it is concluded that FHWA and CORTN models under estimate noise levels. FHWA model predicted noise levels with an average percentage error of -7.33 and CORTN predicted with an average percentage error of -8.5. It was observed that at all sites noise levels at receivers were exceeding the standard limit of 55 dB. It was seen from calculations that existing walls are reducing noise levels. Average noise reduction due to walls at Rithala was 7.41 dB and at Panchsheel was 7.20 dB and lower amount of noise reduction was observed at Friend colony which was only 5.88. It was observed from analysis that Friends colony sites need much greater height of barrier. This was because of residential buildings abutting the road. At friends colony great amount of traffic was observed since it is national highway. At this site diminishing of noise due to propagation effect was very less.As FHWA and CORTN models were developed in excel programme, it eliminates laborious calculations of noise. There was no reflection correction in FHWA models as like in CORTN model.

Keywords: IFHWA, CORTN, Noise Sources, Noise Barriers

Procedia PDF Downloads 122
14485 Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content

Authors: M. López-Moreno, L. Lugo Avilés, F. Román, J. Lugo Rosas, J. Hernández-Viezcas Jr., Peralta-Videa, J. Gardea-Torresdey

Abstract:

Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results cost-effective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost.

Keywords: compost, Coriandrum sativum, nutrients, waste sludge

Procedia PDF Downloads 388
14484 A Case Study on Problems Originated from Critical Path Method Application in a Governmental Construction Project

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

In public construction projects, determining the contract period in the award phase is one of the most important factors. The contract period establishes the baseline for creating the cash flow curve and progress payment planning in the post-award phase. If overestimated, project duration causes losses for both the owner and the contractor. Therefore, it is essential to base construction project duration on reliable forecasting. In Turkey, schedules are usually built using the bar chart (Gantt) schedule, especially for governmental construction agencies. The usage of these schedules is limited for bidding purposes. Although the bar-chart schedule is useful in some cases, it lacks logical connections between activities; it would be harder to obtain the activities that have more effects than others on the project's total duration, especially in large complex projects. In this study, a construction schedule is prepared with Critical Path Method (CPM) that addresses the above-mentioned discrepancies. CPM is a simple and effective method that displays project time and critical paths, showing results of forward and backward calculations with considering the logic relationships between activities; it is a powerful tool for planning and managing all kinds of construction projects and is a very convenient method for the construction industry. CPM provides a much more useful and precise approach than traditional bar-chart diagrams that form the basis of construction planning and control. CPM has two main application utilities in the construction field; the first one is obtaining project duration, which is called an as-planned schedule that includes as-planned activity durations with relationships between subsequent activities. Another utility is during the project execution; each activity is tracked, and their durations are recorded in order to obtain as-built schedule, which is named as a black box of the project. The latter is more useful for delay analysis, and conflict resolutions. These features of CPM have been popular around the world. However, it has not been yet extensively used in Turkey. In this study, a real construction project is investigated as a case study; CPM-based scheduling is used for establishing both of as-built and as-planned schedules. Problems that emerged during the construction phase are identified and categorized. Subsequently, solutions are suggested. Two scenarios were considered. In the first scenario, project progress was monitored based as CPM was used to track and manage progress; this was carried out based on real-time data. In the second scenario, project progress was supposedly tracked based on the assumption that the Gantt chart was used. The S-curves of the two scenarios are plotted and interpreted. Comparing the results, possible faults of the latter scenario are highlighted, and solutions are suggested. The importance of CPM implementation has been emphasized and it has been proposed to make it mandatory for preparation of construction schedule based on CPM for public construction projects contracts.

Keywords: as-built, case-study, critical path method, Turkish government sector projects

Procedia PDF Downloads 98
14483 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry

Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora

Abstract:

The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.

Keywords: mild steel, impact strength, response surface, bead geometry, welding

Procedia PDF Downloads 108
14482 Slovenia Rider/Driver Gaze Behavior Comparative Analysis

Authors: Tomaž Tollazzi, Matjaž Šraml, Chiara Gruden, Marko Renčelj

Abstract:

Motorcycle riders are an increasing group of road users. The intrinsic characteristics of powered two-wheelers (PTW) allow them to be particularly flexible, both in urban and extra-urban environments. Nevertheless, crash statistics indicate that riders involved in road accidents are highly likely to suffer severe injuries, underlining the vulnerability of this group of road users. An element that can greatly affect the safety of PTW users is road design, as roads are usually designed for two-track vehicles (cars, buses, and lorries) and usually do not consider the needs of PTWs. Additionally, handling a motorcycle is quite different from driving a car; thus, the behavior of riders is different from that of drivers. The aim of this research was to compare how different road designs are perceived by riders and drivers and to preliminarily assess if riders’ behavior and attention allocation are related. For this research, an eye-tracking experiment was developed outdoors. Both drivers and riders travelled along a route comprising four different road designs and various road layouts, and the output was analyzed both qualitatively and quantitatively. Although it was not possible to carry out a statistical analysis due to the limited number of participants, the results demonstrate that there is a difference in the gaze behavior of drivers and riders, with the latter being far more focused on the left-hand side of the road and concentrating on defined elements of road design. Furthermore, the experiment demonstrated that a higher number of fixations is related to lower speeds. Finally, it was noted that both kinds of road users focus well on the carriageway, leading to the conclusion that the indications given through road markings may be much more effective than vertical signalization, which has rarely been observed.

Keywords: road safety, powered two-wheelers, eye-tracking, gaze behavior

Procedia PDF Downloads 67
14481 Median-Based Nonparametric Estimation of Returns in Mean-Downside Risk Portfolio Frontier

Authors: H. Ben Salah, A. Gannoun, C. de Peretti, A. Trabelsi

Abstract:

The Downside Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical mean-variance model concerning the asymetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developped a new recurcive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents an appearance which is not very smooth. In order to overcome that, Athayde (2003) proposed a mean kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which we had continuous observations. In this paper, taking advantage on the the robustness of the median, we replace the mean estimator in Athayde's model by a nonparametric median estimator of the returns. Then, we give a new version of the former algorithm (of Athayde (2001, 2003)). We eventually analyse the properties of this improved portfolio frontier and apply this new method on real examples.

Keywords: Downside Risk, Kernel Method, Median, Nonparametric Estimation, Semivariance

Procedia PDF Downloads 473
14480 Effects of Different Climate Zones, Building Types, and Primary Fuel Sources for Energy Production on Environmental Damage from Four External Wall Technologies for Residential Buildings in Israel

Authors: Svetlana Pushkar, Oleg Verbitsky

Abstract:

The goal of the present study is to evaluate environmental damage from four wall technologies under the following conditions: four climate zones in Israel, two building (conventional vs. low-energy) types, and two types of fuel source [natural gas vs. photovoltaic (PV)]. The hierarchical ReCiPe method with a two-stage nested (hierarchical) ANOVA test is applied. It was revealed that in a hot climate in Israel in a conventional building fueled by natural gas, OE is dominant (90 %) over the P&C stage (10 %); in a mild climate in Israel in a low-energy building with PV, the P&C stage is dominant (85 %) over the OE stage (15 %). It is concluded that if PV is used in the building sector in Israel, (i) the P&C stage becomes a significant factor that influences the environment, (ii) autoclaved aerated block is the best external wall technology, and (iii) a two-stage nested mixed ANOVA can be used to evaluate environmental damage via ReCiPe when wall technologies are compared.

Keywords: life cycle assessment (LCA), photovoltaic, ReCiPe method, residential buildings

Procedia PDF Downloads 279
14479 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety

Authors: Mohamad Saab, Sidi Souvi

Abstract:

In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.

Keywords: nuclear accident, ASTEC code, thermochemical database, quantum chemical methods

Procedia PDF Downloads 177
14478 Identification of Ideal Plain Sufu (Fermented Soybean Curds) Based on Ideal Profile Method and Assessment of the Consistency of Ideal Profiles Obtained from Consumers

Authors: Yan Ping Chen, Hau Yin Chung

Abstract:

The Ideal Profile Method (IPM) is a newly developed descriptive sensory analysis conducted by consumers without previous training. To perform this test, both the perceived and the ideal intensities from the judgements of consumers on products’ attributes, as well as their hedonic ratings were collected for formulating an ideal product (the most liked one). In addition, Ideal Profile Analysis (IPA) was conducted to check the consistency of the ideal data at both the panel and consumer levels. In this test, 12 commercial plain sufus bought from Hong Kong local market were tested by 113 consumers according to the IPM, and rated on 22 attributes. Principal component analysis was used to profile the perceived and the ideal spaces of tested products. The consistency of ideal data was then checked by IPA. The result showed that most consumers shared a common ideal. It was observed that the sensory product space and the ideal product space were structurally similar. Their first dimensions all opposed products with intense fermented related aroma to products with less fermented related aroma. And the predicted ideal profile (the estimated liking score around 7.0 in a 9.0-point scale) got higher hedonic score than the tested products (the average liking score around 6.0 in a 9.0-point scale). For the majority of consumers (95.2%), the stated ideal product considered as a potential ideal through checking the R2 coefficient value. Among all the tested products, sample-6 was the most popular one with consumer liking percentage around 30%. This product with less fermented and moldy flavour but easier to melt in mouth texture possessed close sensory profile according to the ideal product. This experiment validated that data from untrained consumers could be guided as useful information. Appreciated sensory characteristics could be served as reference in the optimization of the commercial plain sufu.

Keywords: ideal profile method, product development, sensory evaluation, sufu (fermented soybean curd)

Procedia PDF Downloads 177
14477 Disclosure of Financial Risk on Sharia Banks in Indonesia

Authors: Renny Wulandari

Abstract:

This study aims to determine how the influence of Non Performing Financing, Financing Deposit Ratio, Operating Expenses and Operating Revenue and Net Income Margin on the disclosure of financial risk in Sharia banks. To achieve these objectives conducted associative research method with data source in the form of secondary data that is annual report data with period 2013-2016. The population in this study is the sharia banking industry in Indonesia and who issued the annual financial statements. A method of sampling use probability sampling. Analysis in this research is with SEM-PLS. The result is Net Income Margin has a significant effect on financial risk disclosure while Non Performing Financing (NPF) Financing to Deposit Ratio (FDR), Operating Expenses and Operating Revenue (OEOR) have no effect on the disclosure of financial risk in sharia bank.

Keywords: Sharia banks, disclosure of risk financial, non performing financing, financing deposit ratio, operating expenses and operating revenue, net income margin

Procedia PDF Downloads 221
14476 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 471
14475 Dividends Smoothing in an Era of Unclaimed Dividends: A Panel Data Analysis in Nigeria

Authors: Apedzan Emmanuel Kighir

Abstract:

This research investigates dividends smoothing among non-financial companies trading on the Nigerian Stock Exchange in an era of unclaimed dividends from 2004 to 2013. There has been a raging controversy among Regulatory Authorities, Company Executives, Registrars of Companies, Shareholders and the general public regarding the increasing incidence of unclaimed dividends in Nigeria. The objective of this study is to find out if corporate earnings management through dividends smoothing is implicated in unclaimed dividends among Nigerian non-financial firms. The research used panel data and employed Generalized Method of Moment as method of analysis. The research finds evidence of dividends-smoothing in this era of unclaimed dividends in Nigeria. The research concludes that dividends-smoothing is a trigger and red flag for unclaimed dividends, an output of earnings management. If earnings management and hence unclaimed dividends in Nigeria is allowed to continue, it will lead to great consequences to the investors and corporate policy of government. It is believed that the research will assist investors and government in making informed decisions regarding dividends policy in Nigeria.

Keywords: dividends smoothing, non financial companies, Nigerian stock exchange, unclaimed dividends, corporate earnings management

Procedia PDF Downloads 264
14474 Multi-Functional Metal Oxides as Gas Sensors, Photo-Catalysts and Bactericides

Authors: Koyar Rane

Abstract:

Nano- to submicron size particles of narrow particle size distribution of semi-conducting TiO₂, ZnO, NiO, CuO, Fe₂O₃ have been synthesized by novel hydrazine method and tested for their gas sensing, photocatalytic and bactericidal activities and the behavior found to be enhanced when the oxides in the thin film forms, that obtained in a specially built spray pyrolysis reactor. Hydrazine method is novel in the sense, say, the UV absorption edge of the white pigment grade wide band gap (~3.2eV) TiO₂ and ZnO shifted to the visible region turning into yellowish particles, indicating modification occurring the band structure. The absorption in the visible region makes these oxides visible light sensitive photocatalysis in degrading pollutants, especially the organic dyes which otherwise increase the chemical oxygen demand of the drinking water, enabling the process feasible not under the harsh energetic UV radiation regime. The electromagnetic radiations on irradiation produce electron-hole pairs Semiconductor + hν → e⁻ + h⁺ The electron-hole pairs thus produced form Reactive Oxygen Species, ROS, on the surface of the semiconductors, O₂(adsorbed)+e⁻ → O₂• - superoxide ion OH-(surface)+h⁺ →•OH - Hydroxyl radical The ROS attack the organic material and micro-organisms. Our antibacterial studies indicate the metal oxides control the Biological Oxygen Demand (BOD) of drinking water which had beyond the safe level normally found in the municipal supply. Metal oxides in the thin film form show overall enhanced properties and the films are reusable. The results of the photodegradation and antibactericidal studies are discussed. Gas sensing studies too have been done to find the versatility of the multifunctional metal oxides.

Keywords: hydrazine method, visible light sensitive, photo-degradation of dyes, water/airborne pollutant

Procedia PDF Downloads 154
14473 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 271
14472 Evaluation of the Need for Seismic Retrofitting of the Foundation of a Five Story Steel Building Because of Adding of a New Story

Authors: Mohammadreza Baradaran, F. Hamzezarghani

Abstract:

Every year in different points of the world it occurs with different strengths and thousands of people lose their lives because of this natural phenomenon. One of the reasons for destruction of buildings because of earthquake in addition to the passing of time and the effect of environmental conditions and the wearing-out of a building is changing the uses of the building and change the structure and skeleton of the building. A large number of structures that are located in earthquake bearing areas have been designed according to the old quake design regulations which are out dated. In addition, many of the major earthquakes which have occurred in recent years, emphasize retrofitting to decrease the dangers of quakes. Retrofitting structural quakes available is one of the most effective methods for reducing dangers and compensating lack of resistance caused by the weaknesses existing. In this article the foundation of a five-floor steel building with the moment frame system has been evaluated for quakes and the effect of adding a floor to this five-floor steel building has been evaluated and analyzed. The considered building is with a metallic skeleton and a piled roof and clayed block which after addition of a floor has increased to a six-floor foundation of 1416 square meters, and the height of the sixth floor from ground state has increased 18.95 meters. After analysis of the foundation model, the behavior of the soil under the foundation and also the behavior of the body or element of the foundation has been evaluated and the model of the foundation and its type of change in form and the amount of stress of the soil under the foundation for some of the composition has been determined many times in the SAFE software modeling and finally the need for retrofitting of the building's foundation has been determined.

Keywords: seismic, rehabilitation, steel building, foundation

Procedia PDF Downloads 263
14471 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: rice disease, data analysis system, mobile application, iOS operating system

Procedia PDF Downloads 273
14470 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules

Authors: BenedictI Ita, Etido P. Inyang

Abstract:

In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.

Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules

Procedia PDF Downloads 72
14469 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 407
14468 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates

Authors: Takashi Mitsuishi

Abstract:

Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).

Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation

Procedia PDF Downloads 345
14467 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System

Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du

Abstract:

Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.

Keywords: cislunar transfer, dynamics, momentum exchange, tether

Procedia PDF Downloads 258
14466 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method

Authors: Anung Style Bukhori, Ani Dijah Rahajoe

Abstract:

Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.

Keywords: poverty, classification, naïve bayes, Indonesia

Procedia PDF Downloads 40
14465 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: Siamak Ghorbani, Nikolay Ivanovich Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration

Procedia PDF Downloads 297
14464 Cartography through Picasso’s Eyes

Authors: Desiree Di Marco

Abstract:

The aim of this work is to show through the lens of art first which kind of reality was the one represented through fascist maps, and second to study the impact of the fascist regime’s cartography (FRC) on observers eye’s. In this study, it is assumed that the FRC’s representation of reality was simplified, timeless, and even a-spatial because it underrates the concept of territoriality. Cubism and Picasso’s paintings will be used as counter-examples to mystify fascist cartography’s ideological assumptions. The difference between the gaze of an observer looking at the surface of a fascist map and the gaze of someone observing a Picasso painting is impressive. Because there is always something dark, hidden, behind and inside a map, the world of fascist maps was a world built starting from the observation of a “window” that distorted reality and trapped the eyes of the observers. Moving across the map, they seem as if they were hypnotized. Cartohypnosis is the state in which the observer finds himself enslaved by the attractive force of the map, which uses a sort of “magic” geography, a geography that, by means of symbolic language, never has as its primary objective the attempt to show us reality in its complexity, but that of performing for its audience. Magical geography and hypnotic cartography in fascism blended together, creating an almost mystical, magical relationship that demystified reality to reduce the world to a conquerable space. This reduction offered the observer the possibility of conceiving new dimensions: of the limit, of the boundary, elements with which the subject felt fully involved and in which the aesthetic force of the images demonstrated all its strength. But in the early 20th century, the combination of art and cartography gave rise to new possibilities. Cubism which, more than all the other artistic currents showed us how much the observation of reality from a single point of view falls within dangerous logic, is an example. Cubism was an artistic movement that brought about a profound transformation in pictorial culture. It was not only a revolution of pictorial space, but it was a revolution of our conception of pictorial space. Up until that time, men and women were more inclined to believe in the power of images and their representations. Cubist painters rebelled against this blindness by claiming that art must always offer an alternative. Indeed the contribution of this work is precisely to show how art can be able to provide alternatives to even the most horrible regimes and the most atrocious human misfortunes. It also enriches the field of cartography because it "reassures" it by showing how much good it can be for cartography if also for other disciplines come close. Only in this way researcher can increase the chances for the cartography of a greater diffusion at the academic level.

Keywords: cartography, Picasso, fascism, culture

Procedia PDF Downloads 52
14463 Reactivation of Hydrated Cement and Recycled Concrete Powder by Thermal Treatment for Partial Replacement of Virgin Cement

Authors: Gustave Semugaza, Anne Zora Gierth, Tommy Mielke, Marianela Escobar Castillo, Nat Doru C. Lupascu

Abstract:

The generation of Construction and Demolition Waste (CDW) has globally increased enormously due to the enhanced need in construction, renovation, and demolition of construction structures. Several studies investigated the use of CDW materials in the production of new concrete and indicated the lower mechanical properties of the resulting concrete. Many other researchers considered the possibility of using the Hydrated Cement Powder (HCP) to replace a part of Ordinary Portland Cement (OPC), but only very few investigated the use of Recycled Concrete Powder (RCP) from CDW. The partial replacement of OPC for making new concrete intends to decrease the CO₂ emissions associated with OPC production. However, the RCP and HCP need treatment to produce the new concrete of required mechanical properties. The thermal treatment method has proven to improve HCP properties before their use. Previous research has stated that for using HCP in concrete, the optimum results are achievable by heating HCP between 400°C and 800°C. The optimum heating temperature depends on the type of cement used to make the Hydrated Cement Specimens (HCS), the crushing and heating method of HCP, and the curing method of the Rehydrated Cement Specimens (RCS). This research assessed the quality of recycled materials by using different techniques such as X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetry (TG), Scanning electron Microscopy (SEM), and X-ray Fluorescence (XRF). These recycled materials were thermally pretreated at different temperatures from 200°C to 1000°C. Additionally, the research investigated to what extent the thermally treated recycled cement could partially replace the OPC and if the new concrete produced would achieve the required mechanical properties. The mechanical properties were evaluated on the RCS, obtained by mixing the Dehydrated Cement Powder and Recycled Powder (DCP and DRP) with water (w/c = 0.6 and w/c = 0.45). The research used the compressive testing machine for compressive strength testing, and the three-point bending test was used to assess the flexural strength.

Keywords: hydrated cement powder, dehydrated cement powder, recycled concrete powder, thermal treatment, reactivation, mechanical performance

Procedia PDF Downloads 132
14462 Cumulus Cells of Mature Local Goat Oocytes Vitrified with Insulin Transferrin Selenium and Heat Shock Protein 70

Authors: Izzatul Ulfana, Angga Pratomo Cahyadi, Rimayanti, Widjiati

Abstract:

Freezing oocyte could cause temperature stress. Temperature stress triggers cell damage. Insulin Transferrin Selenium (ITS) and Heat Shock Protein 70 (HSP70) had been used to prevent damage to the oocyte after freezing. ITS and HSP70 could cause the difference protective effect. The aim of this research was to obtain an effective cryoprotectant for freezing local goat oocyte in cumulus cells change. The research began by collecting the ovary from a local slaughterhouse in Indonesia, aspiration follicle, in vitro maturation and the freezing had been used vitrification method. Examination of the morphology cells by native staining method. Data on the calculation morphology oocyte analyzed by Kruskall-Wallis Test. After the Kruskall-Wallis Test which indicated significance, followed by Mann-Whitney Test to compare between treatment groups. As a result, cryoprotectant ITS has the best culumus cells after warming

Keywords: Insulin Transferrin Selenium, Heat Shock Protein 70, cryoprotectant, vitrification

Procedia PDF Downloads 221