Search results for: process integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17200

Search results for: process integration

10690 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems

Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain

Abstract:

This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.

Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order

Procedia PDF Downloads 565
10689 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways

Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates

Abstract:

The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.

Keywords: carbon dioxide utilization, processes, energy options, environmental impacts

Procedia PDF Downloads 149
10688 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 450
10687 Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets Combined with Magnetic Nanoparticles: Remove Metal Ions and Catalytic Application

Authors: Laroussi Chaabane, Amel El Ghali, Emmanuel Beyou, Mohamed Hassen V. Baouab

Abstract:

In this research, the functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished and followed by the grafting of bis(2-pyridylmethyl) amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) and then combined with magnetic nanoparticles (Fe₃O₄NPs) to produce a magnetic graphene-based composite [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. The physicochemical properties of [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] composites were investigated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA). Additionally, the catalysts can be easily recycled within ten seconds by using an external magnetic field. Moreover, [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] was used for removing Cu(II) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature on the metal ions adsorption were investigated, however weakly dependent on ionic strength. The maximum adsorption capacity values of Cu(II) on the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] at the pH of 6 is 3.46 mmol.g⁻¹. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the Cu (II) adsorption by [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossens adsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED], their reusability (more than 6 cycles) and durability in the aqueous solutions open the path to removal of Cu(II) from water solution. Based on the results obtained, we report the activity of Cu(II) supported on [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] as a catalyst for the cross-coupling of symmetric alkynes.

Keywords: graphene, magnetic nanoparticles, adsorption kinetics/isotherms, cross coupling

Procedia PDF Downloads 141
10686 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector

Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng

Abstract:

Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.

Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry

Procedia PDF Downloads 351
10685 Harnessing Community Benefits; Case Study of REDD+ in Ghana

Authors: Abdul-Razak Saeed

Abstract:

Addressing the climate change crisis that this generation faces has evolved to include the consideration of a policy mechanism referred to as reduced emissions from deforestation and forest degradation with plus components of conservation, sustainable forest management and enhancement of forest carbon stocks (REDD+). REDD+ emerged from the International level of UNFCCC but its implementation is by developing countries. It challenges the development paradigm of nations that depend on the unsustainable clearing of forests and land use change for economic development whilst posing as an opportunity or risk for forest community livelihoods, institutions and their interaction with the forest resources. As a novel policy mechanism, it is imperative to gain global insight into local contexts of its implementation and to understand local level mobilization of their agency for institutional sustainability as reconfigured by new carbon economy initiatives like REDD+. Using a systematic review process, as the initial stages of this study, secondary data of REDD+ projects across the globe were evaluated to pick up gaps in research and that of on ground REDD+ implementation. Primary data was gathered from 30 actors in the government, NGO, private sector and traditional authorities using face-to-face semi structured interviews in Ghana; participation in meetings and workshops and policy and strategy document reviews. Preliminary findings of the study include REDD+ knowledge being a key determinant of power distribution and affects who shapes the process; in Ghana, informal relationships are playing key roles in advancing REDD+ unlike in traditional forestry and a subjectivity shift of local communities from an 'emotive-link' of environmental care to one of 'economic self-seeking and enriching' domain of thought.

Keywords: climate change, communities, forests, REDD+

Procedia PDF Downloads 371
10684 Implementation of Active Recovery at Immediate, 12 and 24 Hours Post-Training in Young Soccer Players

Authors: C. Villamizar, M. Serrato

Abstract:

In the pursuit of athletic performance, the role of physical training which is determined by a number of charges or taxes on physiological stress and musculoskeletal systems of the human body generated by the intensity and duration is fundamental. Given the physical demands of these activities both training and competitive must take into account the optimal relationship with a straining process recovery post favoring the process of overcompensation which aims to facilitate the return and rising energy potential and protein synthesis also of different tissues. Allowing muscle function returns to baseline or pre-exercise states. If this recovery process is not performed or is not allowed in a proper way, will result in an increased state of fatigue. Active recovery, is one of the strategies implemented in the sport for a return to pre-exercise physiological states. However, there are some adverse assumptions regarding the negative effects, as is the possibility of increasing the degradation of muscle glycogen and thus delaying the synthesis thereof. For them, it is necessary to investigate what would be the effects generated application made at different times after the effort. The aim of this study was to determine the effects of active recovery post effort made at three different times: immediately, at 12 and 24 hours on biochemical markers creatine kinase in youth soccer player’s categories. A randomized controlled trial with allocation to three groups was performed: A. active recovery immediately after the effort; B. active recovery performed at 12 hours after the effort; C. active recovery made at 24 hours after the effort. This study included 27 subjects belonging to a Colombian soccer team of the second division. Vital signs, weight, height, BMI, the percentage of muscle mass, fat mass percentage, personal medical history, and family were valued. The velocity, explosive force and Creatin Kinase (CK) in blood were tested before and after interventions. SAFT 90 protocol (Soccer Field specific Aerobic Test) was applied to participants for generating fatigue. CK samples were taken one hour before the application of the fatigue test, one hour after the fatigue protocol and 48 of the initial CK sample. Mean age was 18.5 ± 1.1 years old. Improvements in jumping and speed recovery the 3 groups (p < 0.05), but no statistically significant differences between groups was observed after recuperation. In all participants, there was a significant increment of CK when applied SAFT 90 in all the groups (median 103.1-111.1). The CK measurement after 48 hours reflects a recovery in all groups, however the group C, a decline below baseline levels of -55.5 (-96.3 /-20.4) which is a significant find. Other research has shown that CK does not return quickly to their baseline, but our study shows that active recovery favors the clearance of CK and also to perform recovery 24 hours after the effort generates higher clearance of this biomarker.

Keywords: active recuperation, creatine phosphokinase, post training, young soccer players

Procedia PDF Downloads 161
10683 Development of Integrated Solid Waste Management Plan for Industrial Estates of Pakistan

Authors: Mehak Masood

Abstract:

This paper aims to design an integrated solid waste management plan for industrial estates taking Sundar Industrial Estate as case model. The issue of solid waste management is on the rise in Pakistan especially in the industrial sector. In this regard, the concept of development and establishment of industrial estates is gaining popularity nowadays. Without proper solid waste management plan it is very difficult to manage day to day affairs of industrial estates. An industrial estate contains clusters of different types of industrial units. It is necessary to identify different types of solid waste streams from each industrial cluster within the estate. In this study, Sundar Industrial Estate was taken as a case model. Primary and secondary data collection, waste assessment, waste segregation and weighing and field surveys were essential elements of the study. Wastes from each industrial process were identified and quantified. Currently 130 industries are in production but after full colonization of industries this number would reach 385. Elaborated process flow diagrams were made to characterize the recyclable and non-recyclables waste. From the study it was calculated that about 12354.1 kg/captia/day of solid waste is being generated in Sundar Industrial Estate. After the full colonization of the industrial estate, the estimated quantity will be 4756328.5 kg/captia/day. Furthermore, solid waste generated from each industrial sector was estimated. Suggestions for collection and transportation are given. Environment friendly solid waste management practices are suggested. If an effective integrated waste management system is developed and implemented it will conserve resources, create jobs, reduce poverty, conserve natural resources, protect the environment, save collection, transportation and disposal costs and extend the life of disposal sites. A major outcome of this study is an integrated solid waste management plan for the Sundar Industrial Estate which requires immediate implementation.

Keywords: integrated solid waste management plan, industrial estates, Sundar Industrial Estate, Pakistan

Procedia PDF Downloads 491
10682 Uranium Migration Process: A Multi-Technique Investigation Strategy for a Better Understanding of the Role of Colloids

Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes

Abstract:

The knowledge of uranium migration processes within underground environments is a major issue in the environmental risk assessment associated with nuclear activities. This process is identified as strongly controlled by adsorption mechanisms, thus leading to strongly delayed migration paths. Colloidal ligands are likely to significantly increase the mobility of uranium in natural environments. The ability of colloids to mobilize and transport uranium depends on their origin, their nature, their structure, their stability and their reactivity with uranium. Thus, the colloidal mobilization and transport properties are often described as site-specific. In this work, the colloidal phases of two leachates obtained from two different horizons of the same podzolic soil were characterized with a speciation approach. For this purpose, a multi-technique strategy was used, based on Field-Flow Fractionation coupled to Ultraviolet, Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-UV-MALS-ICPMS), Transmission Electron Microscopy (TEM), Electrospray Ionization Orbitrap Mass Spectrometry (ESI-Orbitrap), and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS-EEM). Thus, elemental composition, size distribution, microscopic structure, colloidal stability and possible organic and/or inorganic content of colloids were determined, as well as their association with uranium. The leachates exhibit differences in their physical and chemical characteristics, mainly in the nature of organic matter constituents. The multi-technique investigation strategy used provides original data about colloidal phase structure and composition, offering a new vision of the way the uranium can be mobilized and transported in the considered soil. This information is a real significant contribution opening the way to our understanding and predicting of the colloidal transport.

Keywords: colloids, migration, multi-technique, speciation, transport, uranium

Procedia PDF Downloads 145
10681 Sustainable Integrated Waste Management System

Authors: Lidia Lombardi

Abstract:

Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.

Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste

Procedia PDF Downloads 62
10680 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field

Authors: Thomas Jin-Chee Liu

Abstract:

In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.

Keywords: compressive stress, crack tip, Joule heating, finite element

Procedia PDF Downloads 409
10679 Crosslinked PVA/Bentonite Clay Nanocomposite Membranes: An Effective Membrane for the Separation of Azeotropic Composition of Isopropanol and Water

Authors: Soney C. George, Thomasukutty Jose, Sabu Thomas

Abstract:

Membrane based separation is the most important energy –efficient separation processes. There are wide ranges of membrane based separation process such as Micro-filtration, ultra filtration, reverse osmosis, electro-dialysis etc. Among these pervaporation is one of the most promising techniques. The promising technique is in the sense that it needs an ease of process design, low energy consumption, environmentally clean, economically cost effective and easily separate azeotropic composition without losing any components, unlike distillation in a short period of time. In the present work, we developed a new bentonite clay reinforced cross-linked PVA nano-composite membranes by solution casting method. The membranes were used for the pervaporation separation of azeotropic composition of isopropanol and water mixtures. The azeotropic composition of water and isopropanol is difficult to separate and we can’t get a better separation by normal separation processes. But the better separation was achieved here using cross-linked PVA/Clay nano-composite membranes. The 2wt% bentonite clay reinforced 5vol% GA cross-linked nano-composite membranes showed better separation efficiency. The selectivity of the cross-linked membranes increases 65% upon filler loading. The water permeance is showed tremendous enhancement upon filler loading. The permeance value changes from 4100 to 8200, due to the incorporation hydrophilic bentonite clay to the cross-linked PVA membranes. The clay reinforced membranes shows better thermal stability upon filler loading was confirmed from TGA and DSC analysis. The dispersion of nanoclay in the polymeric matrix was clearly evident from the TEM analysis. The better dispersed membranes showed better separation performance. Thus the developed cross-linked PVA/Clay membranes can be effectively used for the separation of azeotropic composition of water and isopropanol.

Keywords: poly(vinyl alcohol), membrane, gluraldehyde, permeance

Procedia PDF Downloads 308
10678 BI- And Tri-Metallic Catalysts for Hydrogen Production from Hydrogen Iodide Decomposition

Authors: Sony, Ashok N. Bhaskarwar

Abstract:

Production of hydrogen from a renewable raw material without any co-synthesis of harmful greenhouse gases is the current need for sustainable energy solutions. The sulfur-iodine (SI) thermochemical cycle, using intermediate chemicals, is an efficient process for producing hydrogen at a much lower temperature than that required for the direct splitting of water. No net byproduct forms in the cycle. Hydrogen iodide (HI) decomposition is a crucial reaction in this cycle, as the product, hydrogen, forms only in this step. It is an endothermic, reversible, and equilibrium-limited reaction. The theoretical equilibrium conversion at 550°C is just a meagre of 24%. There is a growing interest, therefore, in enhancing the HI conversion to near-equilibrium values at lower reaction temperatures and by possibly improving the rate. The reaction is relatively slow without a catalyst, and hence catalytic decomposition of HI has gained much significance. Bi-metallic Ni-Co, Ni-Mn, Co-Mn, and tri-metallic Ni-Co-Mn catalysts over zirconia support were tested for HI decomposition reaction. The catalysts were synthesized via a sol-gel process wherein Ni was 3wt% in all the samples, and Co and Mn had equal weight ratios in the Co-Mn catalyst. Powdered X-ray diffraction and Brunauer-Emmett-Teller surface area characterizations indicated the polycrystalline nature and well-developed mesoporous structure of all the samples. The experiments were performed in a vertical laboratory-scale packed bed reactor made of quartz, and HI (55 wt%) was fed along with nitrogen at a WHSV of 12.9 hr⁻¹. Blank experiments at 500°C for HI decomposition suggested conversion of less than 5%. The activities of all the different catalysts were checked at 550°C, and the highest conversion of 23.9% was obtained with the tri-metallic 3Ni-Co-Mn-ZrO₂ catalyst. The decreasing order of the performance of catalysts could be expressed as: 3Ni-Co-Mn-ZrO₂ > 3Ni-2Co-ZrO₂ > 3Ni-2Mn-ZrO₂ > 2.5Co-2.5Mn-ZrO₂. The tri-metallic catalyst remained active till 360 mins at 550°C without any observable drop in its activity/stability. Among the explored catalyst compositions, the tri-metallic catalyst certainly has a better performance for HI conversion when compared to the bi-metallic ones. Owing to their low costs and ease of preparation, these trimetallic catalysts could be used for large-scale hydrogen production.

Keywords: sulfur-iodine cycle, hydrogen production, hydrogen iodide decomposition, bi-, and tri-metallic catalysts

Procedia PDF Downloads 189
10677 Cultural Heritage in Rural Areas: Added Value for Agro-Tourism Development

Authors: Djurdjica Perovic, Sanja Pekovic, Tatjana Stanovcic, Jovana Vukcevic

Abstract:

Tourism development in rural areas calls for a discussion of strategies that would attract more tourists. Several scholars argue that rural areas may become more attractive to tourists by leveraging their cultural heritage. The present paper explores the development of sustainable heritage tourism practices in transitional societies of the Western Balkans, specifically targeting Montenegrin rural areas. It addresses the sustainable tourism as a shift in business paradigm, enhancing the centrality of the host community, fostering the encounters with local culture, customs and heritage and minimizing the environmental and social impact. Disseminating part of the results of the interdisciplinary KATUN project, the paper explores the diversification of economic activities related to the cultural heritage of katuns (temporary settlements in Montenegrin mountainous regions where the agricultural households stay with livestock during the summer season) through sustainable agro-tourism. It addresses the role of heritage tourism in creating more dynamic economy of under-developed mountain areas, new employment opportunities, sources of income for the local community and more balanced regional development, all based on the principle of sustainability. Based on the substantial field research (including interviews with over 50 households and tourists, as well as the number of stakeholders such as relevant Ministries, business communities and media representatives), the paper analyses the strategies employed in raising the awareness and katun-sensitivity of both national and international tourists and stimulating their interest in sustainable agriculture, rural tourism and cultural heritage of Montenegrin mountain regions. Studying the phenomena of responsible tourism and tourists’ consumerist consciousness in Montenegro through development of katuns should allow evaluating stages of sustainability and cultural heritage awareness, closely intertwined with the EU integration processes in the country. Offering deeper insight at the relationship between rural tourism, sustainable agriculture and cultural heritage, the paper aims to understand if cultural heritage of the area is valuable for agro-tourism development and in which context.

Keywords: heritage tourism, sustainable tourism, added value, Montenegro

Procedia PDF Downloads 331
10676 Studying Growth as a Pursuit of Disseminating Social Impact: A Conceptual Study

Authors: Saila Tykkyläinen

Abstract:

The purpose of this study is to pave the way for more focused accumulation of knowledge on social enterprise growth. The body of research touching upon the phenomenon is somewhat fragmented. In order to make an effort to create a solid common ground, this study draws from the theoretical starting points and guidelines developed within small firm growth research. By analyzing their use in social enterprise growth literature, the study offers insights on whether the proven theories and concepts from small firm context could be more systematically applied when investigating growth of social enterprises. Towards this end, the main findings from social enterprise growth research are classified under the three research streams on growth. One of them focuses on factors of growth, another investigates growth as a process and the third is interested in outcomes of growth. During the analysis, special attention is paid on exploring how social mission of the company and the pursuit of augmenting its social impact are dealt within those lines of research. The next step is to scrutinize and discuss some of the central building blocks of growth research, namely the unit of analysis, conceptualization of a firm and operationalizing growth, in relation to social enterprise studies. It appears that the social enterprise growth literature stresses the significance of 'social' both as a main driver and principle outcome of growth. As for the growth process, this emphasis is manifested by special interest in strategies and models tailored to disseminate social impact beyond organizational limits. Consequently, this study promotes more frequent use of business activity as a unit of analysis in the social enterprise context. Most of the times, it is their products, services or programs with which social enterprises and entrepreneurs aim to create the impact. Thus the focus should be placed on activities rather than on organizations. The study also seeks to contribute back to the small firm growth research. Even though the recommendation to think of business activities as an option for unit of analysis stems from there, it is all too rarely used. Social entrepreneurship makes a good case for testing and developing the approach further.

Keywords: conceptual study, growth, scaling, social enterprise

Procedia PDF Downloads 317
10675 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 57
10674 Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative

Authors: Preethi Kumari P., Shetty Prakasha, Rao Suma A.

Abstract:

Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined.

Keywords: electrochemical parameters, EIS, mild steel, tafel polarization

Procedia PDF Downloads 337
10673 Development of a Culturally Safe Wellbeing Intervention Tool for and with the Inuit in Quebec

Authors: Liliana Gomez Cardona, Echo Parent-Racine, Joy Outerbridge, Arlene Laliberté, Outi Linnaranta

Abstract:

Suicide rates among Inuit in Nunavik are six to eleven times larger than the Canadian average. The colonization, religious missions, residential schools as well as economic and political marginalization are factors that have challenged the well-being and mental health of these populations. In psychiatry, screening for mental illness is often done using questionnaires with which the patient is expected to respond how often he/she has certain symptoms. However, the Indigenous view of mental wellbeing may not fit well with this approach. Moreover, biomedical treatments do not always meet the needs of Indigenous peoples because they do not understand the culture and traditional healing methods that persist in many communities. Assess whether the questionnaires used to measure symptoms, commonly used in psychiatry are appropriate and culturally safe for the Inuit in Quebec. Identify the most appropriate tool to assess and promote wellbeing and follow the process necessary to improve its cultural sensitivity and safety for the Inuit population. Qualitative, collaborative, and participatory action research project which respects First Nations and Inuit protocols and the principles of ownership, control, access, and possession (OCAP). Data collection based on five focus groups with stakeholders working with these populations and members of Indigenous communities. Thematic analysis of the data collected and emerging through an advisory group that led a revision of the content, use, and cultural and conceptual relevance of the instruments. The questionnaires measuring psychiatric symptoms face significant limitations in the local indigenous context. We present the factors that make these tools not relevant among Inuit. Although the scale called Growth and Empowerment Measure (GEM) was originally developed among Indigenous in Australia, the Inuit in Quebec found that this tool comprehends critical aspects of their mental health and wellbeing more respectfully and accurately than questionnaires focused on measuring symptoms. We document the process of cultural adaptation of this tool which was supported by community members to create a culturally safe tool that helps in resilience and empowerment. The cultural adaptation of the GEM provides valuable information about the factors affecting wellbeing and contributes to mental health promotion. This process improves mental health services by giving health care providers useful information about the Inuit population and their clients. We believe that integrating this tool in interventions can help create a bridge to improve communication between the Indigenous cultural perspective of the patient and the biomedical view of health care providers. Further work is needed to confirm the clinical utility of this tool in psychological and psychiatric intervention along with social and community services.

Keywords: cultural adaptation, cultural safety, empowerment, Inuit, mental health, Nunavik, resiliency

Procedia PDF Downloads 119
10672 Mental Contrasting with Implementation Intentions: A Metacognitive Strategy on Educational Context

Authors: Paula Paulino, Alzira Matias, Ana Margarida Veiga Simão

Abstract:

Self-regulated learning (SRL) directs students in analyzing proposed tasks, setting goals and designing plans to achieve those goals. The literature has suggested a metacognitive strategy for goal attainment known as Mental Contrasting with Implementation Intentions (MCII). This strategy involves Mental Contrasting (MC), in which a significant goal and an obstacle are identified, and Implementation Intentions (II), in which an "if... then…" plan is conceived and operationalized to overcome that obstacle. The present study proposes to assess the MCII process and whether it promotes students’ commitment towards learning goals during school tasks in sciences subjects. In this investigation, we intended to study the MCII strategy in a systemic context of the classroom. Fifty-six students from middle school and secondary education attending a public school in Lisbon (Portugal) participated in the study. The MCII strategy was explicitly taught in a procedure that included metacognitive modeling, guided practice and autonomous practice of strategy. A mental contrast between a goal they wanted to achieve and a possible obstacle to achieving that desire was instructed, and then the formulation of plans in order to overcome the obstacle identified previously. The preliminary results suggest that the MCII metacognitive strategy, applied to the school context, leads to more sophisticated reflections, the promotion of learning goals and the elaboration of more complex and specific self-regulated plans. Further, students achieve better results on school tests and worksheets after strategy practice. This study presents important implications since the MCII has been related to improved outcomes and increased attendance. Additionally, MCII seems to be an innovative process that captures students’ efforts to learn and enhances self-efficacy beliefs during learning tasks.

Keywords: implementation intentions, learning goals, mental contrasting, metacognitive strategy, self-regulated learning

Procedia PDF Downloads 246
10671 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment

Authors: Fatma Ünal, Hasancan Okutan

Abstract:

Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).

Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.

Procedia PDF Downloads 68
10670 Wireless Gyroscopes for Highly Dynamic Objects

Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev

Abstract:

Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.

Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing

Procedia PDF Downloads 367
10669 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 120
10668 Static Test Pad for Solid Rocket Motors

Authors: Svanik Garg

Abstract:

Static Test Pads are stationary mechanisms that hold a solid rocket motor, measuring the different parameters of its operation including thrust and temperature to better calibrate it for launch. This paper outlines a specific STP designed to test high powered rocket motors with a thrust upwards of 4000N and limited to 6500N. The design includes a specific portable mechanism with cost an integral part of the design process to make it accessible to small scale rocket developers with limited resources. Using curved surfaces and an ergonomic design, the STP has a delicately engineered façade/case with a focus on stability and axial calibration of thrust. This paper describes the design, operation and working of the STP and its widescale uses given the growing market of aviation enthusiasts. Simulations on the CAD model in Fusion 360 provided promising results with a safety factor of 2 established and stress limited along with the load coefficient A PCB was also designed as part of the test pad design process to help obtain results, with visual output and various virtual terminals to collect data of different parameters. The circuitry was simulated using ‘proteus’ and a special virtual interface with auditory commands was also created for accessibility and wide-scale implementation. Along with this description of the design, the paper also emphasizes the design principle behind the STP including a description of its vertical orientation to maximize thrust accuracy along with a stable base to prevent micromovements. Given the rise of students and professionals alike building high powered rockets, the STP described in this paper is an appropriate option, with limited cost, portability, accuracy, and versatility. There are two types of STP’s vertical or horizontal, the one discussed in this paper is vertical to utilize the axial component of thrust.

Keywords: static test pad, rocket motor, thrust, load, circuit, avionics, drag

Procedia PDF Downloads 389
10667 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique

Authors: Manar Al-Ateeq

Abstract:

The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.

Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)

Procedia PDF Downloads 179
10666 Optimisation of Dyes Decolourisation by Bacillus aryabhattai

Authors: A. Paz, S. Cortés Diéguez, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l.

Keywords: Bacillus aryabhattai, dyes, decolourisation, central composite design

Procedia PDF Downloads 223
10665 Urban Open Source: Synthesis of a Citizen-Centric Framework to Design Densifying Cities

Authors: Shaurya Chauhan, Sagar Gupta

Abstract:

Prominent urbanizing centres across the globe like Delhi, Dhaka, or Manila have exhibited that development often faces a challenge in bridging the gap among the top-down collective requirements of the city and the bottom-up individual aspirations of the ever-diversifying population. When this exclusion is intertwined with rapid urbanization and diversifying urban demography: unplanned sprawl, poor planning, and low-density development emerge as automated responses. In parallel, new ideas and methods of densification and public participation are being widely adopted as sustainable alternatives for the future of urban development. This research advocates a collaborative design method for future development: one that allows rapid application with its prototypical nature and an inclusive approach with mediation between the 'user' and the 'urban', purely with the use of empirical tools. Building upon the concepts and principles of 'open-sourcing' in design, the research establishes a design framework that serves the current user requirements while allowing for future citizen-driven modifications. This is synthesized as a 3-tiered model: user needs – design ideology – adaptive details. The research culminates into a context-responsive 'open source project development framework' (hereinafter, referred to as OSPDF) that can be used for on-ground field applications. To bring forward specifics, the research looks at a 300-acre redevelopment in the core of a rapidly urbanizing city as a case encompassing extreme physical, demographic, and economic diversity. The suggestive measures also integrate the region’s cultural identity and social character with the diverse citizen aspirations, using architecture and urban design tools, and references from recognized literature. This framework, based on a vision – feedback – execution loop, is used for hypothetical development at the five prevalent scales in design: master planning, urban design, architecture, tectonics, and modularity, in a chronological manner. At each of these scales, the possible approaches and avenues for open- sourcing are identified and validated, through hit-and-trial, and subsequently recorded. The research attempts to re-calibrate the architectural design process and make it more responsive and people-centric. Analytical tools such as Space, Event, and Movement by Bernard Tschumi and Five-Point Mental Map by Kevin Lynch, among others, are deep rooted in the research process. Over the five-part OSPDF, a two-part subsidiary process is also suggested after each cycle of application, for a continued appraisal and refinement of the framework and urban fabric with time. The research is an exploration – of the possibilities for an architect – to adopt the new role of a 'mediator' in development of the contemporary urbanity.

Keywords: open source, public participation, urbanization, urban development

Procedia PDF Downloads 156
10664 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities

Authors: K. Shailaja

Abstract:

The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.

Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala

Procedia PDF Downloads 432
10663 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 102
10662 Dissolved Black Carbon Accelerates the Photo-Degradation of Polystyrene Microplastics

Authors: Qin Ou, Yanghui Xu, Xintu Wang, Kim Maren Lompe, Gang Liu, Jan Peter Van Der Hoek

Abstract:

Microplastics (MPs) can undergo the photooxidation process under ultraviolet (UV) exposure, which determines their transformation and fate in environments. The presence of dissolved organic matter (DOM) can interact with MPs and take participate in the photo-degradation of MPs. As an important DOM component, dissolved black carbon (DBC), widely distributed in aquatic environments, can accelerate or inhibit the sunlight-driven photo-transformation of environmental pollutants. However, the role and underlying mechanism of DBC in the photooxidation of MPs are not clear. Herein, the DBC (< 0.45 µm) was extracted from wood biochar and fractionated by molecular weight (i.e., <3 KDa, 3 KDa−30 KDa, 30 KDa−0.45 µm). The effects of DBC chemical composition (i.e., molecular weight and chemical structure) in DBC-mediated photo-transformation of polystyrene (PS) MPs were investigated. The results showed that DBC initially inhibited the photo-degradation of MPs due to light shielding. Under UV exposure for 6−24 h, the presence of 5 mg/L DBC decreased the carbonyl index of MPs compared to the control. This inhibitory effect of DBC was found to decrease with increasing irradiation time. Notably, DBC initially decreased but then increased the hydroxyl index with aging time, suggesting that the role of DBC may shift from inhibition to acceleration. In terms of the different DBC fractions, the results showed that the smallest fraction of DBC (<3 KDa) significantly accelerated the photooxidation of PS MPs since it acted as reactive oxygen species (ROS) generators, especially in promoting the production of ¹O₂ and ³DBC* and •OH. With the increase in molecular weight, the acceleration effect of DBC on the degradation of MPs was decreased due to the increase of light shielding and possible decrease of photosensitization ability. This study thoroughly investigated the critical role of DBC chemical composition in the photooxidation process, which helps to assess the duration of aging and transformation of MPs during long-term weathering in natural waters.

Keywords: microplastics, photo-degradation, dissolved black carbon, molecular weight, photosensitization

Procedia PDF Downloads 80
10661 Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process

Authors: Akmez Nabeerasool, Michaelis Massaros, Nigel Brown, David Sanderson, David Parocki, Charlotte Thompson, Mike Lodge, Mikael Khan

Abstract:

The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour.

Keywords: Arvia™ process, adsorption, water treatment, electrochemical oxidation

Procedia PDF Downloads 265