Search results for: drift flow model
13664 The Prototype of the Solar Energy Utilization for the Finding Sustainable Conditions in the Future: The Solar Community with 4000 Dwellers 960 Families, equal to 480 Solar Dwelling Houses and 32 Mansion Buildings (480 Dwellers)
Authors: Kunihisa Kakumoto
Abstract:
This technical paper is for the prototype of solar energy utilization for finding sustainable conditions. This model has been simulated under the climate conditions in Japan. At the beginning of the study, the solar model house was built up on site. And the concerned data was collected in this model house for several years. On the basis of these collected data, the concept on the solar community was built up. For the finding sustainable conditions, the amount of the solar energy generation and its reduction of carbon dioxide and the reduction of carbon dioxide by the green planting and the amount of carbon dioxide according to the normal daily life in the solar community and the amount of the necessary water for the daily life in the solar community and the amount of the water supply by the rainfall on-site were calculated. These all values were taken into consideration. The relations between each calculated result are shown in the expression of inequality. This solar community and its consideration for finding sustainable conditions can be one prototype to do the feasibility study for our life in the futureKeywords: carbon dioxide, green planting, smart city, solar community, sustainable condition, water activity
Procedia PDF Downloads 28713663 An Information Matrix Goodness-of-Fit Test of the Conditional Logistic Model for Matched Case-Control Studies
Authors: Li-Ching Chen
Abstract:
The case-control design has been widely applied in clinical and epidemiological studies to investigate the association between risk factors and a given disease. The retrospective design can be easily implemented and is more economical over prospective studies. To adjust effects for confounding factors, methods such as stratification at the design stage and may be adopted. When some major confounding factors are difficult to be quantified, a matching design provides an opportunity for researchers to control the confounding effects. The matching effects can be parameterized by the intercepts of logistic models and the conditional logistic regression analysis is then adopted. This study demonstrates an information-matrix-based goodness-of-fit statistic to test the validity of the logistic regression model for matched case-control data. The asymptotic null distribution of this proposed test statistic is inferred. It needs neither to employ a simulation to evaluate its critical values nor to partition covariate space. The asymptotic power of this test statistic is also derived. The performance of the proposed method is assessed through simulation studies. An example of the real data set is applied to illustrate the implementation of the proposed method as well.Keywords: conditional logistic model, goodness-of-fit, information matrix, matched case-control studies
Procedia PDF Downloads 29213662 Grammar as a Logic of Labeling: A Computer Model
Authors: Jacques Lamarche, Juhani Dickinson
Abstract:
This paper introduces a computational model of a Grammar as Logic of Labeling (GLL), where the lexical primitives of morphosyntax are phonological matrixes, the form of words, understood as labels that apply to realities (or targets) assumed to be outside of grammar altogether. The hypothesis is that even though a lexical label relates to its target arbitrarily, this label in a complex (constituent) label is part of a labeling pattern which, depending on its value (i.e., N, V, Adj, etc.), imposes language-specific restrictions on what it targets outside of grammar (in the world/semantics or in cognitive knowledge). Lexical forms categorized as nouns, verbs, adjectives, etc., are effectively targets of labeling patterns in use. The paper illustrates GLL through a computer model of basic patterns in English NPs. A constituent label is a binary object that encodes: i) alignment of input forms so that labels occurring at different points in time are understood as applying at once; ii) endocentric structuring - every grammatical constituent has a head label that determines the target of the constituent, and a limiter label (the non-head) that restricts this target. The N or A values are restricted to limiter label, the two differing in terms of alignment with a head. Consider the head initial DP ‘the dog’: the label ‘dog’ gets an N value because it is a limiter that is evenly aligned with the head ‘the’, restricting application of the DP. Adapting a traditional analysis of ‘the’ to GLL – apply label to something familiar – the DP targets and identifies one reality familiar to participants by applying to it the label ‘dog’ (singular). Consider next the DP ‘the large dog’: ‘large dog’ is nominal by even alignment with ‘the’, as before, and since ‘dog’ is the head of (head final) ‘large dog’, it is also nominal. The label ‘large’, however, is adjectival by narrow alignment with the head ‘dog’: it doesn’t target the head but targets a property of what dog applies to (a property or value of attribute). In other words, the internal composition of constituents determines that a form targets a property or a reality: ‘large’ and ‘dog’ happen to be valid targets to realize this constituent. In the presentation, the computer model of the analysis derives the 8 possible sequences of grammatical values with three labels after the determiner (the x y z): 1- D [ N [ N N ]]; 2- D [ A [ N N ] ]; 3- D [ N [ A N ] ]; 4- D [ A [ A N ] ]; 5- D [ [ N N ] N ]; 5- D [ [ A N ] N ]; 6- D [ [ N A ] N ] 7- [ [ N A ] N ] 8- D [ [ Adv A ] N ]. This approach that suggests that a computer model of these grammatical patterns could be used to construct ontologies/knowledge using speakers’ judgments about the validity of lexical meaning in grammatical patterns.Keywords: syntactic theory, computational linguistics, logic and grammar, semantics, knowledge and grammar
Procedia PDF Downloads 3813661 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 19313660 Proposal of a Model Supporting Decision-Making on Information Security Risk Treatment
Authors: Ritsuko Kawasaki, Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Therefore, this paper provides a model which supports the selection of measures by applying multi-objective analysis to find an optimal solution. Additionally, a list of measures is also provided to make the selection easier and more effective without any leakage of measures.Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization
Procedia PDF Downloads 37913659 Financial Inclusion for Inclusive Growth in an Emerging Economy
Authors: Godwin Chigozie Okpara, William Chimee Nwaoha
Abstract:
The paper set out to stress on how financial inclusion index could be calculated and also investigated the impact of inclusive finance on inclusive growth in an emerging economy. In the light of these objectives, chi-wins method was used to calculate indexes of financial inclusion while co-integration and error correction model were used for evaluation of the impact of financial inclusion on inclusive growth. The result of the analysis revealed that financial inclusion while having a long-run relationship with GDP growth is an insignificant function of the growth of the economy. The speed of adjustment is correctly signed and significant. On the basis of these results, the researchers called for tireless efforts of government and banking sector in promoting financial inclusion in developing countries.Keywords: chi-wins index, co-integration, error correction model, financial inclusion
Procedia PDF Downloads 65313658 Intelligent Diagnostic System of the Onboard Measuring Devices
Authors: Kyaw Zin Htut
Abstract:
In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis
Procedia PDF Downloads 40013657 A Study of Social Media Users’ Switching Behavior
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.Keywords: social media, switching, social media fatigue, alternative attractiveness
Procedia PDF Downloads 14013656 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 34413655 Study the Relationship amongst Digital Finance, Renewable Energy, and Economic Development of Least Developed Countries
Authors: Fatima Sohail, Faizan Iftikhar
Abstract:
This paper studies the relationship between digital finance, renewable energy, and the economic development of Pakistan and least developed countries from 2000 to 2022. The paper used panel analysis and generalized method of moments Arellano-Bond approaches. The findings show that under the growth model, renewable energy (RE) has a strong and favorable link with fixed broadband and mobile subscribers. However, FB and MD have a strong but negative association with the uptake of renewable energy (RE) in the average and simple model. This paper provides valuable insights for policymakers, investors of the digital economy.Keywords: digital finance, renewable energy, economic development, mobile subscription, fixed broadband
Procedia PDF Downloads 4013654 Thermal Radiation and Chemical Reaction Effects on MHD Casson Fluid Past a Permeable Stretching Sheet in a Porous Medium
Authors: Y. Sunita Rani, Y. Hari Krishna, M. V. Ramana Murthy, K. Sudhaker Reddy
Abstract:
This article studied effects of radiation and chemical reaction on MHD casson fluoid flow past a Permeable Stretching Sheet in a Porous Medium. Suitable transformations are considered to transform the governing partial differential equations as ordinary ones and then solved by the numerical procedures like Runge- Kutta – Fehlberg shooting technique method. The effects of various governing parameters, on the velocity, temperature and concentration are displayed through graphs and discussed numerically.Keywords: MHD, Casson fluid, porous medium, permeable stretching sheet
Procedia PDF Downloads 12713653 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling
Procedia PDF Downloads 17513652 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate
Procedia PDF Downloads 12513651 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser
Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt
Abstract:
This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet
Procedia PDF Downloads 21413650 A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 10013649 Supplier Relationship Management Model for Sme’s E-Commerce Transaction Broker Case Study: Hotel Rooms Provider
Authors: Veronica S. Moertini, Niko Ibrahim, Verliyantina
Abstract:
As market intermediary firms, e-commerce transaction broker firms need to strongly collaborate with suppliers in order to develop brands seek by customers. Developing suitable electronic Supplier Relationship Management (e-SRM) system is the solution to the need. In this paper, we propose our concept of e-SRM for transaction brokers owned by small medium enterprises (SMEs), which includes the integrated e-SRM and e-CRM architecture, the e-SRM applications with their functions. We then discuss the customization and implementation of the proposed e-SRM model in a specific transaction broker selling hotel rooms, which owned by an SME, KlikHotel.com. The implementation of the e-SRM in KlikHotel.com has been successfully boosting the number of suppliers (hotel members) and hotel room sales.Keywords: e-CRM, e-SRM, SME, transaction broker
Procedia PDF Downloads 50013648 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling
Authors: M. J. Gibbons, A. J. Robinson
Abstract:
Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling
Procedia PDF Downloads 39713647 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor
Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah
Abstract:
In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope
Procedia PDF Downloads 28713646 Production Factor Coefficients Transition through the Lens of State Space Model
Authors: Kanokwan Chancharoenchai
Abstract:
Economic growth can be considered as an important element of countries’ development process. For developing countries, like Thailand, to ensure the continuous growth of the economy, the Thai government usually implements various policies to stimulate economic growth. They may take the form of fiscal, monetary, trade, and other policies. Because of these different aspects, understanding factors relating to economic growth could allow the government to introduce the proper plan for the future economic stimulating scheme. Consequently, this issue has caught interest of not only policymakers but also academics. This study, therefore, investigates explanatory variables for economic growth in Thailand from 2005 to 2017 with a total of 52 quarters. The findings would contribute to the field of economic growth and become helpful information to policymakers. The investigation is estimated throughout the production function with non-linear Cobb-Douglas equation. The rate of growth is indicated by the change of GDP in the natural logarithmic form. The relevant factors included in the estimation cover three traditional means of production and implicit effects, such as human capital, international activity and technological transfer from developed countries. Besides, this investigation takes the internal and external instabilities into account as proxied by the unobserved inflation estimation and the real effective exchange rate (REER) of the Thai baht, respectively. The unobserved inflation series are obtained from the AR(1)-ARCH(1) model, while the unobserved REER of Thai baht is gathered from naive OLS-GARCH(1,1) model. According to empirical results, the AR(|2|) equation which includes seven significant variables, namely capital stock, labor, the imports of capital goods, trade openness, the REER of Thai baht uncertainty, one previous GDP, and the world financial crisis in 2009 dummy, presents the most suitable model. The autoregressive model is assumed constant estimator that would somehow cause the unbias. However, this is not the case of the recursive coefficient model from the state space model that allows the transition of coefficients. With the powerful state space model, it provides the productivity or effect of each significant factor more in detail. The state coefficients are estimated based on the AR(|2|) with the exception of the one previous GDP and the 2009 world financial crisis dummy. The findings shed the light that those factors seem to be stable through time since the occurrence of the world financial crisis together with the political situation in Thailand. These two events could lower the confidence in the Thai economy. Moreover, state coefficients highlight the sluggish rate of machinery replacement and quite low technology of capital goods imported from abroad. The Thai government should apply proactive policies via taxation and specific credit policy to improve technological advancement, for instance. Another interesting evidence is the issue of trade openness which shows the negative transition effect along the sample period. This could be explained by the loss of price competitiveness to imported goods, especially under the widespread implementation of free trade agreement. The Thai government should carefully handle with regulations and the investment incentive policy by focusing on strengthening small and medium enterprises.Keywords: autoregressive model, economic growth, state space model, Thailand
Procedia PDF Downloads 15113645 Study of the Hydrodynamic of Electrochemical Ion Pumping for Lithium Recovery
Authors: Maria Sofia Palagonia, Doriano Brogioli, Fabio La Mantia
Abstract:
In the last decade, lithium has become an important raw material in various sectors, in particular for rechargeable batteries. Its production is expected to grow more and more in the future, especially for mobile energy storage and electromobility. Until now it is mostly produced by the evaporation of water from salt lakes, which led to a huge water consumption, a large amount of waste produced and a strong environmental impact. A new, clean and faster electrochemical technique to recover lithium has been recently proposed: electrochemical ion pumping. It consists in capturing lithium ions from a feed solution by intercalation in a lithium-selective material, followed by releasing them into a recovery solution; both steps are driven by the passage of a current. In this work, a new configuration of the electrochemical cell is presented, used to study and optimize the process of the intercalation of lithium ions through the hydrodynamic condition. Lithium Manganese Oxide (LiMn₂O₄) was used as a cathode to intercalate lithium ions selectively during the reduction, while Nickel Hexacyano Ferrate (NiHCF), used as an anode, releases positive ion. The effect of hydrodynamics on the process has been studied by conducting the experiments at various fluxes of the electrolyte through the electrodes, in terms of charge circulated through the cell, captured lithium per unit mass of material and overvoltage. The result shows that flowing the electrolyte inside the cell improves the lithium capture, in particular at low lithium concentration. Indeed, in Atacama feed solution, at 40 mM of lithium, the amount of lithium captured does not increase considerably with the flux of the electrolyte. Instead, when the concentration of the lithium ions is 5 mM, the amount of captured lithium in a single capture cycle increases by increasing the flux, thus leading to the conclusion that the slowest step in the process is the transport of the lithium ion in the liquid phase. Furthermore, an influence of the concentration of other cations in solution on the process performance was observed. In particular, the capturing of the lithium using a different concentration of NaCl together with 5 mM of LiCl was performed, and the results show that the presence of NaCl limits the amount of the captured lithium. Further studies can be performed in order to understand why the full capacity of the material is not reached at the highest flow rate. This is probably due to the porous structure of the material since the liquid phase is likely not affected by the convection flow inside the pores. This work proves that electrochemical ion pumping, with a suitable hydrodynamic design, enables the recovery of lithium from feed solutions at the lower concentration than the sources that are currently exploited, down to 1 mM.Keywords: desalination battery, electrochemical ion pumping, hydrodynamic, lithium
Procedia PDF Downloads 20813644 Analysis on Yogyakarta Istimewa Citygates on Urban Area Arterial Roads
Authors: Nizar Caraka Trihanasia, Suparwoko
Abstract:
The purpose of this paper is to analyze the design model of city gates on arterial roads as Yogyakarta’s “Istimewa” (special) identity. City marketing has become a trend among cities in the past few years. It began to compete with each other in promoting their identity to the world. One of the easiest ways to recognize the identity is by knowing the image of the city which can be seen through architectural buildings or urban elements. The idea is to recognize how the image of the city can represent Yogyakarta’s identity, which is limited to the contribution of the city gates distinctiveness on Yogyakarta urban area. This study has concentrated on the aspect of city gates as built environment that provides a diversity, configuration and scale of development that promotes a sense of place and community. The visual analysis will be conducted to interpreted the existing Yogyakarta city gates (as built environment) focussing on some variables of 1) character and pattern, 2) circulation system establishment, and 3) open space utilisation. Literature review and site survey are also conducted to understand the relationship between the built environment and the sense of place in the community. This study suggests that visually the Yogyakarta city gate model has strong visual characters and pattern by using the concept of a sense of place of Yogyakarta community value.Keywords: visual analysis, model, Yogyakarta “Istimewa”, citygates
Procedia PDF Downloads 25813643 An Integrated Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) Model
Authors: Babak Daneshvar Rouyendegh
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: Decision-Makers (DMs), Multi-Criteria Decision-Making (MCDM), Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE), Intuitionistic Fuzzy Numbers (IFN)
Procedia PDF Downloads 67813642 Modeling of Hydrogen Production by Inductively Coupled Methane Plasma for Input Power Pin=700W
Authors: Abdelatif Gadoum, Djilali Benyoucef, Mouloudj Hadj, Alla Eddine Toubal Maamar, Mohamed Habib Allah Lahoual
Abstract:
Hydrogen occurs naturally in the form of chemical compounds, most often in water and hydrocarbons. The main objective of this study is 2D modeling of hydrogen production in inductively coupled plasma in methane at low pressure. In the present model, we include the motions and the collisions of both neutral and charged particles by considering 19 species (i.e in total ; neutrals, radicals, ions, and electrons), and more than 120 reactions (electron impact with methane, neutral-neutral, neutral-ions and surface reactions). The results show that the rate conversion of methane reach 90% and the hydrogen production is about 30%.Keywords: hydrogen production, inductively coupled plasma, fluid model, methane plasma
Procedia PDF Downloads 16413641 Using RASCAL Code to Analyze the Postulated UF6 Fire Accident
Authors: J. R. Wang, Y. Chiang, W. S. Hsu, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih, Y. F. Chang, Y. H. Huang, B. R. Shen
Abstract:
In this research, the RASCAL code was used to simulate and analyze the postulated UF6 fire accident which may occur in the Institute of Nuclear Energy Research (INER). There are four main steps in this research. In the first step, the UF6 data of INER were collected. In the second step, the RASCAL analysis methodology and model was established by using these data. Third, this RASCAL model was used to perform the simulation and analysis of the postulated UF6 fire accident. Three cases were simulated and analyzed in this step. Finally, the analysis results of RASCAL were compared with the hazardous levels of the chemicals. According to the compared results of three cases, Case 3 has the maximum danger in human health.Keywords: RASCAL, UF₆, safety, hydrogen fluoride
Procedia PDF Downloads 22213640 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata
Authors: Tanmay Bisen, Aastha Shayla
Abstract:
This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection
Procedia PDF Downloads 5613639 Application of Neural Petri Net to Electric Control System Fault Diagnosis
Authors: Sadiq J. Abou-Loukh
Abstract:
The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.Keywords: petri net, neural petri net, electric control system, fault diagnosis
Procedia PDF Downloads 47413638 Improving the Uptake of Community-Based Multidrug-Resistant Tuberculosis Treatment Model in Nigeria
Authors: A. Abubakar, A. Parsa, S. Walker
Abstract:
Despite advances made in the diagnosis and management of drug-sensitive tuberculosis (TB) over the past decades, treatment of multidrug-resistant tuberculosis (MDR-TB) remains challenging and complex particularly in high burden countries including Nigeria. Treatment of MDR-TB is cost-prohibitive with success rate generally lower compared to drug-sensitive TB and if care is not taken it may become the dominant form of TB in future with many treatment uncertainties and substantial morbidity and mortality. Addressing these challenges requires collaborative efforts thorough sustained researches to evaluate the current treatment guidelines, particularly in high burden countries and prevent progression of resistance. To our best knowledge, there has been no research exploring the acceptability, effectiveness, and cost-effectiveness of community-based-MDR-TB treatment model in Nigeria, which is among the high burden countries. The previous similar qualitative study looks at the home-based management of MDR-TB in rural Uganda. This research aimed to explore patient’s views and acceptability of community-based-MDR-TB treatment model and to evaluate and compare the effectiveness and cost-effectiveness of community-based versus hospital-based MDR-TB treatment model of care from the Nigerian perspective. Knowledge of patient’s views and acceptability of community-based-MDR-TB treatment approach would help in designing future treatment recommendations and in health policymaking. Accordingly, knowledge of effectiveness and cost-effectiveness are part of the evidence needed to inform a decision about whether and how to scale up MDR-TB treatment, particularly in a poor resource setting with limited knowledge of TB. Mixed methods using qualitative and quantitative approach were employed. Qualitative data were obtained using in-depth semi-structured interviews with 21 MDR-TB patients in Nigeria to explore their views and acceptability of community-based MDR-TB treatment model. Qualitative data collection followed an iterative process which allowed adaptation of topic guides until data saturation. In-depth interviews were analyzed using thematic analysis. Quantitative data on treatment outcomes were obtained from medical records of MDR-TB patients to determine the effectiveness and direct and indirect costs were obtained from the patients using validated questionnaire and health system costs from the donor agencies to determine the cost-effectiveness difference between community and hospital-based model from the Nigerian perspective. Findings: Some themes have emerged from the patient’s perspectives indicating preference and high acceptability of community-based-MDR-TB treatment model by the patients and mixed feelings about the risk of MDR-TB transmission within the community due to poor infection control. The result of the modeling from the quantitative data is still on course. Community-based MDR-TB care was seen as the acceptable and most preferred model of care by the majority of the participants because of its convenience which in turn enhanced recovery, enables social interaction and offer more psychosocial benefits as well as averted productivity loss. However, there is a need to strengthen this model of care thorough enhanced strategies that ensure guidelines compliance and infection control in order to prevent the progression of resistance and curtail community transmission.Keywords: acceptability, cost-effectiveness, multidrug-resistant TB treatment, community and hospital approach
Procedia PDF Downloads 12213637 Model-Viewer for Setting Interactive 3D Objects of Electronic Devices and Systems
Authors: Julio Brégains, Ángel Carro, José-Manuel Andión
Abstract:
Virtual 3D objects constitute invaluable tools for teaching practical engineering subjects at all -from basic to advanced- educational levels. For instance, they can be equipped with animation or informative labels, manipulated by mouse movements, and even be immersed in a real environment through augmented reality. In this paper, we present the investigation and description of a set of applications prepared for creating, editing, and making use of interactive 3D models to represent electric and electronic devices and systems. Several examples designed with the described tools are exhibited, mainly to show their capabilities as educational technological aids, applicable not only to the field of electricity and electronics but also to a much wider range of technical areas.Keywords: educational technology, Google model viewer, ICT educational tools, interactive teaching, new tools for teaching
Procedia PDF Downloads 7513636 Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir
Authors: Sukruthai Sapniwat, Falan Srisuriyachai
Abstract:
Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process.Keywords: enhanced oil recovery technology, polymer adsorption and desorption, polymer flooding, reservoir simulation
Procedia PDF Downloads 33013635 Analysis of Compressive and Tensile Response of Pumpkin Flesh, Peel and Unpeeled Tissues Using Experimental and FEA
Authors: Maryam Shirmohammadi, Prasad K. D. V. Yarlagadda, YuanTong Gu
Abstract:
The mechanical damage on the agricultural crop during and after harvesting can create high volume of damage on tissue. Uniaxial compression and tensile loading were performed on flesh and peel samples of pumpkin. To investigate the structural changes on the tissue, Scanning Electron Microscopy (SEM) was used to capture the cellular structure change before and after loading on tissue for tensile, compression and indentation tests. To obtain required mechanical properties of tissue for the finite element analysis (FEA) model, laser measurement sensors were used to record the lateral displacement of tissue under the compression loading. Uniaxial force versus deformation data were recorded using Universal Testing Machine for both tensile and compression tests. The experimental Results were employed to develop a material model with failure criteria. The results obtained by the simulation were compared with those obtained by experiments. Note that although modelling food materials’ behaviour is not a new concept however, majority of previous studies focused on elastic behaviour and damages under linear limit, this study, however, has developed FEA models for tensile and compressive loading of pumpkin flesh and peel samples using, as the first study, both elastic and elasto-plastic material types. In addition, pumpkin peel and flesh tissues were considered as two different materials with different properties under mechanical loadings. The tensile and compression loadings were used to develop the material model for a composite structure for FEA model of mechanical peeling of pumpkin as a tough skinned vegetable.Keywords: compressive and tensile response, finite element analysis, poisson’s ratio, elastic modulus, elastic and plastic response, rupture and bio-yielding
Procedia PDF Downloads 331