Search results for: accuracy ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8085

Search results for: accuracy ratio

1725 Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models

Authors: Shay Kee Tan, Kok Haur Ng, Jennifer So-Kuen Chan

Abstract:

This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts.

Keywords: range-based volatility, correlation, multivariate CARR-return model, value-at-risk, conditional value-at-risk

Procedia PDF Downloads 98
1724 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. A most important factor contributing to this effect is the existence of influential users, who have developed a reputation for their awareness and experience on specific subjects. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is based on the pioneering work of Katz and Lazarsfeld (1959), who created the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 136
1723 The Impact Of Sedimentary Heterogeneity On Oil Recovery In Basin-plain Turbidite: An Outcrop Analogue Simulation Case Study

Authors: Bayonle Abiola Omoniyi

Abstract:

In turbidite reservoirs with volumetrically significant thin-bedded turbidites (TBTs), thin-pay intervals may be underestimated during calculation of reserve volume due to poor vertical resolution of conventional well logs. This paper demonstrates the strong control of bed-scale sedimentary heterogeneity on oil recovery using six facies distribution scenarios that were generated from outcrop data from the Eocene Itzurun Formation, Basque Basin (northern Spain). The variable net sand volume in these scenarios serves as a primary source of sedimentary heterogeneity impacting sandstone-mudstone ratio, sand and shale geometry and dimensions, lateral and vertical variations in bed thickness, and attribute indices. The attributes provided input parameters for modeling the scenarios. The models are 20-m (65.6 ft) thick. Simulation of the scenarios reveals that oil production is markedly enhanced where degree of sedimentary heterogeneity and resultant permeability contrast are low, as exemplified by Scenarios 1, 2, and 3. In these scenarios, bed architecture encourages better apparent vertical connectivity across intervals of laterally continuous beds. By contrast, low net-to-gross Scenarios 4, 5, and 6, have rapidly declining oil production rates and higher water cut with more oil effectively trapped in low-permeability layers. These scenarios may possess enough lateral connectivity to enable injected water to sweep oil to production well; such sweep is achieved at a cost of high-water production. It is therefore imperative to consider not only net-to-gross threshold but also facies stack pattern and related attribute indices to better understand how to effectively manage water production for optimum oil recovery from basin-plain reservoirs.

Keywords: architecture, connectivity, modeling, turbidites

Procedia PDF Downloads 22
1722 Evaluation of Mechanical Behavior of Laser Cladding in Various Tilting Pad Bearing Materials

Authors: Si-Geun Choi, Hoon-Jae Park, Jung-Woo Cho, Jin-Ho Lim, Jin-Young Park, Joo-Young Oh, Jae-Il Jeong Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim

Abstract:

The tilting pad bearing is a kind of the fluid film bearing and it can contribute to the high speed and the high load performance compared to other bearings including the rolling element bearing. Furthermore, the tilting bearing has many advantages such as high stability at high-speed performance, long life, high damping, high impact resistance and low noise. Therefore, it mostly used in mid to large size turbomachines, despite the high price disadvantage. Recently, manufacture and process employing laser techniques advancing at a fast-growing rate in mechanical industry, the dissimilar metal weld process employing laser techniques is actively studied. Moreover, also, Industry fields try to apply for welding the white metal and the back metal using laser cladding method for high durability. Furthermore, it has followed that laser cladding method has a lot better bond strength, toughness, anti-abrasion and environment-friendly than centrifugal casting method through preceding research. Therefore, the laser cladding method has a lot better quality, cost reduction, eco-friendliness and permanence of technology than the centrifugal casting method or the gravity casting method. In this study, we compare the mechanical properties of different bearing materials by evaluating the behavior of laser cladding layer with various materials (i.e. SS400, SCM440, S20C) under the same parameters. Furthermore, we analyze the porosity of various tilting pad bearing materials which white metal treated on samples. SEM, EDS analysis and hardness tests of three materials are shown to understand the mechanical properties and tribological behavior. W/D ratio, surface roughness results with various materials are performed in this study.

Keywords: laser cladding, tilting pad bearing, white metal, mechanical properties

Procedia PDF Downloads 378
1721 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 230
1720 Quantification of Factors Contributing to Wave-In-Deck on Fixed Jacket Platforms

Authors: C. Y. Ng, A. M. Johan, A. E. Kajuputra

Abstract:

Wave-in-deck phenomenon for fixed jacket platforms at shallow water condition has been reported as a notable risk to the workability and reliability of the platform. Reduction in reservoir pressure, due to the extraction of hydrocarbon for an extended period of time, has caused the occurrence of seabed subsidence. Platform experiencing subsidence promotes reduction of air gaps, which eventually allows the waves to attack the bottom decks. The impact of the wave-in-deck generates additional loads to the structure and therefore increases the values of the moment arms. Higher moment arms trigger instability in terms of overturning, eventually decreases the reserve strength ratio (RSR) values of the structure. The mechanics of wave-in-decks, however, is still not well understood and have not been fully incorporated into the design codes and standards. Hence, it is necessary to revisit the current design codes and standards for platform design optimization. The aim of this study is to evaluate the effects of RSR due to wave-in-deck on four-legged jacket platforms in Malaysia. Base shear values with regards to calibration and modifications of wave characteristics were obtained using SESAM GeniE. Correspondingly, pushover analysis is conducted using USFOS to retrieve the RSR. The effects of the contributing factors i.e. the wave height, wave period and water depth with regards to the RSR and base shear values were analyzed and discussed. This research proposal is important in optimizing the design life of the existing and aging offshore structures. Outcomes of this research are expected to provide a proper evaluation of the wave-in-deck mechanics and in return contribute to the current mitigation strategies in managing the issue.

Keywords: wave-in-deck loads, wave effects, water depth, fixed jacket platforms

Procedia PDF Downloads 426
1719 Efficacy Study of Post-Tensioned I Girder Made of Ultra-High Performance Fiber Reinforced Concrete and Ordinary Concrete for IRC Loading

Authors: Ayush Satija, Ritu Raj

Abstract:

Escalating demand for elevated structures as a remedy for traffic congestion has led to a surge in the construction of viaducts and bridges predominantly employing prestressed beams. However, post-tensioned I-girder superstructures are gaining traction for their attributes like structural efficiency, cost-effectiveness, and easy construction. Recently, Ultra-high-performance fiber-reinforced concrete (UHPFRC) has emerged as a revolutionary material in reshaping conventional infrastructure engineering. UHPFRC offers exceptional properties including high compressive and tensile strength, alongside enhanced durability. Its adoption in bridges yields benefits, notably a remarkable strength-to-weight ratio enabling the design of lighter and slender structural elements, enhancing functionality and sustainability. Despite its myriad advantages, integration of UHPFRC in construction is still evolving, hindered by factors like cost, material availability, and design standardization. Consequently, there's a need to assess the feasibility of substituting ordinary concrete (OC) with UHPFRC in bridges, focusing on economic considerations. This research undertakes an efficacy study between post-tensioned I-girders fabricated from UHPFRC and OC, evaluating cost parameters associated with concrete production, reinforcement, and erection. The study reveals that UHPFRC becomes economically viable for spans exceeding 40.0m. This shift in cost-effectiveness is attributed to factors like reduced girder depth, elimination of un-tensioned steel, diminished need for shear reinforcement and decreased erection costs.

Keywords: post tensioned I girder, superstructure, ultra-high-performance fiber reinforced concrete, ordinary concrete

Procedia PDF Downloads 37
1718 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 123
1717 Sex Difference of the Incidence of Sudden Cardiac Arrest/Death in Athletes: A Systematic Review and Meta-analysis

Authors: Lingxia Li, Frédéric Schnell, Shuzhe Ding, Solène Le Douairon Lahaye

Abstract:

Background: The risk of sudden cardiac arret/death (SCA/D) in athletes is controversial. There is a lack of meta-analyses assessing the sex differences in the risk of SCA/D in competitive athletes. Purpose: The aim of the present study was to evaluate sex differences in the incidence of SCA/D in competitive athletes using meta-analyses. Methods: The systematic review was registered in the PROSPERO database (registration ID: CRD42023432022) and was conducted according to the PRISMA guidelines. PubMed, Embase, Scopus, SPORT Discus and Cochrane Library were searched up to July 2023. To avoid systematic bias in data pooling, only studies with data for both sexes were included. Results: From the 18 included studies, 2028 cases of SCA/D were observed (males 1821 (89.79%), females 207 (10.21%)). The age ranges from the adolescents (<26 years) to the elderly (>45 years). The incidence in male athletes was 1.32/100,000 AY (95% CI: [0.90, 1.93]) and in females was 0.26/100,000 AY (95% CI: [0.16, 0.43]), the incidence rate ratio (IRR) was 6.43 (95% CI: [4.22, 9.79]). The subgroup synthesis showed a higher incidence in males than in females in both age groups <25 years and ≤35 years, the IRR was 5.86 (95% CI: [4.69, 7.32]) and 5.79 (95% CI: [4.73, 7.09]), respectively. When considering the events, the IRR was 6.73 (95%CI: [3.06, 14.78]) among studies involving both SCA/D events and 7.16 (95% CI: [4.93, 10.40]) among studies including only cases of SCD. The available clinical evidence showed that cardiac events were most frequently seen in long-distance running races (26, 35.1%), marathon (16, 21.6%) and soccer (10, 13.5%). Coronary artery disease (14, 18.9%), hypertrophic cardiomyopathy (8, 10.8%), and arrhythmogenic right ventricular cardiomyopathy (7, 9.5%) are the most common causes of SCA/D in competitive athletes. Conclusion: The meta-analysis provides evidence of sex differences in the incidence of SCA/D in competitive athletes. The incidence of SCA/D in male athletes was 6 to 7 times higher than in females. Identifying the reasons for this difference may have implications for targeted the prevention of fatal evets in athletes.

Keywords: incidence, sudden cardiac arrest, sudden cardiac death, sex difference, athletes

Procedia PDF Downloads 62
1716 Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector

Authors: Ronald Collins, Jonathon Coleman, Joel Dasari, George Holt, Carl Metelko, Matthew Murdoch, Alexander Morgan, Yan-Jie Schnellbach, Robert Mills, Gareth Edwards, Alexander Roberts

Abstract:

At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery.

Keywords: anti-neutrino, GEANT4, muon, tomography, occlusion

Procedia PDF Downloads 184
1715 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 127
1714 Two-Stage Hospital Efficiency Analysis Including Qualitative Evidence: A Greek Case

Authors: Panos Xenos, Milton Nektarios, John Yfantopoulos

Abstract:

Background: Policy makers, professional organizations and payers have introduced a variety of initiatives and reforms for the health systems worldwide, aimed at improving hospital efficiency. Their efforts are concentrated in two main categories: to constrain increasing healthcare costs and to enhance quality of services provided. Research Objectives: This study examines the efficiency of 112 Greek public hospitals for the year 2009, evaluates the importance of bootstrapping techniques and investigates the effect of contextual factors on hospital efficiency. Furthermore, the effect of qualitative evidence, on hospital efficiency is explored using data from 28 large hospitals. Methods: We applied Data Envelopment Analysis, augmented by bootstrapping techniques, to estimate efficiency scores. In order to measure the effect of environmental factors on hospital efficiency we used Tobit regression analysis. The significance of our models is evaluated using statistical tests to compare distributions. Results: The Kolmogorov-Smirnov test between the original and the bootstrap-corrected efficiency indicates that their distributions are significantly different (p-value<0.01). The environmental factors, that seem to influence efficiency, are Occupancy Rating and the ratio between Outpatient Visits and Inpatient Days. Results indicate that the inclusion of the quality variable in DEA modelling generates statistically significant variations in efficiency scores (p-value<0.05). Conclusions: The inclusion of quality variables and the use of bootstrap resampling in efficiency analysis impose a statistically significant effect on the distribution of efficiency scores. As a policy conclusion we highlight the importance of these methods on hospital efficiency analysis and, by implication, on healthcare resource allocation.

Keywords: hospitals, efficiency, quality, data envelopment analysis, Greek public hospital sector

Procedia PDF Downloads 309
1713 Acne Vulgaris Association with Smoking and Body Mass Index in Jordanian Young Adults

Authors: Almutazballlah Bassam Qablan, Jihan M. Muhaidat, bana Abu Rajab

Abstract:

Background: Acne vulgaris is considered one of the most common skin conditions encountered by dermatologists. It is a chronic inflammation affecting the pilosebaceous unit. Although acne vulgaris is not fatal, it leads to permanent scarring and disfigurement, and even without scarring, it has a huge effect on patients, causing negative health outcomes. Acne vulgaris patients experience psychological, and emotional ramifications as those with chronic health problems; they feel depressed, angry, anxious, and confused. Although acne is a popular disease, many thoughts and myths are still discussed about its origins and triggering factors. These myths can make you feel guilt as if you were somehow responsible for your acne. In this case control study, we want to define the relationship between two modifiable risk factors ;BMI and smoking, with acne vulgaris. Methods: A case-control study was conducted at King Abdullah University Hospital in Ramtha, Jordan in 2019/2020. A total number of 325 participants between 14 and 33 years of age were interviewed by the authors; including 163 acne vulgaris cases and 162 controls without acne vulgaris. Anthropometric measures and smoking for Acne patients and control participants were the independent variables used to assess acne. Univariate and multivariate analysis were used to compare the characteristics of people who reported acne with those with no acne. The collected data analyzed by using the Statistical Package for Social Sciences (SPSS). Results: Cigarette smoking was highly associated with controls; odds ratio 0.4 (95% CI: 0.2–0.9) , P-value = 0.018. BMI and waterpipe smoking were statistically insignificant with acne in the multivariate analysis. Conclusion: We found that cigarette smoking was protective against Acne. There was a statistically insignificant relation between BMI, waterpipe smoking and the development of Acne Vulgaris.

Keywords: acne, adolescents, BMI, smoking, case-control, risk factors

Procedia PDF Downloads 93
1712 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models

Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru

Abstract:

Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.

Keywords: maize, stem borers, density, RapidEye, GLM

Procedia PDF Downloads 495
1711 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 137
1710 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 219
1709 River Habitat Modeling for the Entire Macroinvertebrate Community

Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo

Abstract:

Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.

Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling

Procedia PDF Downloads 93
1708 The Impact of Financial Risk on Banks’ Financial Performance: A Comparative Study of Islamic Banks and Conventional Banks in Pakistan

Authors: Mohammad Yousaf Safi Mohibullah Afghan

Abstract:

The study made on Islamic and conventional banks scrutinizes the risks interconnected with credit and liquidity on the productivity performance of Islamic and conventional banks that operate in Pakistan. Among the banks, only 4 Islamic and 18 conventional banks have been selected to enrich the result of our study on Islamic banks performance in connection to conventional banks. The selection of the banks to the panel is based on collecting quarterly unbalanced data ranges from the first quarter of 2007 to the last quarter of 2017. The data are collected from the Bank’s web sites and State Bank of Pakistan. The data collection is carried out based on Delta-method test. The mentioned test is used to find out the empirical results. In the study, while collecting data on the banks, the return on assets and return on equity have been major factors that are used assignificant proxies in determining the profitability of the banks. Moreover, another major proxy is used in measuring credit and liquidity risks, the loan loss provision to total loan and the ratio of liquid assets to total liability. Meanwhile, with consideration to the previous literature, some other variables such as bank size, bank capital, bank branches, and bank employees have been used to tentatively control the impact of those factors whose direct and indirect effects on profitability is understood. In conclusion, the study emphasizes that credit risk affects return on asset and return on equity positively, and there is no significant difference in term of credit risk between Islamic and conventional banks. Similarly, the liquidity risk has a significant impact on the bank’s profitability, though the marginal effect of liquidity risk is higher for Islamic banks than conventional banks.

Keywords: islamic & conventional banks, performance return on equity, return on assets, pakistan banking sectors, profitibility

Procedia PDF Downloads 161
1707 Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models

Authors: Gao Youtao, Zhao Tanran, Jin Bingyu, Xu Bo

Abstract:

Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy.

Keywords: extended Kalman filter, autonomous orbit determination, quasi-periodic orbit, navigation constellation

Procedia PDF Downloads 280
1706 Robust Numerical Solution for Flow Problems

Authors: Gregor Kosec

Abstract:

Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.

Keywords: fluid flow, meshless, low Pr problem, natural convection

Procedia PDF Downloads 231
1705 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions

Procedia PDF Downloads 164
1704 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate

Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur

Abstract:

Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.

Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration

Procedia PDF Downloads 133
1703 Experimental Assessment of the Effectiveness of Judicial Instructions and of Expert Testimony in Improving Jurors’ Evaluation of Eyewitness Evidence

Authors: Alena Skalon, Jennifer L. Beaudry

Abstract:

Eyewitness misidentifications can sometimes lead to wrongful convictions of innocent people. This occurs in part because jurors tend to believe confident eyewitnesses even when the identification took place under suggestive conditions. Empirical research demonstrated that jurors are often unaware of the factors that can influence the reliability of eyewitness identification. Most common legal safeguards that are designed to educate jurors about eyewitness evidence are judicial instructions and expert testimony. To date, very few studies assessed the effectiveness of judicial instructions and most of them found that judicial instructions make jurors more skeptical of eyewitness evidence or do not have any effect on jurors’ judgments. Similar results were obtained for expert testimony. However, none of the previous studies focused on the ability of legal safeguards to improve jurors’ assessment of evidence obtained from suggestive identification procedures—this is one of the gaps addressed by this paper. Furthermore, only three studies investigated whether legal safeguards improve the ultimate accuracy of jurors’ judgments—that is, whether after listening to judicial instructions or expert testimony jurors can differentiate between accurate and inaccurate eyewitnesses. This presentation includes two studies. Both studies used genuine eyewitnesses (i.e., eyewitnesses who watched the crime) and manipulated the suggestiveness of identification procedures. The first study manipulated the presence of judicial instructions; the second study manipulated the presence of one of two types of expert testimony: a traditional, verbal expert testimony or expert testimony accompanied by visual aids. All participant watched a video-recording of an identification procedure and of an eyewitness testimony. The results indicated that neither judicial instructions nor expert testimony affected jurors’ judgments. However, consistent with the previous findings, when the identification procedure was non-suggestive, jurors believed accurate eyewitnesses more often than inaccurate eyewitnesses. When the procedure was suggestive, jurors believed accurate and inaccurate eyewitnesses at the same rate. The paper will discuss the implications of these studies and directions for future research.

Keywords: expert testimony, eyewitness evidence, judicial instructions, jurors’ decision making, legal safeguards

Procedia PDF Downloads 175
1702 Role of Human Wharton’s Jelly Mesenchymal Stem Cells Conditioned Media in Alleviating Kidney Injury via Inhibition of Renin-Angiotensin System in Diabetic Nephropathy

Authors: Pardis Abolghasemi, Benyamin Hatamsaz

Abstract:

Background: Diabetic nephropathy is a serious health problem described by specific kidney structure and functional disturbance. Renoprotective effects of the stem cells secretase have been shown in many kidney diseases. The aim is to evaluate the capability of human Wharton’s jelly mesenchymal stem cells conditioned media (hWJMSCs-CM) to alleviate DN in streptozotocin (STZ)-induced diabetes. Methods: Diabetic nephropathy was induced by injection of STZ (60 mg/kg, IP) in twenty rats. Conditioned media was extracted from hWJMSCs at third passages. At week 8, diabetic rats were divided into two groups: treated (hWJMSCs-CM, 500 μl/rat for three weeks, IP) and not treated (DN). In the 11th week, three groups (control, DN and DN+hWJMSCs-CM) were kept in metabolic cages and urine was collected for 24h. Blood pressure (BP) and heart rate (HR) were continuously recorded. The serum samples were maintained for measuring BUN, Cr and angiotensin-converting enzyme (ACE) activity. The left kidney was kept at -80°C for ACE activity assessment. The right kidney and pancreas were used for histopathologic evaluation. Result: Diabetic nephropathy was detected by microalbuminuria and increased albumin/creatinine ratio, as well as the pancreas and renal structural disturbance. Glomerular filtration rate, BP and HR increased in the DN group. The ACE activity was elevated in the serum and kidneys of the DN group. Administration of hWJMSCs-CM modulated the renal functional and structural disturbance and decreased the ACE activity. Conclusion: Conditioned media was extracted from hWJMSCs may have a Renoprotective effect in diabetic nephropathy. This may happen through regulation of ACE activity and renin-angiotensin system inhibition.

Keywords: diabetic nephropathy, mesenchymal stem cells, immunomodulation, anti-inflammation

Procedia PDF Downloads 201
1701 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 190
1700 Predictors of Post-marketing Regulatory Actions Concerning Hepatotoxicity

Authors: Salwa M. Almomen, Mona A. Almaghrabi, Saja M. Alhabardi, Adel A. Alrwisan

Abstract:

Background: Hepatotoxicity is a major reason for medication withdrawal from the markets. Unfortunately, serious adverse hepatic effects can occur after marketing with limited indicators during clinical development. Therefore, finding possible predictors for hepatotoxicity might guide the monitoring program of various stakeholders. Methods: We examined the clinical review documents for drugs approved in the US from 2011 to 2016 to evaluate their hepatic safety profile. Predictors: we assessed whether these medications meet Hy’s Law with hepatotoxicity grade ≥ 3, labeled hepatic adverse effects at approval, or accelerated approval status. Outcome: post-marketing regulatory action related to hepatotoxicity, including product withdrawal or updates to warning, precaution, or adverse effects sections. Statistical analysis: drugs were included in the analysis from the time of approval until the end of 2019 or the first post-marketing regulatory action related to hepatotoxicity, whichever occurred first. The hazard ratio (HR) was estimated using Cox-regression analysis. Results: We included 192 medications in the study. We classified 48 drugs as having grade ≥ 3 hepatotoxicities, 43 had accelerated approval status, and 74 had labeled information about hepatotoxicity prior to marketing. The adjusted HRs for post-marketing regulatory action for products with grade ≥ 3 hepatotoxicity was 0.61 (95% confidence interval [CI], 0.17-2.23), 0.92 (95%CI, 0.29-2.93) for a drug approved via accelerated approval program, and was 0.91 (95%CI, 0.33-2.56) for drugs with labeled hepatotoxicity information at approval time. Conclusion: This study does not provide conclusive evidence on the association between post-marketing regulatory action and grade ≥ 3 hepatotoxicity, accelerated approval status, or availability of labeled information at approval due to sampling size and channeling bias.

Keywords: accelerated approvals, hepatic adverse effects, drug-induced liver injury, hepatotoxicity predictors, post-marketing withdrawal

Procedia PDF Downloads 151
1699 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 53
1698 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography

Authors: O’Day Luke

Abstract:

Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.

Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison

Procedia PDF Downloads 140
1697 Exploring the Bifunctional Organocatalysts for Asymmetric Synthesis of 3-Substituted-3-Aminooxindoles

Authors: Jasneet Kaur, Swapandeep Singh Chimni

Abstract:

The unfavorable use of metal-based catalysts that are often extortionate and toxic can be overcome by using small organic molecules known as organocatalysts. A variety of small organic molecules, including Brønsted/Lewis bases and acids, based on sulfonic acids, phosphoric acids, amines, phosphines or carbenes, Cinchona alkaloids, have been used as organocatalysts. One of the key reasons for using organocatalysis is their ability to be effectively removed from the final product in comparison to the metallic counterparts, which are exceedingly difficult to remove. The present investigation seeks to explore the catalytic nature of Cinchona alkaloids as an organocatalyst for enantioselective synthesis of 3-substituted-3-aminooxindole, which is known to exhibit a variety of biological activities and pharmacological activities. In this context, an organocatalytic asymmetric route for the synthesis of 3-aminooxindoles via reaction of isatin imine with α-acetoxy-β-ketoesters has been developed. The bifunctional Cinchona derived thiourea catalyzed the reaction of α-acetoxy-β-ketoesters derivatives with isatin imine to afford 3-substituted-aminooxindole derivatives in up to 93% yield, 95% enantiomeric excess and >20:1 diastereomeric ratio. The reaction was performed at room temperature for two hours using 10 mol% of catalyst, in the presence of 4Å molecular sieves in tetrahydrofuran as a solvent at ambient temperature. After the completion of the reaction, the pure product could be easily separated by using column chromatography using hexane and ethyl acetate as solvents. In conclusion, the catalytic potential of Cinchona derived chiral thiourea-tertiary amine catalyst was explored for an organocatalytic enantioselective Mannich reaction of β-ketoester derivatives with various isatin imine derivatives under mild conditions.

Keywords: asymmetric synthesis, aminooxindoles, enantioselective, isatin imine

Procedia PDF Downloads 112
1696 The Importance of Imaging and Functional Tests for Early Detection of Occupational Diseases in Kosovo's Miners

Authors: Krenare Shabani, Kreshnike Dedushi Hoti, Serbeze Kabashi, Jeton Shatri, Arben Rroji, Mrikë Bunjaku, Leotrim Berisha, Jona Kosova, Edmond Puca, Bleriana Shabani

Abstract:

Introduction: Workers in Kosovo's mining industry are subjected to hazardous working conditions and airborne particles, such as silica dust, which can cause silicosis and other severe respiratory illnesses. The purpose of this research is to assess the health impacts of such exposures, as well as the importance of imaging and functional testing in detecting pathological changes early on. Methodology: The study is prospective and cross-sectional and was carried out during the year 2024. 626 people (446 miners and 180 non-miners) were enrolled in the study. Subjects underwent spirometry and chest radiography. Data were analysed with SPSS24. Results: The average age of the participants is 48 years. Demographics and Smoking: Smoking was common among young miners. Radiological Changes: Radiographic abnormalities in the lungs were seen in 23.1% of miners and 10.6% of non-miners, including small irregular opacities and emphysematous changes. Lung Function: The FEV1/FVC ratio decreased with increased exposure time, indicating a decline in pulmonary function.Impact of Exposure Duration: Longer exposure duration was associated with a higher number of miners experiencing coughs and requiring medical consultations such as CT scans and biopsies. Conclusions: Medical imaging and functional testing are critical for early diagnosis of lung abnormalities in miners.Findings demonstrate a strong correlation between extended exposure to mine dust and the development of respiratory disorders, emphasising the importance of preventative measures and routine health monitoring.

Keywords: silicosis, miners, imaging, spirometry

Procedia PDF Downloads 27