Search results for: speech recognition library
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2935

Search results for: speech recognition library

2335 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 339
2334 Little Retrieval Augmented Generation for Named Entity Recognition: Toward Lightweight, Generative, Named Entity Recognition Through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models Mistral-v0.3, Llama-3, and Phi-3, for Generative Named Entity Recognition (GNER). Our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We consider recent developments at the cross roads of prompt engineering and Retrieval Augmented Generation (RAG), such as EmotionPrompt. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 46
2333 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment

Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay

Abstract:

Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.

Keywords: machine learning, system performance, performance metrics, IoT, edge

Procedia PDF Downloads 195
2332 COVID-19’s Effect on Pre-Existing Hearing Loss

Authors: Jonathan A. Mikhail, Arsenio Paez

Abstract:

It is not uncommon for a viral infection to cause hearing loss. Many viral infections are associated with sudden-onset, often unilateral, idiopathic sensorineural hearing loss. We conducted an exploratory study with thirty patients with pre-existing hearing loss between 50 and 64 to evaluate if COVID-19 was associated with exacerbated hearing loss. We hypothesized that hearing loss would be exacerbated by COVID-19 infection in patients with pre-existing hearing loss. A statistically significant paired T-test between pure tone averages (PTAs) at the patient’s original diagnosis and a current, updated audiometric assessment indicated a regression in hearing (p-value < .001) sensitivity following the contraction of COVID-19. Speech reception thresholds (SRTs) and word recognition scores (WRSs) were also considered, as well as the participants' gender. SRTs between each ear exhibited a statistically significant change (p-value of .002 and p-value < .001). WRSs did not show statistically significant differences (p-value of .290 and p-value of .098). A non-statistically significant Two-Way ANOVA was performed to evaluate gender’s potential role in exacerbated hearing loss and proved to be statistically insignificant (p-value of .214). This study discusses practical implications for clinical and educational pursuits in understanding COVID-19's effect on the auditory system and the need to evaluate the deadly virus further.

Keywords: audiology, COVID-19, sensorineural hearing loss, otology, auditory research

Procedia PDF Downloads 79
2331 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle

Authors: Megan Weisbart

Abstract:

Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.

Keywords: burnout, NICU, nurse, wellness

Procedia PDF Downloads 86
2330 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5(five) selected secondary school in Bauchi. It was discover that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequate qualified teachers and relevant materials including text-books. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: kindergarten, stress, phonetic and intonation, Nigeria

Procedia PDF Downloads 300
2329 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition

Authors: Umair Rashid

Abstract:

Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.

Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter

Procedia PDF Downloads 101
2328 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 199
2327 A Voice Signal Encryption Scheme Based on Chaotic Theory

Authors: Hailang Yang

Abstract:

To ensure the confidentiality and integrity of speech signals in communication transmission, this paper proposes a voice signal encryption scheme based on chaotic theory. Firstly, the scheme utilizes chaotic mapping to generate a key stream and then employs the key stream to perform bitwise exclusive OR (XOR) operations for encrypting the speech signal. Additionally, the scheme utilizes a chaotic hash function to generate a Message Authentication Code (MAC), which is appended to the encrypted data to verify the integrity of the data. Subsequently, we analyze the security performance and encryption efficiency of the scheme, comparing and optimizing it against existing solutions. Finally, experimental results demonstrate that the proposed scheme can resist common attacks, achieving high-quality encryption and speed.

Keywords: chaotic theory, XOR encryption, chaotic hash function, Message Authentication Code (MAC)

Procedia PDF Downloads 51
2326 EEG and ABER Abnormalities in Children with Speech and Language Delay

Authors: Bharati Mehta, Manish Parakh, Bharti Bhandari, Sneha Ambwani

Abstract:

Speech and language delay (SLD) is seen commonly as a co-morbidity in children having severe resistant focal and generalized, syndromic and symptomatic epilepsies. It is however not clear whether epilepsy contributes to or is a mere association in the pathogenesis of SLD. Also, it is acknowledged that Auditory Brainstem Evoked Responses (ABER), besides used for evaluating hearing threshold, also aid in prognostication of neurological disorders and abnormalities in the hearing pathway in the brainstem. There is no circumscribed or surrogate neurophysiologic laboratory marker to adjudge the extent of SLD. The current study was designed to evaluate the abnormalities in Electroencephalography (EEG) and ABER in children with SLD who do not have an overt hearing deficit or autism. 94 children of age group 2-8 years with predominant SLD and without any gross motor developmental delay, head injury, gross hearing disorder, cleft lip/palate and autism were selected. Standard video Electroencephalography using the 10:20 international system and ABER after click stimulus with intensities 110 db until 40 db was performed in all children. EEG was abnormal in 47.9% (n= 45; 36 boys and 9 girls) children. In the children with abnormal EEG, 64.5% (n=29) had an abnormal background, 57.8% (n=27) had presence of generalized interictal epileptiform discharges (IEDs), 20% (n=9) had focal epileptiform discharges exclusively from left side and 33.3% (n=15) had multifocal IEDs occurring both in isolation or associated with generalised abnormalities. In ABER, surprisingly, the peak latencies for waves I, III & V, inter-peak latencies I-III & I-V, III-V and wave amplitude ratio V/I, were found within normal limits in both ears of all the children. Thus in the current study it is certain that presence of generalized IEDs in EEG are seen in higher frequency with SLD and focal IEDs are seen exclusively in left hemisphere in these children. It may be possible that even with generalized EEG abnormalities present in these children, left hemispheric abnormalities as a part of this generalized dysfunction may be responsible for the speech and language dysfunction. The current study also emphasizes that ABER may not be routinely recommended as diagnostic or prognostic tool in children with SLD without frank hearing deficit or autism, thus reducing the burden on electro physiologists, laboratories and saving time and financial resources.

Keywords: ABER, EEG, speech, language delay

Procedia PDF Downloads 535
2325 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme

Authors: Cavidan Yakupoglu, Kurt Rohloff

Abstract:

In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.

Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE

Procedia PDF Downloads 154
2324 The Touristic Development of the Archaeological and Heritage Areas in Alexandria City, Egypt

Authors: Salma I. Dwidar, Amal A. Abdelsattar

Abstract:

Alexandria city is one of the greatest cities in the world. It confronted different civilizations throughout the ages due to its special geographical location and climate which left many archaeological areas of great heritage (Ptolemaic, Greek, Romanian, especially sunken monuments, Coptic, Islamic, and finally, the Modern). Also, Alexandria city contains areas with different patterns of urban planning, both Hellenistic and compacted planning which merited the diversity in planning. Despite the magnitude of this city, which contains all the elements of tourism, the city was not included in the tourism map of Egypt properly comparing with similar cities in Egypt. This paper discusses the importance of heritage areas in Alexandria and the relationship between heritage areas and modern buildings. It highlights the absence of a methodology to deal with heritage areas as touristic areas. Also, the paper aims to develop multiple touristic routes to visit archaeological areas and other sights of significance in Alexandria. The research methodology is divided into two main frameworks. The first framework is a historical study of the urban development of Alexandria and the most important remaining monuments throughout the ages, as well as an analytical study of sunken monuments and their importance in increasing the rate of tourism. Moreover, it covers a study of the importance of the Library of Alexandria and its effect on the international focus of the city. The second framework focuses on the proposal of some tourism routes to visit the heritage areas, archaeological monuments, sunken monuments and the sights of Alexandria. The study concludes with the proposal of three tourism routes. The first route, which is the longest one, passes by all the famous monuments of the city as well as its modern sights. The second route passes through the heritage areas, sunken monuments, and Library of Alexandria. The third route includes the sunken monuments and Library of Alexandria. These three tourism routes will ensures the touristic development of the city which leads to the economic growth of the city and the country.

Keywords: archeological buildings, heritage buildings, heritage tourism, planning of Islamic cities

Procedia PDF Downloads 142
2323 Community Integration: Post-Secondary Education (PSE) and Library Programming

Authors: Leah Plocharczyk, Matthew Conner

Abstract:

This paper analyzes the relatively new trend of PSE programs which seek to provide education, vocational training, and a college experience to individuals with an intellectual and developmental disability (IDD). Specifically, the paper examines the degree of interaction between PSE programs and the libraries of their college campuses. Using ThinkCollege, a clearinghouse and advocate for PSE programs, the researchers identified 293 programs throughout the country. These were all contacted with an email survey asking them about the nature of their involvement, if any, with the academic libraries on their campus. Where indicated by the responses, the libraries of PSE programs were contacted for additional information about their programming. Responses to the survey questions were tabulated and analyzed quantitatively. Written comments were analyzed for themes which were then tabulated. This paper presents the results of this study. They show obvious preferences for library programming, such as group formal instruction, individual liaisons, embedded reference, and various instructional designs. These are discussed in terms of special education principles of mainstreaming, level of restriction, training demands and cost effectiveness. The work serves as a foundation for best practices that can advance the field.

Keywords: disability studies, instructional design, universal design for learning, assessment methodology

Procedia PDF Downloads 69
2322 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 560
2321 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 643
2320 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 348
2319 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools

Procedia PDF Downloads 352
2318 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots

Procedia PDF Downloads 545
2317 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 174
2316 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
2315 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 147
2314 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 182
2313 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 406
2312 Grammatically Coded Corpus of Spoken Lithuanian: Methodology and Development

Authors: L. Kamandulytė-Merfeldienė

Abstract:

The paper deals with the main issues of methodology of the Corpus of Spoken Lithuanian which was started to be developed in 2006. At present, the corpus consists of 300,000 grammatically annotated word forms. The creation of the corpus consists of three main stages: collecting the data, the transcription of the recorded data, and the grammatical annotation. Collecting the data was based on the principles of balance and naturality. The recorded speech was transcribed according to the CHAT requirements of CHILDES. The transcripts were double-checked and annotated grammatically using CHILDES. The development of the Corpus of Spoken Lithuanian has led to the constant increase in studies on spontaneous communication, and various papers have dealt with a distribution of parts of speech, use of different grammatical forms, variation of inflectional paradigms, distribution of fillers, syntactic functions of adjectives, the mean length of utterances.

Keywords: CHILDES, corpus of spoken Lithuanian, grammatical annotation, grammatical disambiguation, lexicon, Lithuanian

Procedia PDF Downloads 236
2311 Investigating Medical Students’ Perspectives toward University Teachers’ Talking Features in an English as a Foreign Language Context in Urmia, Iran

Authors: Ismail Baniadam, Nafisa Tadayyon, Javid Fereidoni

Abstract:

This study aimed to investigate medical students’ attitudes toward some teachers’ talking features regarding their gender in the Iranian context. To do so, 60 male and 60 female medical students of Urmia University of Medical Sciences (UMSU) participated in the research. A researcher made Likert-type questionnaire which was initially piloted and was used to gather the data. Comparing the four different factors regarding the features of teacher talk, it was revealed that visual and extra-linguistic information factor, Lexical and syntactic familiarity, Speed of speech, and the use of Persian language had the highest to the lowest mean score, respectively. It was also indicated that female students rather than male students were significantly more in favor of speed of speech and lexical and syntactic familiarity.

Keywords: attitude, gender, medical student, teacher talk

Procedia PDF Downloads 178
2310 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia

Authors: Rohan Bhasin

Abstract:

Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.

Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM

Procedia PDF Downloads 164
2309 Chaotic Sequence Noise Reduction and Chaotic Recognition Rate Improvement Based on Improved Local Geometric Projection

Authors: Rubin Dan, Xingcai Wang, Ziyang Chen

Abstract:

A chaotic time series noise reduction method based on the fusion of the local projection method, wavelet transform, and particle swarm algorithm (referred to as the LW-PSO method) is proposed to address the problem of false recognition due to noise in the recognition process of chaotic time series containing noise. The method first uses phase space reconstruction to recover the original dynamical system characteristics and removes the noise subspace by selecting the neighborhood radius; then it uses wavelet transform to remove D1-D3 high-frequency components to maximize the retention of signal information while least-squares optimization is performed by the particle swarm algorithm. The Lorenz system containing 30% Gaussian white noise is simulated and verified, and the phase space, SNR value, RMSE value, and K value of the 0-1 test method before and after noise reduction of the Schreiber method, local projection method, wavelet transform method, and LW-PSO method are compared and analyzed, which proves that the LW-PSO method has a better noise reduction effect compared with the other three common methods. The method is also applied to the classical system to evaluate the noise reduction effect of the four methods and the original system identification effect, which further verifies the superiority of the LW-PSO method. Finally, it is applied to the Chengdu rainfall chaotic sequence for research, and the results prove that the LW-PSO method can effectively reduce the noise and improve the chaos recognition rate.

Keywords: Schreiber noise reduction, wavelet transform, particle swarm optimization, 0-1 test method, chaotic sequence denoising

Procedia PDF Downloads 198
2308 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 224
2307 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts

Authors: Reza Shakoori

Abstract:

This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.

Keywords: Arabic, chain code normalization, OCR systems, image processing

Procedia PDF Downloads 404
2306 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification

Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor

Abstract:

Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.

Keywords: additive parameter, angular softmax, speaker verification, PLDA

Procedia PDF Downloads 102