Search results for: plastic fibers reinforcement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2239

Search results for: plastic fibers reinforcement

1639 Comparison of Numerical and Laboratory Results of Pull-Out Test on Soil–Geogrid Interactions

Authors: Parisa Ahmadi Oliaei, Seyed Abolhassan Naeini

Abstract:

The knowledge of soil–reinforcement interaction parameters is particularly important in the design of reinforced soil structures. The pull-out test is one of the most widely used tests in this regard. The results of tensile tests may be very sensitive to boundary conditions, and more research is needed for a better understanding of the Pull-out response of reinforcement, so numerical analysis using the finite element method can be a useful tool for the understanding of the Pull-out response of soil-geogrid interaction. The main objective of the present study is to compare the numerical and experimental results of Pull- out a test on geogrid-reinforced sandy soils interactions. Plaxis 2D finite element software is used for simulation. In the present study, the pull-out test modeling has been done on sandy soil. The effect of geogrid hardness was also investigated by considering two different types of geogrids. The numerical results curve had a good agreement with the pull-out laboratory results.

Keywords: plaxis, pull-out test, sand, soil- geogrid interaction

Procedia PDF Downloads 150
1638 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 90
1637 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading

Authors: Eman Ismail, Adnan Masri

Abstract:

Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.

Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction

Procedia PDF Downloads 112
1636 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils

Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan

Abstract:

In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.

Keywords: elasto-plasticity, uncertainty, soils, fokker-planck equation, fourier spectral method, finite difference method

Procedia PDF Downloads 355
1635 Kinetic Study of Municipal Plastic Waste

Authors: Laura Salvia Diaz Silvarrey, Anh Phan

Abstract:

Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.

Keywords: kinetic, municipal plastic waste, pyrolysis, random scission

Procedia PDF Downloads 338
1634 Jagiellonian-PET: A Novel TOF-PET Detector Based on Plastic Scintillators

Authors: P. Moskal, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, A. Gruntowski, D. Kaminska, L. Kaplon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, P. Salabura, N. G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, N. Zon

Abstract:

A new concept and results of the performance tests of the TOF-PET detection system developed at the Jagiellonian University will be presented. The novelty of the concept lies in employing long strips of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes for the reconstruction of Lines-of-Response. The diagnostic chamber consists of plastic scintillator strips readout by pairs of photo multipliers arranged axially around a cylindrical surface. To take advantage of the superior timing properties of plastic scintillators the signals are probed in the voltage domain with the accuracy of 20 ps by a newly developed electronics, and the data are collected by the novel trigger-less and reconfigurable data acquisition system. The hit-position and hit-time are reconstructed by the dedicated reconstruction methods based on the compressing sensing theory and the library of synchronized model signals. The solutions are subject to twelve patent applications. So far a time-of-flight resolution of ~120 ps (sigma) was achieved for a double-strip prototype with 30 cm field-of-view (FOV). It is by more than a factor of two better than TOF resolution achievable in current TOF-PET modalities and at the same time the FOV of 30 cm long prototype is significantly larger with respect to typical commercial PET devices. The Jagiellonian PET (J-PET) detector with plastic scintillators arranged axially possesses also another advantage. Its diagnostic chamber is free of any electronic devices and magnetic materials thus giving unique possibilities of combining J-PET with CT and J-PET with MRI for scanning the same part of a patient at the same time with both methods.

Keywords: PET-CT, PET-MRI, TOF-PET, scintillator

Procedia PDF Downloads 472
1633 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 112
1632 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test

Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi

Abstract:

Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.

Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete

Procedia PDF Downloads 129
1631 Construction of Green Aggregates from Waste Processing

Authors: Fahad K. Alqahtani

Abstract:

Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.

Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate

Procedia PDF Downloads 207
1630 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 60
1629 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 47
1628 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 272
1627 Determining the Electrospinning Parameters of Poly(ε-Caprolactone)

Authors: M. Kagan Keler, Sibel Daglilar, Isil Kerti, Oguzhan Gunduz

Abstract:

Electrospinning is a versatile way to occur fibers at nano-scale and polycaprolactone is a biomedical material which has a wide usage in cartilage defects and tissue regeneration. PCL is biocompatible and durable material which can be used in bio-implants. Therefore, electrospinning process was chosen as a fabrication method to get PCL fibers in an effective way because of its significant adjustments. In this research study, electrospinning parameters was evaluated during the producing of polymer tissue scaffolds. Polycaprolactone’s molecular weight was 80.000 Da and was employed as a tissue material in the electrospinning process. PCL was decomposed in dimethylformamid(DMF) and chloroform(CF) with the weight ratio of 1:1. Different compositions (1%, 3%, 5%, 10% and 20 %) of PCL was prepared in the laboratory conditions. All solvents with different percentages of PCL have been taken into the syringe and loaded into the electrospinning system. In electrospinning dozens of trial were applied to get homogeneously uniform scaffold samples. Taylor cone which is crucial point for electrospinning characteristic was occurred and changed in different voltages up to the material compositions’ conductivity. While the PCL percentages were increasing in the electrospinning, structure started to arise with droplets, which was an expressive problem for tissue scaffold. The vertical and horizontal layouts were applied to produce non-woven structures at all.

Keywords: tissue engineering, artificial scaffold, electrospinning, biocomposites

Procedia PDF Downloads 335
1626 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites

Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt

Abstract:

Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.

Keywords: copper based composites, mechanical properties, wear properties, microstructure

Procedia PDF Downloads 348
1625 Mechanical and Physical Properties of Wood Composite Panel from Recycled Plastic and Sawdust of Cordia alliodora (Ruiz and Pav.)

Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba, Usman Shehu

Abstract:

Wood plastic composite boards were made from sawn dust of Cordia alliodora and recycled polyethylene at a mixing ratio of 1.5ratio1, 2.5ratio1 and 3.5ratio1 and nominal densities of 600 kilograms per meter cube, 700 kilograms per meter cube, and 800 kilograms per meter cube, The material was hot pressed at 150-degree celsius to produce board of 250 millimeter by 250 millimeter by 6 millimeter of which 18 boards were produced. The experiment was subject to 3 by 3 factorial experiments in Completely Randomised Design (CRD). Analysis of variance and Duncan Multiple Range Test (DMRT) was adopted by 3 by 3 at 5 percent probability. The strength properties of the boards such as modulus of rupture (MOR) and modulus of elasticity (MOE) were investigated, while the dimensional properties of the board such as the water absorption (WA) and thickness swelling (TS) were as well determined after 12hrs and 24hrs of water immersion. The result showed that the mean values of MOE ranged from 9100.73 Newtons per square millimeters to 12086.96 Newtons per square millimeters while MOR values ranged from 48.26 Newtons per square millimeters to 103.09 Newtons per square millimeters. The values of WA and TS after 12hrs immersion ranged from 1.21 percent to 1.56 percent and 0.00 percent to 0.13 percent, respectively. The values of WA and TS after 24hrs of water immersion ranged from 1.66 percent to 2.99 percent and 0.02 percent to 0.18 percent, respectively. The higher the value of board density and the high-density polythene /sawdust ratio, the stronger, the stiffer and more dimensionally stable the wood plastic composite boards obtained. In addition, as the density of the board increases, the strength property of the boards increases. Hence the board will be suitable for internal construction materials.

Keywords: wood Plastic composite, modulus of rupture, modulus of elasticity, dimensional stability

Procedia PDF Downloads 155
1624 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites

Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa

Abstract:

The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.

Keywords: Al6061, red mud, tensile strength, hardness and microstructures

Procedia PDF Downloads 546
1623 Effect of Substrate Type on Pollutant Removal and Greenhouse Gases Emissions in Constructed Wetlands with Ornamental Plants

Authors: Maria E. Hernnadez, Elizabeth Ramos, Claudia Ortiz

Abstract:

Pollutant removal (N-NH4, COD, S-SO4, N-NO3 and P-PO4) and greenhouse gases (methane and nitrous oxide) emissions were investigated in constructed wetlands CW mesocosms with four types of substrate (gravel (G) zeolite (Z), Gravel+Plastic (GP) and zeolite+plastic), all planted with the ornamental plant lily (Lilium sp). Significantly higher N-NH4 removal was found in the CW-Z (97%) and CW-ZP (85%) compared with CW-G (61%) and CW-GP (17%), also significantly lower emissions of nitrous oxide were found in CW-Z (2.2 µgm-2min-1) and CW-ZP (2.5 µgm-2min-1) compared with CW-G(7.4 µgm-2min-1 ) and CW-GP (6.30 µgm-2min-1).

Keywords: methane, nitrous oxide, lily, zeolite

Procedia PDF Downloads 382
1622 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: Almontas Vilutis, Vytenis Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: friction, composite, carbide, factors

Procedia PDF Downloads 63
1621 Synthesis of Smart Materials Based on Polyaniline Coated Fibers

Authors: Mihaela Beregoi, Horia Iovu, Cristina Busuioc, Alexandru Evanghelidis, Elena Matei, Monica Enculescu, Ionut Enculescu

Abstract:

Nanomaterials field is very attractive for all researchers who are attempting to develop new devices with the same or improved properties than the micro-sized ones, while reducing the reagents and power consumptions. In this way, a wide range of nanomaterials were fabricated and integrated in applications for electronics, optoelectronics, solar cells, tissue reconstruction and drug delivery. Obviously, the most appealing ones are those dedicated to the medical domain. Different types of nano-sized materials, such as particles, fibers, films etc., can be synthesized by using physical, chemical or electrochemical methods. One of these techniques is electrospinning, which enable the production of fibers with nanometric dimensions by pumping a polymeric solution in a high electric field; due to the electrostatic charging and solvent evaporation, the precursor mixture is converted into nonwoven meshes with different fiber densities and mechanical properties. Moreover, polyaniline is a conducting polymer with interesting optical properties, suitable for displays and electrochromic windows. Otherwise, polyaniline is an electroactive polymer that can contract/expand by applying electric stimuli, due to the oxidation/reduction reactions which take place in the polymer chains. These two main properties can be exploited in order to synthesize smart materials that change their dimensions, exhibiting in the same time good electrochromic properties. In the context aforesaid, a poly(methyl metacrylate) solution was spun to get webs composed of fibers with diameter values between 500 nm and 1 µm. Further, the polymer meshes were covered with a gold layer in order to make them conductive and also appropriate as working electrode in an electrochemical cell. The gold shell was deposited by DC sputtering. Such metalized fibers can be transformed into smart materials by covering them with a thin layer of conductive polymer. Thus, the webs were coated with a polyaniline film by the electrochemical route, starting from and aqueous solution of aniline and sulfuric acid, where sulfuric acid acts as oxidant agent. For the polymerization of aniline, a saturated calomel electrode was employed as reference, a platinum plate as counter electrode and the gold covered webs as working electrode. Chronoamperometry was selected as deposition method for polyaniline, by modifying the deposition time. Metalized meshes with different fiber densities were used, the transmission ranging between 70 and 80 %. The morphological investigation showed that polyaniline layer has a granular structure for all deposition experiments. As well, some preliminary optical tests were done by using sulfuric acid as electrolyte, which revealed the modification of polyaniline colour from green to dark blue when applying a voltage. In conclusion, new multilayered materials were obtained by a simple approach: the merge of the electrospinning method benefits with polyaniline chemistry. This synthesis method allows the fabrication of structures with reproducible characteristics, suitable for display or tissue substituents.

Keywords: electrospinning, fibers, smart materials, polyaniline

Procedia PDF Downloads 275
1620 Numerical Simulation of Flexural Strength of Steel Fiber Reinforced High Volume Fly Ash Concrete by Finite Element Analysis

Authors: Mahzabin Afroz, Indubhushan Patnaikuni, Srikanth Venkatesan

Abstract:

It is well-known that fly ash can be used in high volume as a partial replacement of cement to get beneficial effects on concrete. High volume fly ash (HVFA) concrete is currently emerging as a popular option to strengthen by fiber. Although studies have supported the use of fibers with fly ash, a unified model along with the incorporation into finite element software package to estimate the maximum flexural loads need to be developed. In this study, nonlinear finite element analysis of steel fiber reinforced high strength HVFA concrete beam under static loadings was conducted to investigate their failure modes in terms of ultimate load. First of all, the experimental investigation of mechanical properties of high strength HVFA concrete was done and validates with developed numerical model with the appropriate modeling of element size and mesh by ANSYS 16.2. To model the fiber within the concrete, three-dimensional random fiber distribution was simulated by spherical coordinate system. Three types of high strength HVFA concrete beams were analyzed reinforced with 0.5, 1 and 1.5% volume fractions of steel fibers with specific mechanical and physical properties. The result reveals that the use of nonlinear finite element analysis technique and three-dimensional random fiber orientation exhibited fairly good agreement with the experimental results of flexural strength, load deflection and crack propagation mechanism. By utilizing this improved model, it is possible to determine the flexural behavior of different types and proportions of steel fiber reinforced HVFA concrete beam under static load. So, this paper has the originality to predict the flexural properties of steel fiber reinforced high strength HVFA concrete by numerical simulations.

Keywords: finite element analysis, high volume fly ash, steel fibers, spherical coordinate system

Procedia PDF Downloads 121
1619 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite

Authors: M. Palizvan, M. H. Sadr, M. T. Abadi

Abstract:

The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.

Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE

Procedia PDF Downloads 138
1618 The Review for Repair of Masonry Structures Using the Crack Stitching Technique

Authors: Sandile Daniel Ngidi

Abstract:

Masonry structures often crack due to different factors, which include differential movement of structures, thermal expansion, and seismic waves. Retrofitting is introduced to ensure that these cracks do not expand to a point of making the wall fail. Crack stitching is one of many repairing methods used to repair cracked masonry walls. It is done by stitching helical stainless steel reinforcement bars to reconnect and stabilize the wall. The basic element of this reinforcing system is the mechanical interlink between the helical stainless-steel bar and the grout, which makes it such a flexible and well-known masonry repair system. The objective of this review was to use previous experimental work done by different authors to check the efficiency and effectiveness of using the crack stitching technique to repair and stabilize masonry walls. The technique was found to be effective to rejuvenate the strength of a masonry structure to be stronger than initial strength. Different factors were investigated, which include economic features, sustainability, buildability, and suitability of this technique for application in developing communities.

Keywords: brickforce, crack-stitching, masonry concrete, reinforcement, wall panels

Procedia PDF Downloads 156
1617 Interaction Diagrams for Symmetrically Reinforced Concrete Square Sections Under 3 Dimensional Multiaxial Loading Conditions

Authors: Androniki-Anna Doulgeroglou, Panagiotis Kotronis, Giulio Sciarra, Catherine Bouillon

Abstract:

The interaction diagrams are functions that define ultimate states expressed in terms of generalized forces (axial force, bending moment and shear force). Two characteristic states for reinforced concrete (RC) sections are proposed: the first characteristic state corresponds to the yield of the reinforcement bars and the second to the peak values of the generalized forces generalized displacements curves. 3D numerical simulations are then conducted for RC columns and the global responses are compared to experimental results. Interaction diagrams for combined flexion, shear and axial force loading conditions are numerically produced for symmetrically RC square sections for different reinforcement ratios. Analytical expressions of the interaction diagrams are also proposed, satisfying the condition of convexity. Comparison with interaction diagrams from the Eurocode is finally presented for the study cases.

Keywords: analytical convex expressions, finite element method, interaction diagrams, reinforced concrete

Procedia PDF Downloads 121
1616 Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites.

Keywords: composites, acetylation, natural fiber, surface treatment

Procedia PDF Downloads 395
1615 Effects of Interfacial Modification Techniques on the Mechanical Properties of Natural Particle Based Polymer Composites

Authors: Bahar Basturk, Secil Celik Erbas, Sevket Can Sarikaya

Abstract:

Composites combining the particulates and polymer components have attracted great interest in various application areas such as packaging, furniture, electronics and automotive industries. For strengthening the plastic matrices, the utilization of natural fillers instead of traditional reinforcement materials has received increased attention. The properties of natural filler based polymer composites (NFPC) may be improved by applying proper surface modification techniques to the powder phase of the structures. In this study, acorn powder-epoxy and pine corn powder-epoxy composites containing up to 45% weight percent particulates were prepared by casting method. Alkali treatment and acetylation techniques were carried out to the natural particulates for investigating their influences under mechanical forces. The effects of filler type and content on the tensile properties of the composites were compared with neat epoxy. According to the quasi-static tensile tests, the pine cone based composites showed slightly higher rigidity and strength properties compared to the acorn reinforced samples. Furthermore, the structures independent of powder type and surface modification technique, showed higher tensile properties with increasing the particle content.

Keywords: natural fillers, polymer composites, surface modifications, tensile properties

Procedia PDF Downloads 447
1614 Analyzing the Effects of Bio-fibers on the Stiffness and Strength of Adhesively Bonded Thermoplastic Bio-fiber Reinforced Composites by a Mixed Experimental-Numerical Approach

Authors: Sofie Verstraete, Stijn Debruyne, Frederik Desplentere

Abstract:

Considering environmental issues, the interest to apply sustainable materials in industry increases. Specifically for composites, there is an emerging need for suitable materials and bonding techniques. As an alternative to traditional composites, short bio-fiber (cellulose-based flax) reinforced Polylactic Acid (PLA) is gaining popularity. However, these thermoplastic based composites show issues in adhesive bonding. This research focusses on analyzing the effects of the fibers near the bonding interphase. The research applies injection molded plate structures. A first important parameter concerns the fiber volume fraction, which directly affects adhesion characteristics of the surface. This parameter is varied between 0 (pure PLA) and 30%. Next to fiber volume fraction, the orientation of fibers near the bonding surface governs the adhesion characteristics of the injection molded parts. This parameter is not directly controlled in this work, but its effects are analyzed. Surface roughness also greatly determines surface wettability, thus adhesion. Therefore, this research work considers three different roughness conditions. Different mechanical treatments yield values up to 0.5 mm. In this preliminary research, only one adhesive type is considered. This is a two-part epoxy which is cured at 23 °C for 48 hours. In order to assure a dedicated parametric study, simple and reproduceable adhesive bonds are manufactured. Both single lap (substrate width 25 mm, thickness 3 mm, overlap length 10 mm) and double lap tests are considered since these are well documented and quite straightforward to conduct. These tests are conducted for the different substrate and surface conditions. Dog bone tensile testing is applied to retrieve the stiffness and strength characteristics of the substrates (with different fiber volume fractions). Numerical modelling (non-linear FEA) relates the effects of the considered parameters on the stiffness and strength of the different joints, obtained through the abovementioned tests. Ongoing work deals with developing dedicated numerical models, incorporating the different considered adhesion parameters. Although this work is the start of an extensive research project on the bonding characteristics of thermoplastic bio-fiber reinforced composites, some interesting results are already prominent. Firstly, a clear correlation between the surface roughness and the wettability of the substrates is observed. Given the adhesive type (and viscosity), it is noticed that an increase in surface energy is proportional to the surface roughness, to some extent. This becomes more pronounced when fiber volume fraction increases. Secondly, ultimate bond strength (single lap) also increases with increasing fiber volume fraction. On a macroscopic level, this confirms the positive effect of fibers near the adhesive bond line.

Keywords: adhesive bonding, bio-fiber reinforced composite, flax fibers, lap joint

Procedia PDF Downloads 111
1613 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars

Authors: Jazlah Majeed Sulaiman, Lakshmi P.

Abstract:

Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.

Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS

Procedia PDF Downloads 87
1612 Strengthening of Reinforced Concrete Beams Using Steel Plates

Authors: Ghusen al-Kafri, Mohammed Ali Abdallah Elsageer, Ahmed Mohamed Hadya Alsdaai, Abdeimanam Salhien Salih Khalifa

Abstract:

In this paper, external reinforcement to enhance a reinforced concrete structure performance has been done using externally bonded steel plate. This technique has been reported effective in enhancing the strength of reinforced concrete beam, a study to determine the effectiveness of steel plate as an external reinforcement was carried out. A total of two groups of beams and one group content five beams, each 750 mm long, 150 mm wide, and 150 mm deep were cast, strengthened and tested till failure under two point loads. One beam was act as a control beam without strengthening and other four beams were strengthened with steel plate at a different arrangement. Other group beams were strengthened with steel plate in shear zone and also strengthened at bottom as first group. The behaviours of the strengthened beams were studied through their load-deflection characteristic upon bending, cracking and mode of failure. The results confirmed that all steel plate arrangements enhanced the strength of the reinforced concrete beam, the positioning of the steel plate affect the moment carrying capacity of the beam.

Keywords: beams, bending, beflection, steel plates

Procedia PDF Downloads 394
1611 Microplastics Accumulation and Abundance Standardization for Fluvial Sediments: Case Study for the Tena River

Authors: Mishell E. Cabrera, Bryan G. Valencia, Anderson I. Guamán

Abstract:

Human dependence on plastic products has led to global pollution, with plastic particles ranging in size from 0.001 to 5 millimeters, which are called microplastics (hereafter, MPs). The abundance of microplastics is used as an indicator of pollution. However, reports of pollution (abundance of MPs) in river sediments do not consider that the accumulation of sediments and MPs depends on the energy of the river. That is, the abundance of microplastics will be underestimated if the sediments analyzed come from places where the river flows with a lot of energy, and the abundance will be overestimated if the sediment analyzed comes from places where the river flows with less energy. This bias can generate an error greater than 300% of the MPs value reported for the same river and should increase when comparisons are made between 2 rivers with different characteristics. Sections where the river flows with higher energy allow sands to be deposited and limit the accumulation of MPs, while sections, where the same river has lower energy, allow fine sediments such as clays and silts to be deposited and should facilitate the accumulation of MPs particles. That is, the abundance of MPs in the same river is underrepresented when the sediment analyzed is sand, and the abundance of MPs is overrepresented if the sediment analyzed is silt or clay. The present investigation establishes a protocol aimed at incorporating sample granulometry to calibrate MPs quantification and eliminate over- or under-representation bias (hereafter granulometric bias). A total of 30 samples were collected by taking five samples within six work zones. The slope of the sampling points was less than 8 degrees, referred to as low slope areas, according to the Van Zuidam slope classification. During sampling, blanks were used to estimate possible contamination by MPs during sampling. Samples were dried at 60 degrees Celsius for three days. A flotation technique was employed to isolate the MPs using sodium metatungstate with a density of 2 gm/l. For organic matter digestion, 30% hydrogen peroxide and Fenton were used at a ratio of 6:1 for 24 hours. The samples were stained with rose bengal at a concentration of 200 mg/L and were subsequently dried in an oven at 60 degrees Celsius for 1 hour to be identified and photographed in a stereomicroscope with the following conditions: Eyepiece magnification: 10x, Zoom magnification (zoom knob): 4x, Objective lens magnification: 0.35x for analysis in ImageJ. A total of 630 fibers of MPs were identified, mainly red, black, blue, and transparent colors, with an overall average length of 474,310 µm and an overall median length of 368,474 µm. The particle size of the 30 samples was calculated using 100 g per sample using sieves with the following apertures: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm and 0.63 µm. This sieving allowed a visual evaluation and a more precise quantification of the microplastics present. At the same time, the weight of sediment in each fraction was calculated, revealing an evident magnitude: as the presence of sediment in the < 63 µm fraction increases, a significant increase in the number of MPs particles is observed.

Keywords: microplastics, pollution, sediments, Tena River

Procedia PDF Downloads 59
1610 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix

Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin

Abstract:

Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.

Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization

Procedia PDF Downloads 178