Search results for: low voltage trigger silicon controlled rectifier (LVTSCR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4340

Search results for: low voltage trigger silicon controlled rectifier (LVTSCR)

3740 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 272
3739 Rational Memory Therapy: The Counselling Technique to Control Psychological and Psychosomatic Illnesses

Authors: Sachin Deshmukh

Abstract:

Mind and body synchronization occurs through memory and sensation production. Sensations are the guiding language of subconscious mind for conscious mind to take a proper action. Mind-mechanism is based upon memories collected so far since intrauterine life. There are three universal triggers for memory creation; they are persons, situations and objects. Memory is created as sensations experienced by special senses. Based upon experiencing comfort or discomfort, the triggers are categorized as safe or unsafe triggers. A memory comprises of ‘safe or unsafe feeling for triggers, and actions taken for that feeling’. Memories for triggers are created slowly, thoughtfully and consciously by the conscious mind, and archived in the subconscious mind for future references. Later on, similar triggers can come in contact with the individual. Subconscious mind uses these stored feelings to decide whether these triggers are safe or unsafe. It produces comfort or discomfort sensations as emotions accordingly and reacts in the same way as has been recorded in memory. Speed of sensing and processing the triggers, and reacting by subconscious mind is that of the speed of bioelectricity. Hence, formula for human emotions has been designed in this paper as follows: Emotion (Stress or Peace) = Trigger (Person or Situation or object) x Mass of feelings (stressful or peaceful) associated with the Trigger x Speed of Light². We also establish modern medical scientific facts about relationship between reflex activity and memory. This research further develops the ‘Rational Memory Therapy’ focusing on therapeutic feelings conversion techniques, for stress prevention and management.

Keywords: memory, sensations, feelings, emotions, rational memory therapy

Procedia PDF Downloads 255
3738 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy

Authors: Sriram Kashyap Prasad, Ionut Florescu

Abstract:

This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.

Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning

Procedia PDF Downloads 151
3737 Wear Behavior of Commercial Aluminium Engine Block and Piston under Dry Sliding Condition

Authors: Md. Salim Kaiser

Abstract:

In the present work, the effect of load and sliding distance on the performance tribology of commercially used aluminium-silicon engine block and piston was evaluated at ambient conditions with humidity of 80% under dry sliding conditions using a pin-on-disc with two different loads of 5N and 20N yielding applied pressure of 0.30MPa and 1.4MPa, respectively, at sliding velocity of 0.29ms-1 and with varying sliding distance ranging from 260m-4200m. Factors and conditions that had significant effect were identified. The results showed that the load and the sliding distance affect the wear rate of the alloys and the wear rate increased with increasing load for both the alloys. Wear rate also increases almost linearly at low loads and increase to a maximum then attain a plateau with increasing sliding distance. For both applied loads, the piston alloy showed the better performance due to higher Ni and Mg content. The worn surface and wear debris was characterized by optical microscope, SEM and EDX analyzer. The worn surface was characterized by surface with shallow grooves at loads while the groove width and depth increased as the loads increases. Oxidative wear was found to be the predominant mechanisms in the dry sliding of Al-Si alloys at low loads

Keywords: wear, friction, gravimetric analysis, aluminium-silicon alloys, SEM, EDX

Procedia PDF Downloads 255
3736 A New Converter Topology for Wind Energy Conversion System

Authors: Mahmoud Khamaira, Ahmed Abu-Siada, Yasser Alharbi

Abstract:

Doubly Fed Induction Generators (DFIGs) are currently extensively used in variable speed wind power plants due to their superior advantages that include reduced converter rating, low cost, reduced losses, easy implementation of power factor correction schemes, variable speed operation and four quadrants active and reactive power control capabilities. On the other hand, DFIG sensitivity to grid disturbances, especially for voltage sags represents the main disadvantage of the equipment. In this paper, a coil is proposed to be integrated within the DFIG converters to improve the overall performance of a DFIG-based wind energy conversion system (WECS). The charging and discharging of the coil are controlled by controlling the duty cycle of the switches of the dc-dc chopper. Simulation results reveal the effectiveness of the proposed topology in improving the overall performance of the WECS system under study.

Keywords: doubly fed induction generator, coil, wind energy conversion system, converter topology

Procedia PDF Downloads 661
3735 Si3N4-SiC Composites Produced by Using C Black and Sic Powder

Authors: Nilgun Kuskonmaz, Zeynep Taslıcukur Ozturk, Cem Sahin

Abstract:

In this study, Si3N4-SiC composites were synthesized by using different raw materials. In the first method, Si3N4 and C black powder mixtures were used to fabricate Si3N4-SiC composites by in-situ carbothermal reduction process. The percentage of C black was only changed. The effects of carbon black percentage in the mixtures were analysed by characterization of SiC particles which were obtained in the Si3N4 matrix. In the second method, SiC particles were added to the matrix in different weight ratios. The composites were pressed by cold isostatic method under 150 MPa pressure and pressureless sintered at 1700-1850 °C during 1 hour in the argon atmosphere. AlN and Y2O3 were used as sintering additives. Sintering temperature, time and all the effects on in-situ reaction were studied. The densification and microstructure properties of the produced ceramics were analysed. Density was one of the main subjects in these reactions. It is very important during porous SiC sintering. Green density and relative density were measured higher for CIP samples. Samples which were added carbon black were more porous than SiC added samples. The increase in the carbon black, makes increase in porosity. The outcome of the experiments was SiC powders which were obtained at the grain boundries of β-Si3N4 particles.

Keywords: silicon nitride, silicon carbide, carbon black, cold isostatic press, sintering

Procedia PDF Downloads 309
3734 A New Method Presentation for Locating Fault in Power Distribution Feeders Considering DG

Authors: Rahman Dashti, Ehsan Gord

Abstract:

In this paper, an improved impedance based fault location method is proposed. In this method, online fault locating is performed using voltage and current information at the beginning of the feeder. Determining precise fault location in a short time increases reliability and efficiency of the system. The proposed method utilizes information about main component of voltage and current at the beginning of the feeder and distributed generation unit (DGU) in order to precisely locate different faults in acceptable time. To evaluate precision and accuracy of the proposed method, a 13-node is simulated and tested using MATLAB.

Keywords: distribution network, fault section determination, distributed generation units, distribution protection equipment

Procedia PDF Downloads 401
3733 High Speed Response Single-Inductor Dual-Output DC-DC Converter with Hysteretic Control

Authors: Y. Kobori, S. Tanaka, N. Tsukiji, N. Takai, H. Kobayashi

Abstract:

This paper proposes two kinds of new single-inductor dual-output (SIDO) DC-DC switching converters with ripple-based hysteretic control. First SIDO converters of type 1 utilize the triangular signal generated by the CR-circuit connected across the inductor. This triangular signal is used for generating the PWM signal instead of the saw-tooth signal used in the conventional converters. Second SIDO converters of type 2 utilize the triangular signal generated by the CR-circuit connected across the voltage error amplifier. This paper describes circuit topologies, Operation principles, simulation results and experimental results of the proposed SIDO converters. In simulation results of both type of SIDO converters, static output voltage ripples are less than 5mVpp and over/under shoots of the dynamic load regulations for the output current step are less than +/- 10mV. In experimental results of single output converter of type 2, static output voltage ripples are about 20mVpp. Output ripples of SIDO type 1 converter are about 80mVpp.

Keywords: DC-DC converter, switching converter, SIDO converter, hysteretic control, ripple-based control

Procedia PDF Downloads 573
3732 Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer

Authors: Zhe Li, Tao Ju, Liguo Zhang, Zehong Zhang, Baoshun Zhang

Abstract:

In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed.

Keywords: cathodoluminescence, defect-selected-etching, double Shockley stacking fault, low-temperature photoluminescence, nucleation model, silicon carbide

Procedia PDF Downloads 316
3731 Randomly Casted Single-Wall Carbon Nanotubes Films for High Performance Hybrid Photovoltaic Devices

Authors: My Ali El Khakani

Abstract:

Single-wall Carbon nanotubes (SWCNTs) possess an unprecedented combination of unique properties that make them highly promising for suitable for a new generation of photovoltaic (PV) devices. Prior to discussing the integration of SWCNTs films into effective PV devices, we will briefly highlight our work on the synthesis of SWCNTs by means of the KrF pulsed laser deposition technique, their purification and transfer onto n-silicon substrates to form p-n junctions. Some of the structural and optoelectronic properties of SWCNTs relevant to PV applications will be emphasized. By varying the SWCNTs film density (µg/cm2), we were able to point out the existence of an optimum value that yields the highest photoconversion efficiency (PCE) of ~10%. Further control of the doping of the p-SWCNTs films, through their exposure to nitric acid vapors, along with the insertion of an optimized hole-extraction-layer in the p-SWCNTs/n-Si hybrid devices permitted to achieve a PCE value as high as 14.2%. Such a high PCE value demonstrates the full potential of these p-SWCNTs/n-Si devices for sunlight photoconversion. On the other hand, by examining both the optical transmission and electrical conductance of the SWCNTs’ films, we established a figure of merit (FOM) that was shown to correlate well with the PCE performance. Such a direct relationship between the FOM and the PCE can be used as a guide for further PCE enhancement of these novel p-SWCNTs/n-Si PV devices.

Keywords: carbon nanotubes (CNTs), CNTs-silicon hybrid devices, photoconversion, photovoltaic devices, pulsed laser deposition

Procedia PDF Downloads 118
3730 Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater

Authors: Hen Friman, Alex Schechter, Yeshayahu Nitzan, Rivka Cahan

Abstract:

The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average.

Keywords: bioremediation, aromatic hydrocarbons, BETX, toluene, pseudomonas putida

Procedia PDF Downloads 316
3729 Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: bio-batteries, electricity, cow-dung, electrodes, non-conventional

Procedia PDF Downloads 205
3728 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 124
3727 In the Primary Education, the Classroom Teacher's Procedure of Coping WITH Stress, the Health of Psyche and the Direction of Check Point

Authors: Caglayan Pinar Demirtas, Mustafa Koc

Abstract:

Objective: This study was carried out in order to find out; the methods which are used by primary school teachers to cope with stress, their psychological health, and the direction of controlling focus. The study was carried out by using the ‘school survey’ and ‘society survey’ methods. Method: The study included primary school teachers. The study group was made up of 1066 people; 511 women and 555 men who accepted volunteerly to complete; ‘the inventory for collecting data, ‘the Scale for Attitude of Overcoming Stress’ (SBTE / SAOS), ‘Rotter’s Scale for the Focus of Inner- Outer Control’ (RİDKOÖ / RSFIOC), and ‘the Symptom Checking List’ (SCL- 90). The data was collected by using ‘the Scale for Attitude of Overcoming Stress’, ‘the Scale for the Focus of Inner- Outer Control’, ‘the Symptom Checking List’, and a personal information form developed by the researcher. SPSS for Windows packet programme was used. Result: The age variable is a factor in interpersonal sensitivity, depression, anxciety, hostality symptoms but it is not a factor in the other symptoms. The variable, gender, is a factor in emotional practical escaping overcoming method but it is not a factor in the other overcoming methods. Namely, it has been found out that, women use emotional practical escaping overcoming method more than men. Marital status is a factor in methods of overcoming stress such as trusting in religion, emotional practical escaping and biochemical escaping while it is not a factor in the other methods. Namely, it has been found out that married teachers use trusting in religion method, and emotional practical escaping method more than single ones. Single teachers generally use biochemical escaping method. In primary school teachers’ direction of controlling focus, gender variable is a factor. It has been found out that women are more inner controlled while the men are more outer controlled. The variable, time of service, is a factor in the direction of controlling focus; that is, teachers with 1-5 years of service time are more inner controlled compared with teachers with 16-20 years of service time. The variable, age, is a factor in the direction of controlling focus; that is, teachers in 26-30 age groups are more outer controlled compared with the other age groups and again teachers in 26-30 age group are more inner controlled when compared with the other age groups. Direction of controlling focus is a factor in the primary school teachers’ psychological health. Namely, being outer controlled is a factor but being inner controlled is not. The methods; trusting in religion, active plannıng and biochemical escaping used by primary school teachers to cope with stress act as factors in the direction of controlling focus but not in the others. Namely, it has been found out that outer controlled teachers prefer the methods of trusting in religion and active planning while the inner controlled ones prefer biochemical escaping.

Keywords: coping with, controlling focus, psychological health, stress

Procedia PDF Downloads 351
3726 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications

Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin

Abstract:

A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.

Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors

Procedia PDF Downloads 370
3725 A Study on the Stabilization of the Swell Behavior of Basic Oxygen Furnace Slag by Using Geopolymer Technology

Authors: K. Y. Lin, W. H. Lee, T. W. Cheng, S. W. Huang

Abstract:

Basic Oxygen Furnace (BOF) Slag is a by-product of iron making. It has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, the main problem for BOF slag is expansion, due to it contains free lime or free magnesium. The purpose of this study was to stabilize the BOF slag by using geopolymeric technology, hoping can prevent BOF slag expansion. Geopolymer processes contain a large amount of free silicon. These free silicon can react with free-lime or free magnesium oxide in BOF slag, and thus to form stable compound, therefore inhibit the expansion of the BOF slag. In this study for the successful preparation of geopolymer mortar with BOF slag, and their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these geopolymer mortar. Finally, the compressive strength of geopolymer mortar with BOF slag can be reached 33MPa in 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can increase to 35MPa. According to the research results can be proved that using geopolymer technology for stabilizing BOF slag is very effective.

Keywords: BOF slag, autoclave test, geopolymer, swell behavior

Procedia PDF Downloads 136
3724 Piezoelectric Micro-generator Characterization for Energy Harvesting Application

Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima

Abstract:

This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.

Keywords: piezoelectric, micro-generator, energy harvesting, cantilever beam

Procedia PDF Downloads 465
3723 Ground Grid Design at the Egyptian Side of the Proposed High Voltage Direct Current Link Tying Egypt and Saudi Arabia

Authors: Samar Akef, Ahdab M. K. El-Morshedy, Mohamed M. Samy, Ahmed M. Emam

Abstract:

This paper presents a safe and realistic design for the proposed high voltage direct current grounding grid for the converter station at Badr City in Egypt. The outcomes show that the estimated results for touch and step voltages are below the safe limits for humans in monopolar operation and fault conditions. The cross-section area of earthing conductor is computed using IEC TS 62344. The results show that touch voltage in monopolar and fault conditions are 46.6 V and 167.68 V, respectively. The optimum number of required earthing rods is obtained by an analytical method. The step voltages are 12.9 and 43 V in monopolar operation and fault conditions. In addition, this paper presents an experimental case study to verify the simulation work executed using CYMGrd software (finite element method based). The percentage error between the measured and simulated surface potential is below 15.9%.

Keywords: grounding, monopolar, fault conditions, step potential, touch potential, CYMGrd, finite element method, experimental case study

Procedia PDF Downloads 68
3722 Distribution System Modelling: A Holistic Approach for Harmonic Studies

Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet

Abstract:

The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.

Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling

Procedia PDF Downloads 159
3721 Low-Voltage and Low-Power Bulk-Driven Continuous-Time Current-Mode Differentiator Filters

Authors: Ravi Kiran Jaladi, Ezz I. El-Masry

Abstract:

Emerging technologies such as ultra-wide band wireless access technology that operate at ultra-low power present several challenges due to their inherent design that limits the use of voltage-mode filters. Therefore, Continuous-time current-mode (CTCM) filters have become very popular in recent times due to the fact they have a wider dynamic range, improved linearity, and extended bandwidth compared to their voltage-mode counterparts. The goal of this research is to develop analog filters which are suitable for the current scaling CMOS technologies. Bulk-driven MOSFET is one of the most popular low power design technique for the existing challenges, while other techniques have obvious shortcomings. In this work, a CTCM Gate-driven (GD) differentiator has been presented with a frequency range from dc to 100MHz which operates at very low supply voltage of 0.7 volts. A novel CTCM Bulk-driven (BD) differentiator has been designed for the first time which reduces the power consumption multiple times that of GD differentiator. These GD and BD differentiator has been simulated using CADENCE TSMC 65nm technology for all the bilinear and biquadratic band-pass frequency responses. These basic building blocks can be used to implement the higher order filters. A 6th order cascade CTCM Chebyshev band-pass filter has been designed using the GD and BD techniques. As a conclusion, a low power GD and BD 6th order chebyshev stagger-tuned band-pass filter was simulated and all the parameters obtained from all the resulting realizations are analyzed and compared. Monte Carlo analysis is performed for both the 6th order filters and the results of sensitivity analysis are presented.

Keywords: bulk-driven (BD), continuous-time current-mode filters (CTCM), gate-driven (GD)

Procedia PDF Downloads 260
3720 Global Voltage Harmonic Index for Measuring Harmonic Situation of Power Grids: A Focus on Power Transformers

Authors: Alireza Zabihi, Saeed Peyghami, Hossein Mokhtari

Abstract:

With the increasing deployment of renewable power plants, such as solar and wind, it is crucial to measure the harmonic situation of the grid. This paper proposes a global voltage harmonic index to measure the harmonic situation of the power grid with a focus on power transformers. The power electronics systems used to connect these plants to the network can introduce harmonics, leading to increased losses, reduced efficiency, false operation of protective relays, and equipment damage due to harmonic intensifications. The proposed index considers the losses caused by harmonics in power transformers which are of great importance and value to the network, providing a comprehensive measure of the harmonic situation of the grid. The effectiveness of the proposed index is evaluated on a real-world distribution network, and the results demonstrate its ability to identify the harmonic situation of the network, particularly in relation to power transformers. The proposed index provides a comprehensive measure of the harmonic situation of the grid, taking into account the losses caused by harmonics in power transformers. The proposed index has the potential to support power companies in optimizing their power systems and to guide researchers in developing effective mitigation strategies for harmonics in the power grid.

Keywords: global voltage harmonic index, harmonics, power grid, power quality, power transformers, renewable energy

Procedia PDF Downloads 127
3719 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems

Authors: Masato Sasaki, Masayoshi Yamamoto

Abstract:

The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.

Keywords: wireless power transfer, omni-directional, orthogonal, efficiency

Procedia PDF Downloads 317
3718 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control

Authors: A. M. Wahab, E. Rustighi

Abstract:

Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: dielectric electro-active polymer, pull actuator, static, dynamic, electromechanical

Procedia PDF Downloads 251
3717 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces

Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang

Abstract:

Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.

Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide

Procedia PDF Downloads 435
3716 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.

Keywords: liquid crystals, polymers, small-angle scattering, optical properties

Procedia PDF Downloads 617
3715 The Response of 4-Hydroxybenzoic Acid on Kv1.4 Potassium Channel Subunit Expressed in Xenopus laevis Oocytes

Authors: Fatin H. Mohamad, Jia H. Wong, Muhammad Bilal, Abdul A. Mohamed Yusoff, Jafri M. Abdullah, Jingli Zhang

Abstract:

Kv1.4 is a Shaker-related member of voltage-gated potassium channel which can be associated with cardiac action potential but can also be found in Schaffer collateral and dentate gyrus. It has two inactivation mechanisms; the fast N-type and slow C-type. Kv1.4 produces rapid current inactivation. This A type potential of Kv1.4 makes it as a target in antiepileptic drugs (AEDs) selection. In this study, 4-hydroxybenzoic acid, which can be naturally found in bamboo shoots, were tested on its enhancement effect on potassium current of Kv1.4 channel expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp method. Current obtained were recorded and analyzed with pClamp software whereas statistical analysis were done by student t-test. The ratio of final / peak amplitude is an index of the activity of the Kv1.4 channel. The less the ratio, the greater the function of Kv1.4. The decrease of ratio of which by 1µM 4-hydroxybenzoic acid (n= 7), compared with 0.1% DMSO (vehicle), was mean= 47.62%, SE= 13.76%, P= 0.026 (statistically significant). It indicated more opening of Kv1.4 channels under 4-hydroxybenzoic acid. In conclusion, 4-hydroxybenzoic acid can enhance the function of Kv1.4 potassium channels, which is regarded as one of the mechanisms of antiepileptic treatment.

Keywords: antiepileptic, Kv1.4 potassium channel, two-microelectrode voltage clamp, Xenopus laevis oocytes, 4-hydroxybenzoic acid

Procedia PDF Downloads 362
3714 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications

Procedia PDF Downloads 59
3713 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers

Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz

Abstract:

Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cells integration, electrospun fiber, PHBV, surface characterization

Procedia PDF Downloads 118
3712 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D

Authors: Nima E. Gorji

Abstract:

The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.

Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling

Procedia PDF Downloads 330
3711 3 Phase Induction Motor Control Using Single Phase Input and GSM

Authors: Pooja S. Billade, Sanjay S. Chopade

Abstract:

This paper focuses on the design of three phase induction motor control using single phase input and GSM.The controller used in this work is a wireless speed control using a GSM technique that proves to be very efficient and reliable in applications.The most common principle is the constant V/Hz principle which requires that the magnitude and frequency of the voltage applied to the stator of a motor maintain a constant ratio. By doing this, the magnitude of the magnetic field in the stator is kept at an approximately constant level throughout the operating range. Thus, maximum constant torque producing capability is maintained. The energy that a switching power converter delivers to a motor is controlled by Pulse Width Modulated signals applied to the gates of the power transistors in H-bridge configuration. PWM signals are pulse trains with fixed frequency and magnitude and variable pulse width. When a PWM signal is applied to the gate of a power transistor, it causes the turn on and turns off intervals of the transistor to change from one PWM period.

Keywords: index terms— PIC, GSM (global system for mobile), LCD (Liquid Crystal Display), IM (Induction Motor)

Procedia PDF Downloads 448