Search results for: iterative methods
14938 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data
Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi
Abstract:
Edgeworth Approximation, Bootstrap, and Monte Carlo Simulations have considerable impacts on achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that has the components of a cash-flow of one of the most successful businesses in the world, as the financial activity, operational activity, and investment activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case, we have created a vector autoregression model, and after that, we have generated the impulse responses in the terms of asymptotic analysis (Edgeworth Approximation), Monte Carlo Simulations, and residual bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.Keywords: autoregression, bootstrap, edgeworth expansion, Monte Carlo method
Procedia PDF Downloads 15314937 Fault Tolerant Control of the Dynamical Systems Based on Internal Structure Systems
Authors: Seyed Mohammad Hashemi, Shahrokh Barati
Abstract:
The problem of fault-tolerant control (FTC) by accommodation method has been studied in this paper. The fault occurs in any system components such as actuators, sensors or internal structure of the system and leads to loss of performance and instability of the system. When a fault occurs, the purpose of the fault-tolerant control is designate strategy that can keep the control loop stable and system performance as much as possible perform it without shutting down the system. Here, the section of fault detection and isolation (FDI) system has been evaluated with regard to actuator's fault. Designing a fault detection and isolation system for a multi input-multi output (MIMO) is done by an unknown input observer, so the system is divided to several subsystems as the effect of other inputs such as disturbing given system state equations. In this observer design method, the effect of these disturbances will weaken and the only fault is detected on specific input. The results of this approach simulation can confirm the ability of the fault detection and isolation system design. After fault detection and isolation, it is necessary to redesign controller based on a suitable modification. In this regard after the use of unknown input observer theory and obtain residual signal and evaluate it, PID controller parameters redesigned for iterative. Stability of the closed loop system has proved in the presence of this method. Also, In order to soften the volatility caused by Annie variations of the PID controller parameters, modifying Sigma as a way acceptable solution used. Finally, the simulation results of three tank popular example confirm the accuracy of performance.Keywords: fault tolerant control, fault detection and isolation, actuator fault, unknown input observer
Procedia PDF Downloads 45214936 Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets
Authors: Raphael de Oliveira Garcia, Samuel Rocha de Oliveira
Abstract:
We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer.Keywords: finite volume methods, central schemes, fortran 90, relativistic astrophysics, jet
Procedia PDF Downloads 45414935 Use of Microbial Fuel Cell for Metal Recovery from Wastewater
Authors: Surajbhan Sevda
Abstract:
Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity
Procedia PDF Downloads 21714934 The Impact of Academic Support Practices on Two-Year College Students’ Achievement in Science, Technology, Engineering, and Math Education: An Exploration of Factors
Authors: Gisele Ragusa, Lilian Leung
Abstract:
There are essential needs for science, technology, engineering, and math (STEM) workforces nationally. This important need underscores the necessity of increasing numbers of students attending both two-year community colleges and universities, thereby enabling and supporting a larger pool of students to enter the workforce. The greatest number of students in STEM programs attend public higher education institutions, with an even larger majority beginning their academic experiences enrolled in two-year public colleges. Accordingly, this research explores the impact of experiences and academic support practices on two-year (community) college students’ academic achievement in STEM majors with a focus on supporting students who are the first in their families to attend college. This research is a result of three years of iterative trials of differing supports to improve such students’ academic success with a cross-student comparative research methodological structure involving peer-to-peer and faculty academic supports. Results of this research indicate that background experiences and a combination of peer-to-peer and faculty-led academic support practices, including supplementary instruction, peer mentoring, and study skills support, significantly improve students’ academic success in STEM majors. These results confirm the needs that first-generation students have in navigating their college careers and what can be effective in supporting them.Keywords: higher education policy, student support, two-year colleges, STEM achievement
Procedia PDF Downloads 9614933 Optimization and Automation of Functional Testing with White-Box Testing Method
Authors: Reyhaneh Soltanshah, Hamid R. Zarandi
Abstract:
In order to be more efficient in industries that are related to computer systems, software testing is necessary despite spending time and money. In the embedded system software test, complete knowledge of the embedded system architecture is necessary to avoid significant costs and damages. Software tests increase the price of the final product. The aim of this article is to provide a method to reduce time and cost in tests based on program structure. First, a complete review of eleven white box test methods based on ISO/IEC/IEEE 29119 2015 and 2021 versions has been done. The proposed algorithm is designed using two versions of the 29119 standards, and some white-box testing methods that are expensive or have little coverage have been removed. On each of the functions, white box test methods were applied according to the 29119 standard and then the proposed algorithm was implemented on the functions. To speed up the implementation of the proposed method, the Unity framework has been used with some changes. Unity framework can be used in embedded software testing due to its open source and ability to implement white box test methods. The test items obtained from these two approaches were evaluated using a mathematical ratio, which in various software mining reduced between 50% and 80% of the test cost and reached the desired result with the minimum number of test items.Keywords: embedded software, reduce costs, software testing, white-box testing
Procedia PDF Downloads 5414932 Pedagogical Tools In The 21st Century
Authors: M. Aherrahrou
Abstract:
Moroccan education is currently facing many difficulties and problems due to traditional methods of teaching. Neuro -Linguistic Programming (NLP) appears to hold much potential for education at all levels. In this paper, the major aim is to explore the effect of certain Neuro -Linguistic Programming techniques in one educational institution in Morocco. Quantitative and Qualitative methods are used. The findings prove the effectiveness of this new approach regarding Moroccan education, and it is a promising tool to improve the quality of learning.Keywords: learning and teaching environment, Neuro- Linguistic Programming, education, quality of learning
Procedia PDF Downloads 35514931 Reliability and Validity of Determining Ventilatory Threshold and Respiratory Compensation Point by Near-Infrared Spectroscopy
Authors: Tso-Yen Mao, De-Yen Liu, Chun-Feng Huang
Abstract:
Purpose: This research intends to investigate the reliability and validity of ventilatory threshold (VT) and respiratory compensation point (RCP) determined by skeletal muscle hemodynamic status. Methods: One hundred healthy male (age: 22±3 yrs; height: 173.1±6.0 cm; weight: 67.1±10.5 kg) performed graded cycling exercise test which ventilatory and skeletal muscle hemodynamic data were collected simultaneously. VT and RCP were determined by combined V-slope (VE vs. VCO2) and ventilatory efficiency (VE/VO2 vs. VE/VCO2) methods. Pearson correlation, paired t-test, and Bland-Altman plots were used to analyze reliability, validity, and similarities. Statistical significance was set at α =. 05. Results: There are high test-retest correlations of VT and RCP in ventilatory or near-infrared spectroscopy (NIRS) methods (VT vs. VTNIRS: 0.95 vs. 0.94; RCP vs. RCPNIRS: 0.93 vs. 0.93, p<. 05). There are high coefficient of determination at the first timing point of O2Hb decreased (R2 = 0.88, p<. 05) with VT, and high coefficient of determination at the second timing point of O2Hb declined (R2 = 0.89, p< .05) with RCP. VO2 of VT and RCP are not significantly different between ventilatory and NIRS methods (p>. 05). Conclusion: Using NIRS method to determine VT and RCP is reliable and valid in male individuals during graded exercise. Non-invasive skeletal muscle hemodynamics monitor also can be used for controlling training intensity in the future.Keywords: anaerobic threshold, exercise intensity, hemodynamic, NIRS
Procedia PDF Downloads 31314930 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)
Procedia PDF Downloads 44114929 The Effect of Technology- facilitated Lesson Study toward Teacher’s Computer Assisted Language Learning Competencies
Authors: Yi-Ning Chang
Abstract:
With the rapid advancement of technology, it has become crucial for educators to adeptly integrate technology into their teaching and develop a robust Computer-Assisted Language Learning (CALL) competency. Addressing this need, the present study adopted a technology-based Lesson Study approach to assess its impact on the CALL competency and professional capabilities of EFL teachers. Additionally, the study delved into teachers' perceptions of the benefits derived from participating in the creation of technologically integrated lesson plans. The iterative process of technology-based Lesson Study facilitated ample peer discussion, enabling teachers to flexibly design and implement lesson plans that incorporate various technological tools. This 15-week study included 10 in- service teachers from a university of science and technology in the central of Taiwan. The collected data included pre- and post- lesson planning scores, pre- and post- TPACK survey scores, classroom observation forms, designed lesson plans, and reflective essays. The pre- and post- lesson planning and TPACK survey scores were analyzed employing a pair-sampled t test; students’ reflective essays were respectively analyzed applying content analysis. The findings revealed that the teachers’ lesson planning ability and CALL competencies were improved. Teachers perceived a better understanding of integrating technology with teaching subjects, more effective teaching skills, and a deeper understanding of technology. Pedagogical implications and future studies are also discussed.Keywords: CALL, language learning, lesson study, lesson plan
Procedia PDF Downloads 4014928 Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound
Authors: Drissi Mokhtaria, Chouaih Abdelkader, Fodil Hamzaoui
Abstract:
Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods.Keywords: electron charge density, m-nitrophenol, nonlinear optical compound, electrostatic potential, optimized geometric
Procedia PDF Downloads 26814927 Choral Singers' Preference for Expressive Priming Techniques
Authors: Shawn Michael Condon
Abstract:
Current research on teaching expressivity mainly involves instrumentalists. This study focuses on choral singers’ preference of priming techniques based on four methods for teaching expressivity. 112 choral singers answered the survey about their preferred methods for priming expressivity (vocal modelling, using metaphor, tapping into felt emotions, and drawing on past experiences) in three conditions (active, passive, and instructor). Analysis revealed higher preference for drawing on past experience among more experienced singers. The most preferred technique in the passive and instructor roles was vocal modelling, with metaphors and tapping into felt emotions favoured in an active role. Priming techniques are often used in combination with other methods to enhance singing technique or expressivity and are dependent upon the situation, repertoire, and the preferences of the instructor and performer.Keywords: emotion, expressivity, performance, singing, teaching
Procedia PDF Downloads 15514926 Optimal Construction Using Multi-Criteria Decision-Making Methods
Authors: Masood Karamoozian, Zhang Hong
Abstract:
The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Prefabricated Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts, university centers, and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the Prefabricated Concrete System (PRCS) was in the first rank, and the Light Steel Frame (LSF) system ranked second. Also, the Prefabricated Concrete System (PRCS), in terms of performance standards and economics, was ranked first, and the Light Steel Frame (LSF) system was allocated the first rank in terms of environmental standards.Keywords: multi-criteria decision making, AHP, SAW, TOPSIS
Procedia PDF Downloads 11014925 An Approach to Correlate the Statistical-Based Lorenz Method, as a Way of Measuring Heterogeneity, with Kozeny-Carman Equation
Authors: H. Khanfari, M. Johari Fard
Abstract:
Dealing with carbonate reservoirs can be mind-boggling for the reservoir engineers due to various digenetic processes that cause a variety of properties through the reservoir. A good estimation of the reservoir heterogeneity which is defined as the quality of variation in rock properties with location in a reservoir or formation, can better help modeling the reservoir and thus can offer better understanding of the behavior of that reservoir. Most of reservoirs are heterogeneous formations whose mineralogy, organic content, natural fractures, and other properties vary from place to place. Over years, reservoir engineers have tried to establish methods to describe the heterogeneity, because heterogeneity is important in modeling the reservoir flow and in well testing. Geological methods are used to describe the variations in the rock properties because of the similarities of environments in which different beds have deposited in. To illustrate the heterogeneity of a reservoir vertically, two methods are generally used in petroleum work: Dykstra-Parsons permeability variations (V) and Lorenz coefficient (L) that are reviewed briefly in this paper. The concept of Lorenz is based on statistics and has been used in petroleum from that point of view. In this paper, we correlated the statistical-based Lorenz method to a petroleum concept, i.e. Kozeny-Carman equation and derived the straight line plot of Lorenz graph for a homogeneous system. Finally, we applied the two methods on a heterogeneous field in South Iran and discussed each, separately, with numbers and figures. As expected, these methods show great departure from homogeneity. Therefore, for future investment, the reservoir needs to be treated carefully.Keywords: carbonate reservoirs, heterogeneity, homogeneous system, Dykstra-Parsons permeability variations (V), Lorenz coefficient (L)
Procedia PDF Downloads 22014924 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.Keywords: education, methodological system, the teaching of mathematics, students motivation
Procedia PDF Downloads 35414923 Translation Training in the AI Era
Authors: Min Gao
Abstract:
In the past year, the advent of large language models (LLMs) has brought about a revolution in the language service industry, making it possible to efficiently produce more satisfactory and higher-quality translations. This is groundbreaking news for commercial companies involved in language services since much of a translator's work can now be completed by machines. However, it may be bad news for universities that provide translation training programs. They need to confront the challenges posed by AI in education by reconsidering issues such as the reform of traditional teaching methods, the translation ethics of students, and the new demands of the job market for their graduates. This article is an exploratory study of these issues based on the author's experiences in translation teaching. The research combines methods in the form of questionnaires and interviews. The findings include: (1) students may lose their motivation to learn in the AI era, but this can be compensated for by encouragement from the lecturer; (2) Translation ethics are not a serious problem in schools, considering the strict policies and regulations in place; (3) The role of translators has evolved in the new era, necessitating a reform of the traditional teaching methods.Keywords: job market of translation, large language model, translation ethics, translation training
Procedia PDF Downloads 6814922 Normal Weight Obesity among Female Students: BMI as a Non-Sufficient Tool for Obesity Assessment
Authors: Krzysztof Plesiewicz, Izabela Plesiewicz, Krzysztof Chiżyński, Marzenna Zielińska
Abstract:
Background: Obesity is an independent risk factor for cardiovascular diseases. There are several anthropometric parameters proposed to estimate the level of obesity, but until now there is no agreement which one is the best predictor of cardiometabolic risk. Scientists defined metabolically obese normal weight, who suffer from metabolic abnormalities, the same as obese individuals, and defined this syndrome as normal weight obesity (NWO). Aim of the study: The aim of our study was to determine the occurrence of overweight and obesity in a cohort of young, adult women, using standard and complementary methods of obesity assessment and to indicate those, who are at risk of obesity. The second aim of our study was to test additional methods of obesity assessment and proof that body mass index using alone is not sufficient parameter of obesity assessment. Materials and methods: 384 young women, aged 18-32, were enrolled into the study. Standard anthropometric parameters (waist to hips ratio (WTH), waist to height ratio (WTHR)) and two other methods of body fat percentage measurement (BFPM) were used in the study: electrical bioimpendance analysis (BIA) and skinfold measurement test by digital fat body mass clipper (SFM). Results: In the study group 5% and 7% of participants had waist to hips ratio and accordingly waist to height ratio values connected with visceral obesity. According to BMI 14% participants were overweight and obese. Using additional methods of body fat assessment, there were 54% and 43% of obese for BIA and SMF method. In the group of participants with normal BMI and underweight (not overweight, n =340) there were individuals with the level of BFPM above the upper limit, for the BIA 49% (n =164) and for the SFM 36 % (n=125). Statistical analysis revealed strong correlation between BIA and SFM methods. Conclusion: BMI using alone is not a sufficient parameter of obesity assessment. High percentage of young women with normal BMI values seem to be normal weight obese.Keywords: electrical bioimpedance, normal weight obesity, skin-fold measurement test, women
Procedia PDF Downloads 27414921 Research of Database Curriculum Construction under the Environment of Massive Open Online Courses
Authors: Wang Zhanquan, Yang Zeping, Gu Chunhua, Zhu Fazhi, Guo Weibin
Abstract:
Recently, Massive Open Online Courses (MOOCs) are becoming the new trend of education. There are many problems under the environment of Database Principle curriculum teaching process in MOOCs, such as teaching ideas and theories which are out of touch with the reality, how to carry out the technical teaching and interactive practice in the MOOCs environment, thus the methods of database course under the environment of MOOCs are proposed. There are three processes to deal with problem solving in the research, which are problems proposed, problems solved, and inductive analysis. The present research includes the design of teaching contents, teaching methods in classroom, flipped classroom teaching mode under the environment of MOOCs, learning flow method and large practice homework. The database designing ability is systematically improved based on the researching methods.Keywords: problem solving-driven, MOOCs, teaching art, learning flow;
Procedia PDF Downloads 36314920 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features
Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh
Abstract:
This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal
Procedia PDF Downloads 10414919 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 7314918 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method
Authors: Murat Demir Aydin, Elanur Celebi
Abstract:
Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)
Procedia PDF Downloads 32114917 Bi-Dimensional Spectral Basis
Authors: Abdelhamid Zerroug, Mlle Ismahene Sehili
Abstract:
Spectral methods are usually applied to solve uni-dimensional boundary value problems. With the advantage of the creation of multidimensional basis, we propose a new spectral method for bi-dimensional problems. In this article, we start by creating bi-spectral basis by different ways, we developed also a new relations to determine the expressions of spectral coefficients in different partial derivatives expansions. Finally, we propose the principle of a new bi-spectral method for the bi-dimensional problems.Keywords: boundary value problems, bi-spectral methods, bi-dimensional Legendre basis, spectral method
Procedia PDF Downloads 39514916 Fish Is Back but Fishers Are Out: The Dilemma of the Education Methods Adapted for Co-management of the Fishery Resource
Authors: Namubiru Zula, Janice Desire Busingue
Abstract:
Pro-active educational approaches have lately been adapted Globally in the Conservation of Natural Resources. This led to the introduction of the co-management system, which worked for some European Countries on the conservation of sharks and other Natural resources. However, this approach has drastically failed in the Fishery sector on Lake Victoria; and the punitive education approach has been re-instated. Literature is readily available about the punitive educational approaches and scanty with the pro-active one. This article analyses the pro-active approach adopted by the Department of Fisheries for the orientation of BMU leaders in a co-management system. The study is interpreted using the social constructivist lens for co-management of the fishery resource to ensure that fishers are also back to fishing sustainably. It highlights some of the education methods used, methodological challenges that included the power and skills gap of the facilitators and program designers, and some implications to practice.Keywords: beach management units, fishers, education methods, proactive approach, punitive approach
Procedia PDF Downloads 12314915 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7
Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit
Abstract:
In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety
Procedia PDF Downloads 6814914 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints
Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar
Abstract:
Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling
Procedia PDF Downloads 14714913 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants
Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer
Abstract:
Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 12814912 Development and Validation of Selective Methods for Estimation of Valaciclovir in Pharmaceutical Dosage Form
Authors: Eman M. Morgan, Hayam M. Lotfy, Yasmin M. Fayez, Mohamed Abdelkawy, Engy Shokry
Abstract:
Two simple, selective, economic, safe, accurate, precise and environmentally friendly methods were developed and validated for the quantitative determination of valaciclovir (VAL) in the presence of its related substances R1 (acyclovir), R2 (guanine) in bulk powder and in the commercial pharmaceutical product containing the drug. Method A is a colorimetric method where VAL selectively reacts with ferric hydroxamate and the developed color was measured at 490 nm over a concentration range of 0.4-2 mg/mL with percentage recovery 100.05 ± 0.58 and correlation coefficient 0.9999. Method B is a reversed phase ultra performance liquid chromatographic technique (UPLC) which is considered superior in technology to the high-performance liquid chromatography with respect to speed, resolution, solvent consumption, time, and cost of analysis. Efficient separation was achieved on Agilent Zorbax CN column using ammonium acetate (0.1%) and acetonitrile as a mobile phase in a linear gradient program. Elution time for the separation was less than 5 min and ultraviolet detection was carried out at 256 nm over a concentration range of 2-50 μg/mL with mean percentage recovery 100.11±0.55 and correlation coefficient 0.9999. The proposed methods were fully validated as per International Conference on Harmonization specifications and effectively applied for the analysis of valaciclovir in pure form and tablets dosage form. Statistical comparison of the results obtained by the proposed and official or reported methods revealed no significant difference in the performance of these methods regarding the accuracy and precision respectively.Keywords: hydroxamic acid, related substances, UPLC, valaciclovir
Procedia PDF Downloads 24614911 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 11814910 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere
Authors: Yulia A. Kononova, Znang X. Ning
Abstract:
Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house
Procedia PDF Downloads 26214909 Improving Detection of Illegitimate Scores and Assessment in Most Advantageous Tenders
Authors: Hao-Hsi Tseng, Hsin-Yun Lee
Abstract:
The Most Advantageous Tender (MAT) has been criticized for its susceptibility to dictatorial situations and for its processing of same score, same rank issues. This study applies the four criteria from Arrow's Impossibility Theorem to construct a mechanism for revealing illegitimate scores in scoring methods. While commonly be used to improve on problems resulting from extreme scores, ranking methods hide significant defects, adversely affecting selection fairness. To address these shortcomings, this study relies mainly on the overall evaluated score method, using standardized scores plus normal cumulative distribution function conversion to calculate the evaluation of vender preference. This allows for free score evaluations, which reduces the influence of dictatorial behavior and avoiding same score, same rank issues. Large-scale simulations confirm that this method outperforms currently used methods using the Impossibility Theorem.Keywords: Arrow’s impossibility theorem, cumulative normal distribution function, most advantageous tender, scoring method
Procedia PDF Downloads 463