Search results for: geological geophysical geochemical and minerogenic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25715

Search results for: geological geophysical geochemical and minerogenic data

25115 Router 1X3 - RTL Design and Verification

Authors: Nidhi Gopal

Abstract:

Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.

Keywords: data packets, networking, router, routing

Procedia PDF Downloads 818
25114 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: web log data, web user profile, user interest, noise web data learning, machine learning

Procedia PDF Downloads 268
25113 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study

Authors: Zeba Mahmood

Abstract:

The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.

Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining

Procedia PDF Downloads 539
25112 Low Resistivity Pay Identification in Carbonate Reservoirs of Yadavaran Oilfield

Authors: Mohammad Mardi

Abstract:

Generally, the resistivity is high in oil layer and low in water layer. Yet there are intervals of oil-bearing zones showing low resistivity, high porosity, and low resistance. In the typical example, well A (depth: 4341.5-4372.0m), both Spectral Gamma Ray (SGR) and Corrected Gamma Ray (CGR) are relatively low; porosity varies from 12-22%. Above 4360 meters, the reservoir shows the conventional positive difference between deep and shallow resistivity with high resistance; below 4360m, the reservoir shows a negative difference with low resistance, especially at depths of 4362.4 meters and 4371 meters, deep resistivity is only 2Ω.m, and the CAST-V imaging map shows that there are low resistance substances contained in the pores or matrix in the reservoirs of this interval. The rock slice analysis data shows that the pyrite volume is 2-3% in the interval 4369.08m-4371.55m. A comprehensive analysis on the volume of shale (Vsh), porosity, invasion features of resistivity, mud logging, and mineral volume indicates that the possible causes for the negative difference between deep and shallow resistivities with relatively low resistance are erosional pores, caves, micritic texture and the presence of pyrite. Full-bore Drill Stem Test (DST) verified 4991.09 bbl/d in this interval. To identify and thoroughly characterize low resistivity intervals coring, Nuclear Magnetic Resonance (NMR) logging and further geological evaluation are needed.

Keywords: low resistivity pay, carbonates petrophysics, microporosity, porosity

Procedia PDF Downloads 172
25111 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 356
25110 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach

Authors: Jerry Q. Cheng

Abstract:

Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.

Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing

Procedia PDF Downloads 172
25109 Identification of Igneous Intrusions in South Zallah Trough-Sirt Basin

Authors: Mohamed A. Saleem

Abstract:

Using mostly seismic data, this study intends to show some examples of igneous intrusions found in some areas of the Sirt Basin and explore the period of their emplacement as well as the interrelationships between these sills. The study area is located in the south of the Zallah Trough, south-west Sirt basin, Libya. It is precisely between the longitudes 18.35ᵒ E and 19.35ᵒ E, and the latitudes 27.8ᵒ N and 28.0ᵒ N. Based on a variety of criteria that are usually used as marks on the igneous intrusions, twelve igneous intrusions (Sills), have been detected and analysed using 3D seismic data. One or more of the following were used as identification criteria: the high amplitude reflectors paired with abrupt reflector terminations, vertical offsets, or what is described as a dike-like connection, the violation, the saucer form, and the roughness. Because of their laying between the hosting layers, the majority of these intrusions are classified as sills. Another distinguishing feature is the intersection geometry link between some of these sills. Every single sill has given a name just to distinguish the sills from each other such as S-1, S-2, and …S-12. To avoid the repetition of description, the common characteristics and some statistics of these sills are shown in summary tables, while the specific characters that are not common and have been noticed for each sill are shown individually. The sills, S-1, S-2, and S-3, are approximately parallel to one other, with the shape of these sills being governed by the syncline structure of their host layers. The faults that dominated the strata (pre-upper Cretaceous strata) have a significant impact on the sills; they caused their discontinuity, while the upper layers have a shape of anticlines. S-1 and S-10 are the group's deepest and highest sills, respectively, with S-1 seated near the basement's top and S-10 extending into the sequence of the upper cretaceous. The dramatic escalation of sill S-4 can be seen in N-S profiles. The majority of the interpreted sills are influenced and impacted by a large number of normal faults that strike in various directions and propagate vertically from the surface to the basement's top. This indicates that the sediment sequences were existed before the sill’s intrusion, were deposited, and that the younger faults occurred more recently. The pre-upper cretaceous unit is the current geological depth for the Sills S-1, S-2 … S-9, while Sills S-10, S-11, and S-12 are hosted by the Cretaceous unit. Over the sills S-1, S-2, and S-3, which are the deepest sills, the pre-upper cretaceous surface has a slightly forced folding, these forced folding is also noticed above the right and left tips of sill S-8 and S-6, respectively, while the absence of these marks on the above sequences of layers supports the idea that the aforementioned sills were emplaced during the early upper cretaceous period.

Keywords: Sirt Basin, Zallah Trough, igneous intrusions, seismic data

Procedia PDF Downloads 114
25108 Adoption of Big Data by Global Chemical Industries

Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta

Abstract:

The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.

Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science

Procedia PDF Downloads 89
25107 Secure Multiparty Computations for Privacy Preserving Classifiers

Authors: M. Sumana, K. S. Hareesha

Abstract:

Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.

Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data

Procedia PDF Downloads 415
25106 Strain Softening of Soil under Cyclic Loading

Authors: Kobid Panthi, Suttisak Soralump, Suriyon Prempramote

Abstract:

In June 27, 2014 slope movement was observed in upstream side of Khlong Pa Bon Dam, Thailand. The slide did not have any major catastrophic impact on the dam structure but raised a very important question; why did the slide occur after 10 years of operation? Various site investigations (Bore Hole Test, SASW, Echo Sounding, and Geophysical Survey), laboratory analysis and numerical modelling using SIGMA/W and SLOPE/W were conducted to determine the cause of slope movement. It was observed that the dam had undergone the greatest differential drawdown in its operational history in the year 2014 and was termed as the major cause of movement. From the laboratory tests, it was found that the shear strength of clay had decreased with a period of time and was near its residual value. The cyclic movement of water, i.e., reservoir filling and emptying was coined out to be the major cause for the reduction of shear strength. The numerical analysis was carried out using a modified cam clay (MCC) model to determine the strain softening behavior of the clay. The strain accumulation was observed in the slope with each reservoir cycle triggering the slope failure in 2014. It can be inferred that if there was no major drawdown in 2014, the slope would not have failed but eventually would have failed after a long period of time. If there was no major drawdown in 2014, the slope would not have failed. However, even if there hadn’t been a drawdown, it would have failed eventually in the long run.

Keywords: slope movement, strain softening, residual strength, modified cam clay

Procedia PDF Downloads 136
25105 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 181
25104 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 346
25103 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 322
25102 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 127
25101 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 168
25100 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 216
25099 Well Stability Analysis Based on Geomechanical Properties of Formations in One of the Wells of Haftgol Oil Field, Iran

Authors: Naser Ebadati

Abstract:

introductory statement: Drilling operations in oil wells often involve significant risks due to varying azimuths, slopes, and the passage through layers with different lithological properties. As a result, maintaining well stability is crucial. Instability in wells can lead to costly well losses, interrupted drilling operations, and halted production from reservoirs. Objective: One of the key challenges in drilling operations is ensuring the stability of the wellbore, particularly in loose and low-resistance formations. These factors make the analysis and evaluation of well stability essential. Therefore, building a geo mechanical model for a hydrocarbon field or reservoir requires both a stress field model and a mechanical properties model of the geological formations. Numerous studies have focused on analyzing the stability of well walls, an issue known as well instability. This study aims to analyze the stability and the safe mud weight window for drilling in one of the oil fields in southern Iran. Methodology: In wellbore stability analysis, it is essential to consider the stress field model, which includes values and directions of the three principal stresses, and the mechanical properties model, which covers elastic properties and rock fracture characteristics. Wellbore instability arises from mechanical failure of the rock. Well stability can be maintained by adjusting the drilling mud weight. This study investigates wellbore stability using field data. The lithological characteristics of the well mainly consist of limestone, dolomite, and shale, as determined from log data. Wellbore logging was conducted throughout the well to calculate the required drilling mud pressure using the Mohr-Coulomb criterion. Findings: The results indicate that the safe and stable drilling mud window ranges between 17.13 MPa and 27.80 MPa. By comparing and calculating induced stresses, it was determined that the wellbore wall primarily exhibits shear fractures in the form of wide shear fractures and tensile fractures in the form of radial tensile fractures.

Keywords: drilling mud weight, formation evaluation, sheer strees, safe window

Procedia PDF Downloads 12
25098 Tectonic Complexity: Out-of-Sequence Thrusting in the Higher Himalaya of Jhakri-Sarahan region, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

The study focuses on the tectonics of out-of-sequence thrusting (OOST) in the NW region of the Himalaya, particularly in Himachal Pradesh. The research aims to identify the features and nature of OOST in the field and the associated rock types and lithological boundaries in the field of NW Himalaya, Himachal Pradesh, India. The research employs fieldwork and micro-structure observations, correlations, and analyses to identify and analyze the OOST features and associated rock types. The study reveals the presence of three OOSTs, namely Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT), which consist of several branches, some of which are still active. The thrust system exhibits varying internal geometry, including box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. The CT, which is concealed beneath Jutogh Thrust sheet, represents a steepened downward thrust, while the JT has a western dip and is south-westward verging. The research provides crucial information on the tectonics of OOST in the NW region of the Himalaya, particularly in Himachal Pradesh, which is crucial in understanding the regional geological evolution and associated hazards. The data were collected through fieldwork and micro-structure observations, correlations, and analyses of rock samples. The data were analyzed using tectonic and geochronological techniques to identify the nature and characteristics of OOST. The research addressed the question of identifying Higher Himalayan OOST in the field of NW Himalaya, Himachal Pradesh, India, and the associated rock types and lithological boundaries. The study concludes that there is minimal documentation and a lack of suitable exposure of rocks to generalize the features of OOST in the field in NW Higher Himalaya, Himachal Pradesh. The study recommends more extensive mapping and fieldwork to improve understanding of OOST in the region.

Keywords: out-of-sequence thrust (OOST), main central thrust (MCT), jhakri thrust (JT), sarahan thrust (ST), chaura thrust (CT), higher himalaya (HH)

Procedia PDF Downloads 97
25097 Seismic Integrity Determination of Dams in Urban Areas

Authors: J. M. Mayoral, M. Anaya

Abstract:

The urban and economic development of cities demands the construction of water use and flood control infrastructure. Likewise, it is necessary to determine the safety level of the structures built with the current standards and if it is necessary to define the reinforcement actions. The foregoing is even more important in structures of great importance, such as dams, since they imply a greater risk for the population in case of failure or undesirable operating conditions (e.g., seepage, cracks, subsidence). This article presents a methodology for determining the seismic integrity of dams in urban areas. From direct measurements of the dynamic properties using geophysical exploration and ambient seismic noise measurements, the seismic integrity of the concrete-faced rockfill dam selected as a case of study is evaluated. To validate the results, two accelerometer stations were installed (e.g., free field and crest of the dam). Once the dynamic properties were determined, three-dimensional finite difference models were developed to evaluate the dam seismic performance for different intensities of movement, considering the site response and soil-structure interaction effects. The seismic environment was determined from the uniform hazard spectra for several return periods. Based on the results obtained, the safety level of the dam against different seismic actions was determined, and the effectiveness of ambient seismic noise measurements in dynamic characterization and subsequent evaluation of the seismic integrity of urban dams was evaluated.

Keywords: risk, seismic, soil-structure interaction, urban dams

Procedia PDF Downloads 124
25096 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 414
25095 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016

Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi

Abstract:

This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.

Keywords: big health data, data subject rights, GDPR, pandemic

Procedia PDF Downloads 132
25094 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 81
25093 A Strategy to Oil Production Placement Zones Based on Maximum Closeness

Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes

Abstract:

Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.

Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone

Procedia PDF Downloads 333
25092 Oil-Oil Correlation Using Polar and Non-Polar Fractions of Crude Oil: A Case Study in Iranian Oil Fields

Authors: Morteza Taherinezhad, Ahmad Reza Rabbani, Morteza Asemani, Rudy Swennen

Abstract:

Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils genetically. Oil-oil correlation is generally estimated based on non-polar fractions of crude oil (e.g., saturate and aromatic compounds). Despite several advantages, the drawback of using these compounds is their susceptibility of being affected by secondary processes. The polar fraction of crude oil (e.g., asphaltenes) has similar characteristics to kerogen, and this structural similarity is preserved during migration, thermal maturation, biodegradation, and water washing. Therefore, these structural characteristics can be considered as a useful correlation parameter, and it can be concluded that asphaltenes from different reservoirs with the same genetic signatures have a similar origin. Hence in this contribution, an integrated study by using both non-polar and polar fractions of oil was performed to use the merits of both fractions. Therefore, five oil samples from oil fields in the Persian Gulf were studied. Structural characteristics of extracted asphaltenes were investigated by Fourier transform infrared (FTIR) spectroscopy. Graphs based on aliphatic and aromatic compounds (predominant compounds in asphaltenes structure) and sulphoxide and carbonyl functional groups (which are representatives of sulphur and oxygen abundance in asphaltenes) were used for comparison of asphaltenes structures in different samples. Non-polar fractions were analyzed by GC-MS. The study of asphaltenes showed the studied oil samples comprise two oil families with distinct genetic characteristics. The first oil family consists of Salman and Reshadat oil samples, and the second oil family consists of Resalat, Siri E, and Siri D oil samples. To validate our results, biomarker parameters were employed, and this approach completely confirmed previous results. Based on biomarker analyses, both oil families have a marine source rock, whereby marl and carbonate source rocks are the source rock for the first and the second oil family, respectively.

Keywords: biomarker, non-polar fraction, oil-oil correlation, petroleum geochemistry, polar fraction

Procedia PDF Downloads 139
25091 The Influence of a Vertical Rotation on the Fluid Dynamics of Compositional Plumes

Authors: Khaled Suleiman Mohammed Al-Mashrafi

Abstract:

A compositional plume is a fluid flow in a directional channel of finite width in another fluid of different material composition. The study of the dynamics of compositional plumes plays an essential role in many real-life applications like industrial applications (e.g., iron casting), environmental applications (e.g., salt fingers and sea ice), and geophysical applications (e.g., solidification at the inner core boundary (ICB) of the Earth, and mantle plumes). The dynamics of compositional plumes have been investigated experimentally and theoretically. The experimental works observed that the plume flow seems to be stable, although some experiments showed that it can be unstable. At the same time, the theoretical investigations showed that the plume flow is unstable. This is found to be true even if the plume is subject to rotation or/and in the presence of a magnetic field and even if another plume of different composition is also present. It is noticeable that all the theoretical studies on the dynamics of compositional plumes are conducted in unbounded domains. The present work is to investigate theoretically the influence of vertical walls (boundaries) on the dynamics of compositional plumes in the absence/presence of a rotation field. The mathematical model of the dynamics of compositional plumes used the equations of continuity, motion, heat, concentration of light material, and state. It is found that the presence of boundaries has a strong influence on the basic state solution as well as the stability of the plume, particularly when the plume is close to the boundary, but the compositional plume remains unstable.

Keywords: compositional plumes, stability, bounded domain, vertical boundaries

Procedia PDF Downloads 39
25090 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 314
25089 Estimating Destinations of Bus Passengers Using Smart Card Data

Authors: Hasik Lee, Seung-Young Kho

Abstract:

Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.

Keywords: destination estimation, Kernel density estimation, smart card data, validation

Procedia PDF Downloads 354
25088 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria

Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah

Abstract:

Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.

Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria

Procedia PDF Downloads 76
25087 Evaluated Nuclear Data Based Photon Induced Nuclear Reaction Model of GEANT4

Authors: Jae Won Shin

Abstract:

We develop an evaluated nuclear data based photonuclear reaction model of GEANT4 for a more accurate simulation of photon-induced neutron production. The evaluated photonuclear data libraries from the ENDF/B-VII.1 are taken as input. Incident photon energies up to 140 MeV which is the threshold energy for the pion production are considered. For checking the validity of the use of the data-based model, we calculate the photoneutron production cross-sections and yields and compared them with experimental data. The results obtained from the developed model are found to be in good agreement with the experimental data for (γ,xn) reactions.

Keywords: ENDF/B-VII.1, GEANT4, photoneutron, photonuclear reaction

Procedia PDF Downloads 277
25086 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams

Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem

Abstract:

In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.

Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data

Procedia PDF Downloads 164