Search results for: forest ecosystem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1776

Search results for: forest ecosystem

1176 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar

Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati

Abstract:

Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.

Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse

Procedia PDF Downloads 392
1175 Determining the Sources of Sediment at Different Areas of the Catchment: A Case Study of Welbedacht Reservoir, South Africa

Authors: D. T. Chabalala, J. M. Ndambuki, M. F. Ilunga

Abstract:

Sedimentation includes the processes of erosion, transportation, deposition, and the compaction of sediment. Sedimentation in reservoir results in a decrease in water storage capacity, downstream problems involving aggregation and degradation, blockage of the intake, and change in water quality. A study was conducted in Caledon River catchment in the upstream of Welbedacht Reservoir located in the South Eastern part of Free State province, South Africa. The aim of this research was to investigate and develop a model for an Integrated Catchment Modelling of Sedimentation processes and management for the Welbedacht reservoir. Revised Universal Soil Loss Equation (RUSLE) was applied to determine sources of sediment at different areas of the catchment. The model has been also used to determine the impact of changes from management practice on erosion generation. The results revealed that the main sources of sediment in the watershed are cultivated land (273 ton per hectare), built up and forest (103.3 ton per hectare), and grassland, degraded land, mining and quarry (3.9, 9.8 and 5.3 ton per hectare) respectively. After application of soil conservation practices to developed Revised Universal Soil Loss Equation model, the results revealed that the total average annual soil loss in the catchment decreased by 76% and sediment yield from cultivated land decreased by 75%, while the built up and forest area decreased by 42% and 99% respectively. Thus, results of this study will be used by government departments in order to develop sustainable policies.

Keywords: Welbedacht reservoir, sedimentation, RUSLE, Caledon River

Procedia PDF Downloads 193
1174 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia

Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju

Abstract:

Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.

Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization

Procedia PDF Downloads 87
1173 Examining Microbial Decomposition, Carbon Cycling and Storage in Cefni Coastal Salt Marsh, Anglesey Island, Wales, United Kingdom

Authors: Dasat G. S., Christopher F. Tim, J. Dun C.

Abstract:

Salt marshes are known to sequester carbon dioxide from the atmosphere into the soil, but natural and anthropogenic activities could trigger the release of large quantities of centuries of buried carbon dioxide, methane and nitrous oxide (CO2, CH4 and N2O) which are the major greenhouse gases (GHGs) implicated with climate change. Therefore, this study investigated the biogeochemical activities by collecting soil samples from low, mid and high zones of the Cefni salt marsh, within the Maltreat estuary, on the island of Anglesey, north Wales, United Kingdom for a consortium of laboratory based experiments using standard operating protocols (POS) to quantify the soil organic matter contents and the rate of microbial decomposition and carbon storage at the Carbon Capture Laboratory of Bangor University Wales. Results of investigations reveals that the mid zone had 56.23% and 9.98% of soil water and soil organic matter (SOM) contents respectively higher than the low and high zones. Phenol oxidase activity (1193.53µmol dicq g-1 h-1) was highest at the low zone in comparison to the high and mid zones (867.60 and 608.74 µmol dicq g-1 h-1) respectively. Soil phenolic concentration was found to be highest in the mid zone (53.25 µg-1 g-1) when compared with those from the high (15.66 µg-1 g-1) and low (4.18 µg-1 g-1) zones respectively. Activities of hydrolase enzymes showed similar trend for the high and low zones and much lower activities in the mid zone. CO2 flux from the mid zone (6.79 ug g-1 h-1) was significantly greater than those from high (-2.29 ug g-1 h-1) and low (1.30 µg g-1 h-1) zones. Since salt marshes provide essential ecosystem services, their degradation or alteration in whatever form could compromise such ecosystem services and could convert them from net sinks into net sources with consequential effects to the global environment.

Keywords: saltmarsh, decomposition, carbon cycling, enzymes

Procedia PDF Downloads 82
1172 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 217
1171 Toxicity Identification and Evaluation for the Effluent from Seawater Desalination Facility in Korea Using D. magna and V. fischeri

Authors: Sung Jong Lee, Hong Joo Ha, Chun Sang Hong

Abstract:

In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a Seawater desalination facility in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (24,215 ~ 29,562 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach, and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Acknowledgement: This research was supported by a grant (16IFIP-B089911-03) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: TIE, D. magna, V. fischeri, seawater desalination facility

Procedia PDF Downloads 259
1170 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
1169 Efficacy of Conservation Strategies for Endangered Garcinia gummi gutta under Climate Change in Western Ghats

Authors: Malay K. Pramanik

Abstract:

Climate change is continuously affecting the ecosystem, species distribution as well as global biodiversity. The assessment of the species potential distribution and the spatial changes under various climate change scenarios is a significant step towards the conservation and mitigation of habitat shifts, and species' loss and vulnerability. In this context, the present study aimed to predict the influence of current and future climate on an ecologically vulnerable medicinal species, Garcinia gummi-gutta, of the southern Western Ghats using Maximum Entropy (MaxEnt) modeling. The future projections were made for the period of 2050 and 2070 with RCP (Representative Concentration Pathways) scenario of 4.5 and 8.5 using 84 species occurrence data, and climatic variables from three different models of Intergovernmental Panel for Climate Change (IPCC) fifth assessment. Climatic variables contributions were assessed using jackknife test and AOC value 0.888 indicates the model perform with high accuracy. The major influencing variables will be annual precipitation, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest quarter. The model result shows that the current high potential distribution of the species is around 1.90% of the study area, 7.78% is good potential; about 90.32% is moderate to very low potential for species suitability. Finally, the results of all model represented that there will be a drastic decline in the suitable habitat distribution by 2050 and 2070 for all the RCP scenarios. The study signifies that MaxEnt model might be an efficient tool for ecosystem management, biodiversity protection, and species re-habitation planning under climate change.

Keywords: Garcinia gummi gutta, maximum entropy modeling, medicinal plants, climate change, western ghats, MaxEnt

Procedia PDF Downloads 391
1168 Creativity as a National System: An Exploratory Model towards Enhance Innovation Ecosystems

Authors: Oscar Javier Montiel Mendez

Abstract:

The link between knowledge-creativity-innovation-entrepreneurship is well established, and broadly emphasized the importance of national innovation systems (NIS) as an approach stresses that the flow of information and technology among people, organizations and institutions are key to its process. Understanding the linkages among the actors involved in innovation is relevant to NIS. Creativity is supposed to fuel NIS, mainly focusing on a personal, group or organizational level, leaving aside the fourth one, as a national system. It is suggested that NIS takes Creativity for granted, an ex-ante stage already solved through some mechanisms, like programs for nurturing it at elementary and secondary schools, universities, or public/organizational specific programs. Or worse, that the individual already has this competence, and that the elements of the NIS will communicate between in a way that will lead to the creation of S curves, with an impact on national systems/programs on entrepreneurship, clusters, and the economy. But creativity constantly appears at any time during NIS, being the key input. Under an initial, exploratory, focused and refined literature review, based on Csikszentmihalyi’s systemic model, Amabile's componential theory, Kaufman and Beghetto’s 4C model, and the OECD’s (Organisation for Economic Co-operation and Development) NIS model (expanded), an NCS theoretical model is elaborated. Its suggested that its implementation could become a significant factor helping strengthen local, regional and national economies. The results also suggest that the establishment of a national creativity system (NCS), something that appears not been previously addressed, as a strategic/vital companion for a NIS, installing it not only as a national education strategy, but as its foundation, managing it and measuring its impact on NIS, entrepreneurship and the rest of the ecosystem, could make more effective public policies. Likewise, it should have a beneficial impact on the efforts of all the stakeholders involved and should help prevent some of the possible failures that NIS present.

Keywords: national creativity system, national innovation system, entrepreneurship ecosystem, systemic creativity

Procedia PDF Downloads 430
1167 Effects of Climate Change and Land Use, Land Cover Change on Atmospheric Mercury

Authors: Shiliang Wu, Huanxin Zhang

Abstract:

Mercury has been well-known for its negative effects on wildlife, public health as well as the ecosystem. Once emitted into atmosphere, mercury can be transformed into different forms or enter the ecosystem through dry deposition or wet deposition. Some fraction of the mercury will be reemitted back into the atmosphere and be subject to the same cycle. In addition, the relatively long lifetime of elemental mercury in the atmosphere enables it to be transported long distances from source regions to receptor regions. Global change such as climate change and land use/land cover change impose significant challenges for mercury pollution control besides the efforts to regulate mercury anthropogenic emissions. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from changes in climate and land use/land cover on the global budget of mercury as well as its atmospheric transport, chemical transformation, and deposition. We carry out a suite of sensitivity model simulations to separate the impacts on atmospheric mercury associated with changes in climate and land use/land cover. Both climate change and land use/land cover change are found to have significant impacts on global mercury budget but through different pathways. Land use/land cover change primarily increase mercury dry deposition in northern mid-latitudes over continental regions and central Africa. Climate change enhances the mobilization of mercury from soil and ocean reservoir to the atmosphere. Also, dry deposition is enhanced over most continental areas while a change in future precipitation dominates the change in mercury wet deposition. We find that 2000-2050 climate change could increase the global atmospheric burden of mercury by 5% and mercury deposition by up to 40% in some regions. Changes in land use and land cover also increase mercury deposition over some continental regions, by up to 40%. The change in the lifetime of atmospheric mercury has important implications for long-range transport of mercury. Our case study shows that changes in climate and land use and cover could significantly affect the source-receptor relationships for mercury.

Keywords: mercury, toxic pollutant, atmospheric transport, deposition, climate change

Procedia PDF Downloads 489
1166 Environmental Threats and Great Barrier Reef: A Vulnerability Assessment of World’s Best Tropical Marine Ecosystems

Authors: Ravi Kant Anand, Nikkey Keshri

Abstract:

The Great Barrier Reef of Australia is known for its beautiful landscapes and seascapes with ecological importance. This site was selected as a World Heritage site in 1981 and popularized internationally for tourism, recreational activities and fishing. But the major environmental hazards such as climate change, pollution, overfishing and shipping are making worst the site of marine ecosystem. Climate change is directly hitting on Great Barrier Reef through increasing level of sea, acidification of ocean, increasing in temperature, uneven precipitation, changes in the El Nino and increasing level of cyclones and storms. Apart from that pollution is second biggest factor which vanishing the coral reef ecosystem. Pollution including over increasement of pesticides and chemicals, eutrophication, pollution through mining, sediment runoff, loss of coastal wetland and oil spills. Coral bleaching is the biggest problem because of the environmental threatening agents. Acidification of ocean water reduced the formation of calcium carbonate skeleton. The floral ecosystem (including sea grasses and mangroves) of ocean water is the key source of food for fishes and other faunal organisms but the powerful waves, extreme temperature, destructive storms and river run- off causing the threat for them. If one natural system is under threat, it means the whole marine food web is affected from algae to whale. Poisoning of marine water through different polluting agents have been affecting the production of corals, breeding of fishes, weakening of marine health and increased in death of fishes and corals. In lieu of World Heritage site, tourism sector is directly affected and causing increasement in unemployment. Fishing sector also affected. Fluctuation in the temperature of ocean water affects the production of corals because it needs desolate place, proper sunlight and temperature up to 21 degree centigrade. But storms, El Nino, rise in temperature and sea level are induced for continuous reduction of the coral production. If we do not restrict the environmental problems of Great Barrier Reef than the best known ecological beauty with coral reefs, pelagic environments, algal meadows, coasts and estuaries, mangroves forests and sea grasses, fish species, coral gardens and the one of the best tourist spots will lost in upcoming years. My research will focus on the different environmental threats, its socio-economic impacts and different conservative measures.

Keywords: climate change, overfishing, acidification, eutrophication

Procedia PDF Downloads 374
1165 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
1164 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
1163 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
1162 The Underground Ecosystem of Credit Card Frauds

Authors: Abhinav Singh

Abstract:

Point Of Sale (POS) malwares have been stealing the limelight this year. They have been the elemental factor in some of the biggest breaches uncovered in past couple of years. Some of them include • Target: A Retail Giant reported close to 40 million credit card data being stolen • Home Depot : A home product Retailer reported breach of close to 50 million credit records • Kmart: A US retailer recently announced breach of 800 thousand credit card details. Alone in 2014, there have been reports of over 15 major breaches of payment systems around the globe. Memory scrapping malwares infecting the point of sale devices have been the lethal weapon used in these attacks. These malwares are capable of reading the payment information from the payment device memory before they are being encrypted. Later on these malwares send the stolen details to its parent server. These malwares are capable of recording all the critical payment information like the card number, security number, owner etc. All these information are delivered in raw format. This Talk will cover the aspects of what happens after these details have been sent to the malware authors. The entire ecosystem of credit card frauds can be broadly classified into these three steps: • Purchase of raw details and dumps • Converting them to plastic cash/cards • Shop! Shop! Shop! The focus of this talk will be on the above mentioned points and how they form an organized network of cyber-crime. The first step involves buying and selling of the stolen details. The key point to emphasize are : • How is this raw information been sold in the underground market • The buyer and seller anatomy • Building your shopping cart and preferences • The importance of reputation and vouches • Customer support and replace/refunds These are some of the key points that will be discussed. But the story doesn’t end here. As of now the buyer only has the raw card information. How will this raw information be converted to plastic cash? Now comes in picture the second part of this underground economy where-in these raw details are converted into actual cards. There are well organized services running underground that can help you in converting these details into plastic cards. We will discuss about this technique in detail. At last, the final step involves shopping with the stolen cards. The cards generated with the stolen details can be easily used to swipe-and-pay for purchased goods at different retail shops. Usually these purchases are of expensive items that have good resale value. Apart from using the cards at stores, there are underground services that lets you deliver online orders to their dummy addresses. Once the package is received it will be delivered to the original buyer. These services charge based on the value of item that is being delivered. The overall underground ecosystem of credit card fraud works in a bulletproof way and it involves people working in close groups and making heavy profits. This is a brief summary of what I plan to present at the talk. I have done an extensive research and have collected good deal of material to present as samples. Some of them include: • List of underground forums • Credit card dumps • IRC chats among these groups • Personal chat with big card sellers • Inside view of these forum owners. The talk will be concluded by throwing light on how these breaches are being tracked during investigation. How are credit card breaches tracked down and what steps can financial institutions can build an incidence response over it.

Keywords: POS mawalre, credit card frauds, enterprise security, underground ecosystem

Procedia PDF Downloads 439
1161 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
1160 Environmental Drivers of Ichthyofauna Species Diversity and Richness in the Lower Reaches of Warri River, a Typical Mangrove Ecosystem in the Niger Delta, Nigeria

Authors: F. O. Arimoro, F. N. Okonkwo, R. B. Ikomi

Abstract:

The environmental determinants structuring species richness has been generating interest recently but we still lack an understanding of these patterns in various regions (e.g. Afrotropical), and how seasons help to structure these patterns. Our aim was to assessed the environmental drivers importance in regulating species richness and community structure of fish species. The lchthyofauna assemblage of Warri River, Niger Delta area of Nigeria was studied between August 2013 and July 2014. A total of 1152 individuals representing 43 species in 23 families and 30 genera were caught. Of the 43 species recorded, 67.4%, 53.5% and 67.4% of the species occurred in Stations 1, 2 and 3 respectively. Eight taxa representing 18.6% of the total abundance were ubiquitous. The claroteid, Chrysichthys walkeri and the cichlid, Chromidotilapia guentheri were the most dominant species accounting for 19.2% and 6.0% respectively of the total catch. The species richness and general diversity were relatively higher in station 1 although Jaccard similarity index revealed that stations 1 and 3 were significantly similar while station 2 showed complete dissimilarity with stations 1 and 3. Canonical correspondence analysis indicated that dissolved oxygen, electrical conductivity, total nitrogen, Biochemical Oxygen demand and temperature were important variables structuring the overall fish assemblages. The presence of appreciable number of juveniles in this water body suggests that the Warri River is a breeding and nursery ground for fish species particularly those of brackish origin. These findings indicate that the water body is still useful as a good fishing ground for the rural communities and every effort should be put in place to ensure its protection and conservation for the production of healthy fish.

Keywords: Chrysichthys walkeri, fish communities, mangrove ecosystem, physicochemical parameters, Warri River

Procedia PDF Downloads 489
1159 Coprophagus Beetles (Scarabaeidae: Coleoptera) of Buxa Tiger Reserve, West Bengal, India

Authors: Subhankar Kumar Sarkar

Abstract:

Scarab beetles composing the family Scarabaeidae is one of the largest families in the order Coleoptera. The family is comprised of 11 subfamilies. Of these, the subfamily Scarabaeinae includes 13 tribes globally. Indian species are however considered within 2 tribes Scarabaeini and Coprini. Scarab beetles under this subfamily also known as Coprophagus beetles play an indispensable role in forestry and agriculture. Both adults and larvae of these beetles do a remarkable job of carrying excrement into the soil thus enriching the soil to a great extent. Eastern and North Eastern states of India are heavily rich in diversity of organisms as this region exhibits the tropical rain forests of the eastern Himalayas, which exhibits one of the 18 biodiversity hotspots of the world and one of the three of India. Buxa Tiger Reserve located in Dooars between latitudes 26°30” to 26°55” North & longitudes 89°20” to 89°35” East is one such fine example of rain forests of the eastern Himalayas. Despite this, the subfamily is poorly known, particularly from this part of the globe and demands serious revisionary studies. It is with this background; the attempt is being made to assess the Scarabaeinae fauna of the forest. Both extensive and intensive surveys were conducted in different beats under different ranges of Buxa Tiger Reserve. For collection sweep nets, bush beating and collection in inverted umbrella, hand picking techniques were used. Several pit fall traps were laid in the collection localities of the Reserve to trap ground dwelling scarabs. Dung of various animals was also examined to make collections. In the evening hours UV light, trap was used to collect nocturnal beetles. The collected samples were studied under Stereozoom Binocular Microscopes Zeiss SV6, SV11 and Olympus SZ 30. The faunistic investigation of the forest revealed in the recognition of 19 species under 6 genera distributed over 2 tribes. Of these Heliocopris tyrannus Thomson, 1859 was recorded new from the Country, while Catharsius javanus Lansberge, 1886, Copris corpulentus Gillet, 1910, C. doriae Harold, 1877 and C. sarpedon Harold, 1868 from the state. 4 species are recorded as endemic to India. The forest is dominated by the members of the Genus Onthophagus, of which Onthophagus (Colobonthophagus) dama (Fabricius, 1798) is represented by highest number of individuals. Their seasonal distribution is most during Premonsoon followed by Monsoon and Postmonsoon. Zoogeographically all the recorded species are of oriental distribution.

Keywords: buxa tiger reserve, diversity, India, new records, scarabaeinae, scarabaeidae

Procedia PDF Downloads 241
1158 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia

Authors: Yogendra K. Karna, Lauren T. Bennett

Abstract:

Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.

Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity

Procedia PDF Downloads 175
1157 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines

Authors: R. T. Aggangan

Abstract:

Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.

Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand

Procedia PDF Downloads 333
1156 The Development and Provision of a Knowledge Management Ecosystem, Optimized for Genomics

Authors: Matthew I. Bellgard

Abstract:

The field of bioinformatics has made, and continues to make, substantial progress and contributions to life science research and development. However, this paper contends that a systems approach integrates bioinformatics activities for any project in a defined manner. The application of critical control points in this bioinformatics systems approach may be useful to identify and evaluate points in a pathway where specified activity risk can be reduced, monitored and quality enhanced.

Keywords: bioinformatics, food security, personalized medicine, systems approach

Procedia PDF Downloads 422
1155 Robotics Education Continuity from Diaper Age to Doctorate

Authors: Vesa Salminen, Esa Santakallio, Heikki Ruohomaa

Abstract:

Introduction: The city of Riihimäki has decided robotics on well-being, service and industry as the main focus area on their ecosystem strategy. Robotics is going to be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, also education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The objective of this activity has been to develop education continuity from diaper age to doctorate. The main target of the development activity is to create a unique robotics study entity that enables ongoing robotics studies from preprimary education to university. The aim is also to attract students internationally and supply a skilled workforce to the private sector, capable of the challenges of the future. Methodology: Education instances (high school, second grade, Universities on all levels) in a large area of Tavastia Province have gradually directed their education programs to support this goal. On the other hand, applied research projects have been created to make proof of concept- phases on areal real environment field labs to test technology opportunities and digitalization to change business processes by applying robotic solutions. Customer-oriented applied research projects offer for students in robotics education learning environments to learn new knowledge and content. That is also a learning environment for education programs to adapt and co-evolution. New content and problem-based learning are used in future education modules. Major findings: Joint robotics education entity is being developed in cooperation with the city of Riihimäki (primary education), Syria Education (secondary education) and HAMK (bachelor and master education). The education modules have been developed to enable smooth transitioning from one institute to another. This article is introduced a case study of the change of education of wellbeing education because of digitalization and robotics. Riihimäki's Elderly citizen's service house, Riihikoti, has been working as a field lab for proof-of-concept phases on testing technology opportunities. According to successful case studies also education programs on various levels of education have been changing. Riihikoti has been developed as a physical learning environment for home care and robotics, investigating and developing a variety of digital devices and service opportunities and experimenting and learn the use of equipment. The environment enables the co-development of digital service capabilities in the authentic environment for all interested groups in transdisciplinary cooperation.

Keywords: ecosystem strategy, digitalization and robotics, education continuity, learning environment, transdisciplinary co-operation

Procedia PDF Downloads 176
1154 Desertification of Earth and Reverting Strategies

Authors: V. R. Venugopal

Abstract:

Human being evolved 200,000 years ago in an area which is now the Sahara desert and lived all along in the northern part of Africa. It was around 10,000 to15,00 years that he moved out of Africa. Various ancient civilizations – mainly the Egyptian, Mesopotamian, Indus valley and the Chinese yellow river valley civilizations - developed and perished till the beginning of the Christian era. Strangely the regions where all these civilizations flourished are no deserts. After the ancient civilizations the two major religions of the world the Christianity and Islam evolved. These too evolved in the regions of Jerusalem and Mecca which are now in the deserts of the present Israel and Saudi Arabia. Human activity since ancient age right from his origin was in areas which are now deserts. This is only because wherever Man lived in large numbers he has turned them into deserts. Unfortunately, this is not the case with the ancient days alone. Over the last 500 years the forest cover on the earth is reduced by 80 percent. Even more currently Just over the last forty decades human population has doubled but the number of bugs, beetles, worms and butterflies (micro fauna) have declined by 45%. Deforestation and defaunation are the first signs of desertification and Desertification is a process parallel to the extinction of life. There is every possibility that soon most of the earth will be in deserts. This writer has been involved in the process of forestation and increase of fauna as a profession since twenty years and this is a report of his efforts made in the process, the results obtained and concept generated to revert the ongoing desertification of this earth. This paper highlights how desertification can be reverted by applying these basic principles. 1) Man is not owner of this earth and has no right destroy vegetation and micro fauna. 2) Land owner shall not have the freedom to do anything that he wishes with the land. 3) The land that is under agriculture shall be reduced at least by a half. 4) Irrigation and modern technology shall be used for the forest growth also. 5) Farms shall have substantial permanent vegetation and the practice of all in all out shall stop.

Keywords: desertification, extinction, micro fauna, reverting

Procedia PDF Downloads 312
1153 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

Authors: Feng Yue, Fei Dai

Abstract:

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture

Procedia PDF Downloads 164
1152 The Role of Sustainable Financing Models for Smallholder Tree Growers in Ghana

Authors: Raymond Awinbilla

Abstract:

The call for tree planting has long been set in motion by the government of Ghana. The Forestry Commission encourages plantation development through numerous interventions including formulating policies and enacting legislations. However, forest policies have failed and that has generated a major concern over the vast gap between the intentions of national policies and the realities established. This study addresses three objectives;1) Assessing the farmers' response and contribution to the tree planting initiative, 2) Identifying socio-economic factors hindering the development of smallholder plantations as a livelihood strategy, and 3) Determining the level of support available for smallholder tree growers and the factors influencing it. The field work was done in 12 farming communities in Ghana. The article illuminates that farmers have responded to the call for tree planting and have planted both exotic and indigenous tree species. Farmers have converted 17.2% (369.48ha) of their total land size into plantations and have no problem with land tenure. Operations and marketing constraints include lack of funds for operations, delay in payment, low price of wood, manipulation of price by buyers, documentation by buyers, and no ready market for harvesting wood products. Environmental institutions encourage tree planting; the only exception is with the Lands Commission. Support availed to farmers includes capacity building in silvicultural practices, organisation of farmers, linkage to markets and finance. Efforts by the Government of Ghana to enhance forest resources in the country could rely on the input of local populations.

Keywords: livelihood strategy, marketing constraints, environmental institutions, silvicultural practices

Procedia PDF Downloads 58
1151 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
1150 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering

Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher

Abstract:

Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.

Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing

Procedia PDF Downloads 169
1149 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 161
1148 A Study on Soil Micro-Arthropods Assemblage in Selected Plantations in The Nilgiris, Tamilnadu

Authors: J. Dharmaraj, C. Gunasekaran

Abstract:

Invertebrates are the reliable ecological indicators of disturbance of the forest ecosystems and they respond to environment changes more quickly than other fauna. Among these the terrestrial invertebrates are vital to functioning ecosystems, contributing to processes such as decomposition, nutrient cycling and soil fertility. The natural ecosystems of the forests have been subject to various types of disturbances, which lead to decline of flora and fauna. The comparative diversity of micro-arthropods in natural forest, wattle plantation and eucalyptus plantations were studied in Nilgiris. The study area was divided in to five major sites (Emerald (Site-I), Thalaikundha (Site-II), Kodapmund (Site-III), Aravankad (Site-IV), Kattabettu (Site-V). The research was conducted during period from March 2014 to August 2014. The leaf and soil samples were collected and isolated by using Berlese funnel extraction methods. Specimens were isolated and identified according to their morphology (Balogh 1972). In the present study results clearly showed the variation in soil pH, NPK (Major Nutrients) and organic carbon among the study sites. The chemical components of the leaf litters of the plantation decreased the diversity of micro-arthropods and decomposition rate leads to low amount of carbon and other nutrients present in the soil. Moreover eucalyptus and wattle plantations decreases the availability of the ground water source to other plantations and micro-arthropods and hences affects the soil fertility. Hence, the present study suggests to minimize the growth of wattle and eucalyptus tree plantations in the natural areas which may help to reduce the decline of forests.

Keywords: micro-arthropods, assemblage, berlese funnel, morphology, NPK, nilgiris

Procedia PDF Downloads 308
1147 Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India

Authors: A. S. Vidyashree, C. M. Kalleshwaraswamy, R. Asokan, H. M. Mahadevaswamy

Abstract:

Termites are very vital ecological thespians in tropical ecosystem, having been designated as “ecosystem engineers”, due to their significant role in providing soil ecosystem services. Despite their importance, our understanding of a number of their basic biological processes in termites is extremely limited. Developing a better understanding of termite biology is closely dependent upon consistent species identification. At present, identification of termites is relied on soldier castes. But for many species, soldier caste is not reported, that creates confusion in identification. The use of molecular markers may be helpful in estimating phylogenetic relatedness between the termite species and estimating genetic differentiation among local populations within each species. To understand this, termites samples were collected from various places of Western Ghats covering four states namely Karnataka, Kerala, Tamil Nadu, Maharashtra during 2013-15. Termite samples were identified based on their morphological characteristics, molecular characteristics, or both. Survey on the termite fauna in Karnataka, Kerala, Maharashtra and Tamil Nadu indicated the presence of a 16 species belongs to 4 subfamilies under two families viz., Rhinotermitidae and Termitidae. Termititidae was the dominant family which was belonging to 4 genera and four subfamilies viz., Macrotermitinae, Amitermitinae, Nasutitermitinae and Termitinae. Amitermitinae had three species namely, Microcerotermes fletcheri, M. pakistanicus and Speculitermes sinhalensis. Macrotermitinae had the highest number of species belonging two genera, namely Microtermes and Odontotermes. Microtermes genus was with only one species i.e., Microtermes obesi. The genus Odontotermes was represented by the highest number of species (07), namely, O. obesus was the dominant (41 per cent) and the most widely distributed species in Karnataka, Karala, Maharashtra and Tamil nadu followed by O. feae (19 per cent), O.assmuthi (11 per cent) and others like O. bellahunisensis O. horni O. redemanni, O. yadevi. Nasutitermitinae was represented by two genera namely Nasutitermes anamalaiensis and Trinervitermes biformis. Termitinae subfamily was represented by Labiocapritermes distortus. Rhinotermitidae was represented by single subfamily Heterotermetinae. In Heterotermetinae, two species namely Heterotermes balwanthi and H. malabaricus were recorded. Genetic relationship among termites collected from various locations of Western Ghats of India was characterized based on mitochondrial DNA sequences (12S, 16S, and COII). Sequence analysis and divergence among the species was assessed. These results suggest that the use of both molecular and morphological approaches is crucial in ensuring accurate species identification. Efforts were made to understand their evolution and to address the ambiguities in morphological taxonomy. The implication of the study in revising the taxonomy of Indian termites, their characterization and molecular comparisons between the sequences are discussed.

Keywords: isoptera, mitochondrial DNA sequences, rhinotermitidae, termitidae, Western ghats

Procedia PDF Downloads 266