Search results for: deep log analyzer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2400

Search results for: deep log analyzer

1800 Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor.

Keywords: nano-particle, photo-acoustic effect, polymer, dye, in vivo imaging

Procedia PDF Downloads 155
1799 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
1798 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 10
1797 Exploring Research Trends and Topics in Intervention on Metabolic Syndrome Using Network Analysis

Authors: Lee Soo-Kyoung, Kim Young-Su

Abstract:

This study established a network related to metabolic syndrome intervention by conducting a social network analysis of titles, keywords, and abstracts, and it identified emerging topics of research. It visualized an interconnection between critical keywords and investigated their frequency of appearance to construe the trends in metabolic syndrome intervention measures used in studies conducted over 38 years (1979–2017). It examined a collection of keywords from 8,285 studies using text rank analyzer, NetMiner 4.0. The analysis revealed 5 groups of newly emerging keywords in the research. By examining the relationship between keywords with reference to their betweenness centrality, the following clusters were identified. Thus if new researchers refer to existing trends to establish the subject of their study and the direction of the development of future research on metabolic syndrome intervention can be predicted.

Keywords: intervention, metabolic syndrome, network analysis, research, the trend

Procedia PDF Downloads 200
1796 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: gasoline, diesel, pyrolysis, waste oil, Y zeolite

Procedia PDF Downloads 198
1795 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach

Authors: Hani Mekdash, Lina Jaber, Yehia Temsah

Abstract:

Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.

Keywords: deep excavation, prestressing, pre-stressed piles, shoring system

Procedia PDF Downloads 117
1794 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 372
1793 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 83
1792 The Effect of Austempering Temperature on Anisotropy of TRIP Steel

Authors: Abdolreza Heidari Noosh Abad, Amir Abedi, Davood Mirahmadi khaki

Abstract:

The high strength and flexibility of TRIP steels are the major reasons for them being widely used in the automobile industry. Deep drawing is regarded as a common metal sheet manufacturing process is used extensively in the modern industry, particularly automobile industry. To investigate the potential of deep drawing characteristic of materials, steel sheet anisotropy is studied and expressed as R-Value. The TRIP steels have a multi-phase microstructure consisting typically of ferrite, bainite and retained austenite. The retained austenite appears to be the most effective phase in the microstructure of the TRIP steels. In the present research, Taguchi method has been employed to study investigates the effect of austempering temperature parameters on the anisotropy property of the TRIP steel. To achieve this purpose, a steel with chemical composition of 0.196C -1.42Si-1.41Mn, has been used and annealed at 810oC, and then austempered at 340-460oC for 3, 6, and 9 minutes. The results shows that the austempering temperature has a direct relationship with R-value, respectively. With increasing austempering temperature, residual austenite grain size increases as well as increased solubility, which increases the amount of R-value. According to the results of the Taguchi method, austempering temperature’s p-value less than 0.05 is due to effective on R-value.

Keywords: Taguchi method, hot rolling, thermomechanical process, anisotropy, R-value

Procedia PDF Downloads 326
1791 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 138
1790 Preparation of Cupric Oxides Nanoparticles for Antibacterial Applications

Authors: Yong-Cin Chen, Meng-Jiy Wang

Abstract:

This study reports to prepare cuprous oxide (Cu2O) particles with different dimension and shape for evaluating the antibacterial applications. In the preparation of Cu2O, the surfactant, cetyltrimethylammonium bromide (CTAB), was used as templates to modulate the size of the prepared Cu2O particles. Furthermore, ammonia water was used for adjusting the pH environment that four different shapes of particles including cubic, spherical, octahedral, and star-like Cu2O were synthesized. The physical characteristics of Cu2O particles were evaluated by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV/VIS spectrophotometer, and zeta potential meter/particle size analyzer (ZetaPALS). The resistance to bacteria was investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by applying the synthesized Cu2O particles that the qualitative analyses were facilitated by measuring the inhibition zone on Agar plate.

Keywords: copper oxide, cupric oxide, nanoparticles, antibacetrial

Procedia PDF Downloads 514
1789 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect

Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi

Abstract:

High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.

Keywords: integration, electrokinetic, on-chip, fluid pumping, microfluidic

Procedia PDF Downloads 294
1788 Failure Analysis of Windshield Glass of Automobiles

Authors: Bhupinder Kaur, O. P. Pandey

Abstract:

An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present.

Keywords: failure, windshield, thermal mismatch, carbon

Procedia PDF Downloads 247
1787 Feasibility of Voluntary Deep Inspiration Breath-Hold Radiotherapy Technique Implementation without Deep Inspiration Breath-Hold-Assisting Device

Authors: Auwal Abubakar, Shazril Imran Shaukat, Noor Khairiah A. Karim, Mohammed Zakir Kassim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: Voluntary deep inspiration breath-hold radiotherapy (vDIBH-RT) is an effective cardiac dose reduction technique during left breast radiotherapy. This study aimed to assess the accuracy of the implementation of the vDIBH technique among left breast cancer patients without the use of a special device such as a surface-guided imaging system. Methods: The vDIBH-RT technique was implemented among thirteen (13) left breast cancer patients at the Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia. Breath-hold monitoring was performed based on breath-hold skin marks and laser light congruence observed on zoomed CCTV images from the control console during each delivery. The initial setup was verified using cone beam computed tomography (CBCT) during breath-hold. Each field was delivered using multiple beam segments to allow a delivery time of 20 seconds, which can be tolerated by patients in breath-hold. The data were analysed using an in-house developed MATLAB algorithm. PTV margin was computed based on van Herk's margin recipe. Results: The setup error analysed from CBCT shows that the population systematic error in lateral (x), longitudinal (y), and vertical (z) axes was 2.28 mm, 3.35 mm, and 3.10 mm, respectively. Based on the CBCT image guidance, the Planning target volume (PTV) margin that would be required for vDIBH-RT using CCTV/Laser monitoring technique is 7.77 mm, 10.85 mm, and 10.93 mm in x, y, and z axes, respectively. Conclusion: It is feasible to safely implement vDIBH-RT among left breast cancer patients without special equipment. The breath-hold monitoring technique is cost-effective, radiation-free, easy to implement, and allows real-time breath-hold monitoring.

Keywords: vDIBH, cone beam computed tomography, radiotherapy, left breast cancer

Procedia PDF Downloads 57
1786 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters

Authors: Srinivasan Chandrasekaran, R. Nagavinothini

Abstract:

Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.

Keywords: offshore structures, triceratops, random waves, buoyant legs, preliminary design, dynamic analysis

Procedia PDF Downloads 204
1785 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 144
1784 Settlement of the Foundation on the Improved Soil: A Case Study

Authors: Morteza Karami, Soheila Dayani

Abstract:

Deep Soil Mixing (DSM) is a soil improvement technique that involves mechanically mixing the soil with a binder material to improve its strength, stiffness, and durability. This technique is typically used in geotechnical engineering applications where weak or unstable soil conditions exist, such as in building foundations, embankment support, or ground improvement projects. In this study, the settlement of the foundation on the improved soil using the wet DSM technique has been analyzed for a case study. Before DSM production, the initial soil mixture has been determined based on the laboratory tests and then, the proper mix designs have been optimized based on the pilot scale tests. The results show that the spacing and depth of the DSM columns depend on the soil properties, the intended loading conditions, and other factors such as the available space and equipment limitations. Moreover, monitoring instruments installed in the pilot area verify that the settlement of the foundation has been placed in an acceptable range to ensure that the soil mixture is providing the required strength and stiffness to support the structure or load. As an important result, if the DSM columns touch or penetrate into the stiff soil layer, the settlement of the foundation can be significantly decreased. Furthermore, the DSM columns should be allowed to cure sufficiently before placing any significant loads on the structure to prevent excessive deformation or settlement.

Keywords: deep soil mixing, soil mixture, settlement, instrumentation, curing age

Procedia PDF Downloads 85
1783 An Autopilot System for Static Zone Detection

Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo

Abstract:

Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.

Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement

Procedia PDF Downloads 101
1782 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware

Authors: Subham Ghosh, Banani Basu, Marami Das

Abstract:

Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.

Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease

Procedia PDF Downloads 7
1781 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 395
1780 Explaining the Relationship between Religiosity and Resilience

Authors: Rita Phillips, Mark Burgess, Maga Berlinski

Abstract:

Although the positive impact of religiosity on well-being, health, and life-coping abilities is well known, up to date research has failed to provide scientific evidence for the relationship reasons. Therefore the present study took a qualitative approach by examining how religiosity interacts in coping with emotionally distressful situations, for which wedding preparations are an example. Wedding preparations, related to the experience of ambiguous emotions, can be the reason for phases of high distress. Although being per-se religious ceremonies, they are also socially-scripted and characterized by people’s striving for personally meaningful celebrations. The negotiation of these many influences can evoke conflicts. To reveal components of religiosity which contribute to stress-resolution, eight biographic-narrative interviews with recently married spouses were conducted. Participants were from different nationalities and Catholic deep-belief communities in order to determine factors independent from national-culture and social-subgroup. The audio-tape recorded, transcribed and translated interviews were analyzed by Interpretative Phenomenological Analysis. Opposing previous research on wedding-related conflicts but in-line with the quantitative account on the relation between stress-resilience and religiosity, the present study found participants reporting very low levels of distress and ambiguity. Although similar areas of potential conflicts were revealed, deep-belief Christians seemed to handle them in a different way. Participants freed themselves from own and others’ rigor mundane expectations by their spiritual preparation and the focus on a divine instance. This evoked a feeling of perceived closeness to God and of unconditional love, resulting in acceptance of oneself and others. Through relativizing mundane goods, participants perceived absolute freedom. Thus belief did not supplement coping strategies, previously defined in the literature, but substituted them. The paper implies that in explaining the connection between stress-resilience and religiosity, one’s perception and experience of unconditional love might outweigh other social or personal factors. However, further qualitative investigations are needed to fully explain the phenomenon.

Keywords: deep-belief, religiosity, resilience, wedding

Procedia PDF Downloads 244
1779 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
1778 Geology, Geomorphology and Genesis of Andarokh Karstic Cave, North-East Iran

Authors: Mojtaba Heydarizad

Abstract:

Andarokh basin is one of the main karstic regions in Khorasan Razavi province NE Iran. This basin is part of Kopeh-Dagh mega zone extending from Caspian Sea in the east to northern Afghanistan in the west. This basin is covered by Mozdooran Formation, Ngr evaporative formation and quaternary alluvium deposits in descending order of age. Mozdooran carbonate formation is notably karstified. The main surface karstic features in Mozdooran formation are Groove karren, Cleft karren, Rain pit, Rill karren, Tritt karren, Kamintza, Domes, and Table karren. In addition to surface features, deep karstic feature Andarokh Cave also exists in the region. Studying Ca, Mg, Mn, Sr, Fe concentration and Sr/Mn ratio in Mozdooran formation samples with distance to main faults and joints system using PCA analyses demonstrates intense meteoric digenesis role in controlling carbonate rock geochemistry. The karst evaluation in Andarokh basin varies from early stages 'deep seated karst' in Mesozoic to mature karstic system 'Exhumed karst' in quaternary period. Andarokh cave (the main cave in Andarokh basin) is rudimentary branch work consists of three passages of A, B and C and two entrances Andarokh and Sky.

Keywords: Andarokh basin, Andarokh cave, geochemical analyses, karst evaluation

Procedia PDF Downloads 154
1777 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle

Procedia PDF Downloads 402
1776 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata

Authors: Tanmay Bisen, Aastha Shayla

Abstract:

This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.

Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection

Procedia PDF Downloads 55
1775 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 160
1774 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines

Authors: K. Shaji Mon, P. R. John Sreenidhi

Abstract:

In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.

Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer

Procedia PDF Downloads 245
1773 Dynamic Distribution Calibration for Improved Few-Shot Image Classification

Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran

Abstract:

Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.

Keywords: deep learning, computer vision, image classification, few-shot learning, threshold

Procedia PDF Downloads 66
1772 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
1771 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 322