Search results for: acoustic modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4419

Search results for: acoustic modeling

3819 Traffic Congestions Modeling and Predictions by Social Networks

Authors: Bojan Najdenov, Danco Davcev

Abstract:

Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.

Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android

Procedia PDF Downloads 483
3818 Relationships between Financial, Cultural, Emotional, and General Wellbeing: A Structural Equation Modeling Study

Authors: Michael Alsop, Hannah Heitz, Prathiba Natesan Batley, Marion Hambrick, Jason Immekus

Abstract:

The impacts of cultural engagement on individuals’ health and well-being have been well documented. The purposes of this study were to create an instrument to measure wellbeing constructs, including cultural wellbeing, and explore the relationships between cultural wellbeing and other wellbeing constructs (e.g., emotional, social, physical, spiritual). A sample of 358 participants attending concerts performed by a civic orchestra in the southeastern United States completed a questionnaire designed to measure eight wellbeing constructs. Split-half exploratory, confirmatory factor analyses resulted in the retention of four wellbeing constructs: general, emotional, financial, and cultural. Structural equation modeling showed statistically significant relationships between cultural wellbeing and other wellbeing constructs. In addition to the indirect effect of financial wellbeing on emotional and general wellbeing through cultural wellbeing, there were also direct statistically significant relationships (i.e., moderator). This highlights the importance of removing financial barriers to cultural engagement and the relationship between cultural wellbeing on emotional and general wellbeing. Additionally, the retained cultural wellbeing items focused primarily on community features, indicating the value of community-based cultural engagement opportunities.

Keywords: cultural wellbeing, cultural engagement, factor analysis, structural equation modeling

Procedia PDF Downloads 87
3817 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 153
3816 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang

Abstract:

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Keywords: CFD modeling, validation, microsphere generation, modified T-junction

Procedia PDF Downloads 710
3815 Atmospheric Transport Modeling of Radio-Xenon Detections Possibly Related to the Announced Nuclear Test in North Korea on February 12, 2013

Authors: Kobi Kutsher

Abstract:

On February 12th 2013, monitoring stations of the Preparatory Commission of the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) detected a seismic event with explosion-like underground characteristics in the Democratic People’s Republic of Korea (DPRK). The location was found to be in the vicinity of the two previous announced nuclear tests in 2006 and 2009.The nuclear test was also announced by the government of the DPRK.After an underground nuclear explosion, radioactive fission products (mostly noble gases) can seep through layers of rock and sediment until they escape into the atmosphere. The fission products are dispersed in the atmosphere and may be detected thousands of kilometers downwind from the test site. Indeed, more than 7 weeks after the explosion, unusual detections of noble gases was reported at the radionuclide station in Takasaki, Japan. The radionuclide station is a part of the International Monitoring System, operated to verify the CTBT. This study provides an estimation of the possible source region and the total radioactivity of the release using Atmospheric Transport Modeling.

Keywords: atmospheric transport modeling, CTBTO, nuclear tests, radioactive fission products

Procedia PDF Downloads 428
3814 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes

Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek

Abstract:

Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.

Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling

Procedia PDF Downloads 144
3813 Transient Modeling of Velocity Profile and Heat Transfer of Electrohydrodynamically Augmented Micro Heat Pipe

Authors: H. Shokouhmand, M. Tajerian

Abstract:

At this paper velocity profile modeling and heat transfer in the micro heat pipes by using electrohydrodynamic (EHD) field at the transient regime have been studied. In the transient flow, one dimensional and two phase fluid flow and heat transfer for micro heat pipes with square cross section, have been studied. At this model Coulomb and dielectrophoretic forces are considered. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by numerical methods. Transient behavior of affecting parameters e.g. substrate temperature, velocity of coolant liquid, radius of curvature and coolant liquid pressure, has been verified. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. So, the time required to reach the steady state regime decreases from 16 seconds to 2.4 seconds after applying EHD field. Another result has been observed implicitly that by increasing the heat input the effect of EHD field became more significant. The numerical results of model predict the experimental results available in the literature successfully, and it has been observed there is a good agreement between them.

Keywords: micro heat pipe, transient modeling, electrohydrodynamics, capillary, meniscus

Procedia PDF Downloads 266
3812 Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO

Authors: Mahmoud Nadir, Adel Ghenaiet

Abstract:

The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods.

Keywords: combined cycle, HRSG thermodynamic modeling, optimization, PSO, steam cycle specific work

Procedia PDF Downloads 385
3811 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow

Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng

Abstract:

The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.

Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling

Procedia PDF Downloads 149
3810 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine

Procedia PDF Downloads 342
3809 Predicting the Areal Development of the City of Mashhad with the Automaton Fuzzy Cell Method

Authors: Mehran Dizbadi, Daniyal Safarzadeh, Behrooz Arastoo, Ansgar Brunn

Abstract:

Rapid and uncontrolled expansion of cities has led to unplanned aerial development. In this way, modeling and predicting the urban growth of a city helps decision-makers. In this study, the aspect of sustainable urban development has been studied for the city of Mashhad. In general, the prediction of urban aerial development is one of the most important topics of modern town management. In this research, using the Cellular Automaton (CA) model developed for geo data of Geographic Information Systems (GIS) and presenting a simple and powerful model, a simulation of complex urban processes has been done.

Keywords: urban modeling, sustainable development, fuzzy cellular automaton, geo-information system

Procedia PDF Downloads 135
3808 Evidence of Behavioural Thermoregulation by Dugongs (Dugong dugon) at the High Latitude Limit to Their Range in Eastern Australia

Authors: Daniel R. Zeh, Michelle R. Heupel, Mark Hamann, Rhondda Jones, Colin J. Limpus, Helene Marsh

Abstract:

Marine mammals live in an environment with water temperatures nearly always lower than the mammalian core body temperature of 35 - 38°C. Marine mammals can lose heat at high rates and have evolved a range of adaptations to minimise heat loss. Our project tracked dugongs to examine if there was a discoverable relationship between the animals’ movements and the temperature of their environment that might suggest behavioural thermoregulation. Twenty-nine dugongs were fitted with acoustic and satellite/GPS transmitters in 2012, 2013 and 2014 in Moreton Bay Queensland at the high latitude limit of the species’ winter range in eastern Australia on 30 occasions (one animal was tagged twice). All 22 animals that stayed in the area and had functional transmitters made at least one (and up to 66) return trip(s) to the warmer oceanic waters outside the bay where seagrass is unavailable. Individual dugongs went in and out of the bay in synchrony with the tides and typically spent about 6 hours in the oceanic water. There was a diel pattern in the movements: 85% of outgoing trips occurred between midnight and noon. There were significant individual differences, but the likelihood of a dugong leaving the bay was independent of body length or sex. In Quarter 2 (April – June), the odds of a dugong making a trip increased by about 40% for each 1°C increase in the temperature difference between the bay and the warmer adjacent oceanic waters. In Quarter 3, the odds of making a trip were lower when the outside –inside bay temperature differences were small or negative but increased by a factor of up to 2.12 for each 1°C difference in outside – inside temperatures. In Quarter 4, the odds of making a trip were higher when it was cooler outside the bay and decreased by a factor of nearly 0.5 for each 1°C difference in outside – inside bay temperatures. The activity spaces of the dugongs generally declined as winter progressed suggesting a change in the cost-effectiveness of moving outside the bay. Our analysis suggests that dugongs can thermoregulate their core temperature through the behaviour of moving to water having more favourable temperature.

Keywords: acoustic, behavioral thermoregulation, dugongs, movements, satellite, telemetry, quick fix GPS

Procedia PDF Downloads 175
3807 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Abaqus, blast loading, finite element modeling, steel honeycomb sandwich panel

Procedia PDF Downloads 356
3806 Forecasting of COVID-19 Cases, Hospitalization Admissions, and Death Cases Based on Wastewater Sars-COV-2 Surveillance Using Copula Time Series Model

Authors: Hueiwang Anna Jeng, Norou Diawara, Nancy Welch, Cynthia Jackson, Rekha Singh, Kyle Curtis, Raul Gonzalez, David Jurgens, Sasanka Adikari

Abstract:

Modeling effort is needed to predict the COVID-19 trends for developing management strategies and adaptation measures. The objective of this study was to assess whether SARS-CoV-2 viral load in wastewater could serve as a predictor for forecasting COVID-19 cases, hospitalization cases, and death cases using copula-based time series modeling. SARS-CoV-2 RNA load in raw wastewater in Chesapeake VA was measured using the RT-qPCR method. Gaussian copula time series marginal regression model, incorporating an autoregressive moving average model and the copula function, served as a forecasting model. COVID-19 cases were correlated with wastewater viral load, hospitalization cases, and death cases. The forecasted trend of COVID-19 cases closely paralleled one of the reported cases, with over 90% of the forecasted COVID-19 cases falling within the 99% confidence interval of the reported cases. Wastewater SARS-CoV-2 viral load could serve as a predictor for COVID-19 cases and hospitalization cases.

Keywords: COVID-19, modeling, time series, copula function

Procedia PDF Downloads 73
3805 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein

Authors: Y. Ruchi, A. Prerna, S. Deepshikha

Abstract:

Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.

Keywords: ALS, binding site, homology modeling, neuronal degeneration

Procedia PDF Downloads 391
3804 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)

Authors: Vassilios Moussas, Dimos N. Pantazis, Panagioths Stratakis

Abstract:

The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.

Keywords: coastal transport, modeling, optimization

Procedia PDF Downloads 503
3803 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: adsorption, mathematical modeling, nanocarbons, numerical analysis

Procedia PDF Downloads 271
3802 Application of Directed Acyclic Graphs for Threat Identification Based on Ontologies

Authors: Arun Prabhakar

Abstract:

Threat modeling is an important activity carried out in the initial stages of the development lifecycle that helps in building proactive security measures in the product. Though there are many techniques and tools available today, one of the common challenges with the traditional methods is the lack of a systematic approach in identifying security threats. The proposed solution describes an organized model by defining ontologies that help in building patterns to enumerate threats. The concepts of graph theory are applied to build the pattern for discovering threats for any given scenario. This graph-based solution also brings in other benefits, making it a customizable and scalable model.

Keywords: directed acyclic graph, ontology, patterns, threat identification, threat modeling

Procedia PDF Downloads 143
3801 VISSIM Modeling of Driver Behavior at Connecticut Roundabouts

Authors: F. Clara Fang, Hernan Castaneda

Abstract:

The Connecticut Department of Transportation (ConnDOT) has constructed four roundabouts in the State of Connecticut within the past ten years. VISSIM traffic simulation software was utilized to analyze these roundabouts during their design phase. The queue length and level of service observed in the field appear to be better than predicted by the VISSIM model. The objectives of this project are to: identify VISSIM input variables most critical to accurate modeling; recommend VISSIM calibration factors; and, provide other recommendations for roundabout traffic operations modeling. Traffic data were collected at these roundabouts using Miovision Technologies. Cameras were set up to capture vehicle circulating activity and entry behavior for two weekdays. A large sample size of filed data was analyzed to achieve accurate and statistically significant results. The data extracted from the videos include: vehicle circulating speed; critical gap estimated by Maximum Likelihood Method; peak hour volume; follow-up headway; travel time; and, vehicle queue length. A VISSIM simulation of existing roundabouts was built to compare both queue length and travel time predicted from simulation with measured in the field. The research investigated a variety of simulation parameters as calibration factors for describing driver behaviors at roundabouts. Among them, critical gap is the most effective calibration variable in roundabout simulation. It has a significant impact to queue length, particularly when the volume is higher. The results will improve the design of future roundabouts in Connecticut and provide decision makers with insights on the relationship between various choices and future performance.

Keywords: driver critical gap, roundabout analysis, simulation, VISSIM modeling

Procedia PDF Downloads 293
3800 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement

Authors: Hadi Ardiny, Amir Mohammad Beigzadeh

Abstract:

Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.

Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems

Procedia PDF Downloads 129
3799 Groundwater Level Modelling by ARMA and PARMA Models (Case Study: Qorveh Aquifer)

Authors: Motalleb Byzedi, Seyedeh Chaman Naderi Korvandan

Abstract:

Regarding annual statistics of groundwater level resources about current piezometers at Qorveh plains, both ARMA & PARMA modeling methods were applied in this study by the using of SAMS software. Upon performing required tests, a model was used with minimum amount of Akaike information criteria and suitable model was selected for piezometers. Then it was possible to make necessary estimations by using these models for future fluctuations in each piezometer. According to the results, ARMA model had more facilities for modeling of aquifer. Also it was cleared that eastern parts of aquifer had more failures than other parts. Therefore it is necessary to prohibit critical parts along with more supervision on taking rates of wells.

Keywords: qorveh plain, groundwater level, ARMA, PARMA

Procedia PDF Downloads 292
3798 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm

Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.

Abstract:

The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.

Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony

Procedia PDF Downloads 105
3797 Genetic Improvement Potential for Wood Production in Melaleuca cajuputi

Authors: Hong Nguyen Thi Hai, Ryota Konda, Dat Kieu Tuan, Cao Tran Thanh, Khang Phung Van, Hau Tran Tin, Harry Wu

Abstract:

Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation.

Keywords: acoustic velocity, age-age correlation, bark thickness, heritability, Melaleuca cajuputi, stiffness, thinning effect

Procedia PDF Downloads 185
3796 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 102
3795 An Optimal Approach for Full-Detailed Friction Model Identification of Reaction Wheel

Authors: Ghasem Sharifi, Hamed Shahmohamadi Ousaloo, Milad Azimi, Mehran Mirshams

Abstract:

The ever-increasing use of satellites demands a search for increasingly accurate and reliable pointing systems. Reaction wheels are rotating devices used commonly for the attitude control of the spacecraft since provide a wide range of torque magnitude and high reliability. The numerical modeling of this device can significantly enhance the accuracy of the satellite control in space. Modeling the wheel rotation in the presence of the various frictions is one of the critical parts of this approach. This paper presents a Dynamic Model Control of a Reaction Wheel (DMCR) in the current control mode. In current-mode, the required current is delivered to the coils in order to achieve the desired torque. During this research, all the friction parameters as viscous and coulomb, motor coefficient, resistance and voltage constant are identified. In order to model identification of a reaction wheel, numerous varying current commands apply on the particular wheel to verify the estimated model. All the parameters of DMCR are identified by classical Levenberg-Marquardt (CLM) optimization method. The experimental results demonstrate that the developed model has an appropriate precise and can be used in the satellite control simulation.

Keywords: experimental modeling, friction parameters, model identification, reaction wheel

Procedia PDF Downloads 235
3794 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling

Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan

Abstract:

Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.

Keywords: green infrastructure, wave attenuation, wave modeling, wetland

Procedia PDF Downloads 135
3793 The Convection Heater Numerical Simulation

Authors: Cristian Patrascioiu, Loredana Negoita

Abstract:

This paper is focused on modeling and simulation of the tubular heaters. The paper is structured in four parts: the structure of the tubular convection section, the heat transfer model, the adaptation of the mathematical model and the solving model. The main hypothesis of the heat transfer modeling is that the heat exchanger of the convective tubular heater is a lumped system. In the same time, the model uses the heat balance relations, Newton’s law and criteria relations. The numerical program achieved allows for the estimation of the burn gases outlet temperature and the heated flow outlet temperature.

Keywords: heat exchanger, mathematical modelling, nonlinear equation system, Newton-Raphson algorithm

Procedia PDF Downloads 294
3792 Predictive Modeling of Bridge Conditions Using Random Forest

Authors: Miral Selim, May Haggag, Ibrahim Abotaleb

Abstract:

The aging of transportation infrastructure presents significant challenges, particularly concerning the monitoring and maintenance of bridges. This study investigates the application of Random Forest algorithms for predictive modeling of bridge conditions, utilizing data from the US National Bridge Inventory (NBI). The research is significant as it aims to improve bridge management through data-driven insights that can enhance maintenance strategies and contribute to overall safety. Random Forest is chosen for its robustness, ability to handle complex, non-linear relationships among variables, and its effectiveness in feature importance evaluation. The study begins with comprehensive data collection and cleaning, followed by the identification of key variables influencing bridge condition ratings, including age, construction materials, environmental factors, and maintenance history. Random Forest is utilized to examine the relationships between these variables and the predicted bridge conditions. The dataset is divided into training and testing subsets to evaluate the model's performance. The findings demonstrate that the Random Forest model effectively enhances the understanding of factors affecting bridge conditions. By identifying bridges at greater risk of deterioration, the model facilitates proactive maintenance strategies, which can help avoid costly repairs and minimize service disruptions. Additionally, this research underscores the value of data-driven decision-making, enabling better resource allocation to prioritize maintenance efforts where they are most necessary. In summary, this study highlights the efficiency and applicability of Random Forest in predictive modeling for bridge management. Ultimately, these findings pave the way for more resilient and proactive management of bridge systems, ensuring their longevity and reliability for future use.

Keywords: data analysis, random forest, predictive modeling, bridge management

Procedia PDF Downloads 27
3791 Modeling of Bed Level Changes in Larak Island

Authors: Saeed Zeinali, Nasser Talebbeydokhti, Mehdi Saeidian, Shahrad Vosough

Abstract:

In this article, bathymetry changes have been studied as a case study for Larak Island, located in The South of Iran. The advanced 2D model of Mike21 has been used for this purpose. A simple procedure has been utilized in this model. First, the hydrodynamic (HD) module of Mike21 has been used to obtain the required output for sediment transport model (ST module). The ST module modeled the area for tidal currents only. Bed level changes are resulted by series of modeling for both HD and ST module in 3 months time step. The final bathymetry in each time step is used as the primary bathymetry for next time step. This consecutive procedure been continued until bathymetry for the year 2020 is obtained.

Keywords: bed level changes, Larak Island, hydrodynamic, sediment transport

Procedia PDF Downloads 269
3790 Essay on Theoretical Modeling of the Wealth Effect of Sukuk

Authors: Jamel Boukhatem, Mouldi Djelassi

Abstract:

Contrary to the existing literature generally focusing on the role played by Sukuk in enhancing investors' and shareholders' wealth, this paper sheds some light on the Sukuk wealth effect across all economic agents: households, government, and investors by implementing a two-period life-cycle model with overlapping generations to show whether Sukuk is net wealth. The main findings are threefold: i) the effect of a change in Sukuk issuances on the consumers’ utility level will be different from one generation to another, ii) an increase in taxes due to the increase in Sukuk and rents is covered by transfers made by the members of generation 1 in the form of inheritance, and iii) the existence of a positive relationship between the asset prices representative of Sukuk and the real activity.

Keywords: Sukuk, households, investors, overlapping generations model, wealth, modeling

Procedia PDF Downloads 88