Search results for: AI (Artificial Intelligence)
2042 Creativity, Skill, and Intelligence as Understood by Tradition Rooted Craftspersons
Authors: Swasti Singh Ghai
Abstract:
Creativity is understood as an intersubjective phenomenon shaped by socio-cultural values and economic forces. Creativity as a means to achieve progress is a very modern concept, driven by a global capitalist market economy. The dominant urban, often first-world articulations of creativity, overshadow the rural, local and cultural notions of people in the developing nations. Artisanal practices of making grounded in preindustrial and pre-capitalist contexts hold varying cultural and region-specific concepts and standards for ascribing creativity to a person or product, or process. These notions reflect the underlying philosophy that constitutes their worldview. The process of colonization through western education has blurred or overlapped some of these key philosophical concepts. This article adopts a post-colonial stance to understand the perceptions of skill, intelligence and creativity among tradition rooted textile craft practitioners of Kutch, Gujarat in India. The artisans, while negotiating their space in the contemporary markets, are making efforts to include the modern categories of art, craft, and design in their worldview. The paper will first review theories of creativity that throw light on the link between skill, intelligence and creativity. Then the paper will use secondary research and data from interviews to share crafts person notions of skill, creativity and intelligence and their interrelationship.Keywords: traditional craft, textile, creativity, skill, intelligence
Procedia PDF Downloads 1252041 Personal Factors and Career Adaptability in a Call Centre Work Environment: The Mediating Effects of Professional Efficacy
Authors: Nisha Harry
Abstract:
The study discussed in this article sought to assess whether a sense of professional efficacy mediates the relationship between personal factors and career adaptability. A quantitative cross-sectional survey approach was followed. A non–probability sample of (N = 409) of which predominantly early career and permanently employed black females in call centres in Africa participated in this study. In order to assess personal factors, the participants completed sense of meaningfulness and emotional intelligence measures. Measures of professional efficacy and career adaptability were also completed. The results of the mediational analysis revealed that professional efficacy significantly mediates the meaningfulness (sense of coherence) and career adaptability relationship, but not the emotional intelligence–career adaptability relationship. Call centre agents with professional efficacy are likely to be more work engaged as a result of their sense of meaningfulness and emotional intelligence.Keywords: call centre, professional efficacy, career adaptability, emotional intelligence
Procedia PDF Downloads 3582040 A Study of Emotional Intelligence and Adjustment of Senior Secondary School Students in District Karnal, Haryana, India
Authors: Rooma Rani
Abstract:
The education is really important for the improvement of physical and mental well-being of the school students. It is used to express inner potential, acquire knowledge, develop skills, shape habits, attitudes, values, belief, etc. along with providing strengths and resilience to people to changing situations and allowing them to develop all those capacities which will enable individual to control surrounding environment. Education has a significant effect on the behavior of individuals which helps us in the new situations of everyday life. Educating the child is directing the child’s capacities, attitudes interest, urges, and needs into the most desirable channels. We are the part of 21st century and now a day emotional intelligence is considered more important than intelligence in the success of a person. Success depends on several intelligences and on the control of emotions too. Emotional Intelligence, like general intelligence is the product of one’s heredity and its interaction with his environmental forces. There are certain methods evolved in modern researches. Keeping in view the nature and purpose of the study, the descriptive survey method is preferred. This method is one of the important methods in education research because it describes the current position of the phenomenon under study. The term descriptive survey is generally used for the type of research which proposes to condition of practices of the present time. In the present study, a systematically random sampling method was used to select a representative sample. 50 students were selected from 2 schools. Out of 50 students, 25 were boys and 25 were girls. In the study, a) it has been found a significant difference in the level of adjustment between male and female students; b) it has been found a non-significant difference in the level of emotional intelligence between male and female students; c) it has been found a non-significant relationship between adjustment and emotional intelligence among male students; d) it has been found a significant relationship between adjustment and emotional intelligence among male students. The results of the study indicated that amongst the students those who possess high scores on emotional intelligence tests are high in level of adjustment. Measures should be adopted to improve and sustain the emotional intelligence level of students throughout their studies. Adolescent students are prone to many problems like physical, social and psychological. They need a congenial home atmosphere so that they grow into full-fledged citizens of our country. After understanding these, it helps in the development of personality which leads to a better learning situation and better thinking capacities, in turn, enhances adjustment and achievement along with a better perception of self.Keywords: adjustment, education, emotional intelligence, students
Procedia PDF Downloads 1312039 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects
Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha
Abstract:
The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).Keywords: artificial intelligence, space traffic management, space situational awareness, space debris
Procedia PDF Downloads 2582038 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5242037 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 4122036 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm
Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.
Abstract:
The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony
Procedia PDF Downloads 1012035 Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems
Authors: Fatima Faiza Ahmed, Syed Farrukh Hussain
Abstract:
The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems.Keywords: adaptable e-learning, HTMLParser, information extraction, semantic web
Procedia PDF Downloads 3382034 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics
Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo
Abstract:
A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.Keywords: behavioural biometric, face biometric, neural network, physical biometric, signature biometric
Procedia PDF Downloads 4742033 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 5972032 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 3172031 The Effectiveness of Teaching Emotional Intelligence on Reducing Marital Conflicts and Marital Adjustment in Married Students of Tehran University
Authors: Elham Jafari
Abstract:
The aim of this study was to evaluate the effectiveness of emotional intelligence training on reducing marital conflict and marital adjustment in married students of the University of Tehran. This research is an applied type in terms of purpose and a semi-experimental design of pre-test-post-test type with the control group and with follow-up test in terms of the data collection method. The statistical population of the present study consisted of all married students of the University of Tehran. In this study, 30 married students of the University of Tehran were selected by convenience sampling method as a sample that 15 people in the experimental group and 15 people in the control group were randomly selected. The method of data collection in this research was field and library. The data collection tool in the field section was two questionnaires of marital conflict and marital adjustment. To analyze the collected data, first at the descriptive level, using statistical indicators, the demographic characteristics of the sample were described by SPSS software. In inferential statistics, the statistical method used was the test of analysis of covariance. The results showed that the effect of the independent variable of emotional intelligence on the reduction of marital conflicts is statistically significant. And it can be inferred that emotional intelligence training has reduced the marital conflicts of married students of the University of Tehran in the experimental group compared to the control group. Also, the effect of the independent variable of emotional intelligence on marital adjustment was statistically significant. It can be inferred that emotional intelligence training has adjusted the marital adjustment of married students of the University of Tehran in the experimental group compared to the control group.Keywords: emotional intelligence, marital conflicts, marital compatibility, married students
Procedia PDF Downloads 2512030 Teachers’ Personal and Professional Characteristics: How They Relate to Teacher-Student Relationships and Students’ Behavior
Authors: Maria Poulou
Abstract:
The study investigated how teachers’ self-rated Emotional Intelligence (EI), competence in implementing Social and Emotional Learning (SEL) skills and teaching efficacy relate to teacher-student relationships and students’ emotional and behavioral difficulties. Participants were 98 elementary teachers from public schools in central Greece. They completed the Self-Rated Emotional Intelligence Scale (SREIS), the Teacher SEL Beliefs Scale, the Teachers’ Sense of Efficacy Scale (TSES), the Student-Teacher Relationships Scale-Short Form (STRS-SF) and the Strengths and Difficulties Questionnaire (SDQ) for 617 of their students, aged 6-11 years old. Structural equation modeling was used to examine an exploratory model of the variables. It was demonstrated that teachers’ emotional intelligence, SEL beliefs and teaching efficacy were significantly related to teacher-student relationships, but they were not related to students’ emotional and behavioral difficulties. Rather, teachers’ perceptions of teacher-students relationships were significantly related to these difficulties. These findings and their implications for research and practice are discussed.Keywords: emotional intelligence, social and emotional learning, teacher-student relationships, teaching efficacy
Procedia PDF Downloads 4402029 The Impact of Artificial Intelligence on Human Rights Development
Authors: Kerols Seif Said Botros
Abstract:
The relationship between development and human rights has been debated for a long time. Various principles, from the right to development to development-based human rights, are applied to understand the dynamics between these two concepts. Despite the measures calculated, the connection between enhancement and human rights remains vague. Despite, the connection between these two opinions and the need to strengthen human rights have increased in recent years. It will then be examined whether the right to sustainable development is acceptable or not. In various human rights instruments and this is a good vibe to the request cited above. The book then cites domestic and international human rights treaties, as well as jurisprudence and regulations defining human rights institutions, to support this view.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 542028 Factors Affecting the Adoption of Cloud Business Intelligence among Healthcare Sector: A Case Study of Saudi Arabia
Authors: Raed Alsufyani, Hissam Tawfik, Victor Chang, Muthu Ramachandran
Abstract:
This study investigates the factors that influence the decision by players in the healthcare sector to embrace Cloud Business Intelligence Technology with a focus on healthcare organizations in Saudi Arabia. To bring this matter into perspective, this study primarily considers the Technology-Organization-Environment (TOE) framework and the Human Organization-Technology (HOT) fit model. A survey was hypothetically designed based on literature review and was carried out online. Quantitative data obtained was processed from descriptive and one-way frequency statistics to inferential and regression analysis. Data were analysed to establish factors that influence the decision to adopt Cloud Business intelligence technology in the healthcare sector. The implication of the identified factors was measured, and all assumptions were tested. 66.70% of participants in healthcare organization backed the intention to adopt cloud business intelligence system. 99.4% of these participants considered security concerns and privacy risk have been the most significant factors in the adoption of cloud Business Intelligence (CBI) system. Through regression analysis hypothesis testing point that usefulness, service quality, relative advantage, IT infrastructure preparedness, organization structure; vendor support, perceived technical competence, government support, and top management support positively and significantly influence the adoption of (CBI) system. The paper presents quantitative phase that is a part of an on-going project. The project will be based on the consequences learned from this study.Keywords: cloud computing, business intelligence, HOT-fit model, TOE, healthcare and innovation adoption
Procedia PDF Downloads 1692027 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3862026 The Impact of Teacher's Emotional Intelligence on Students' Motivation to Learn
Authors: Marla Wendy Spergel
Abstract:
The purpose of this qualitative study is to showcase graduated high school students’ to voice on the impact past teachers had on their motivation to learn, and if this impact has affected their post-high-school lives. Through a focus group strategy, 21 graduated high school alumni participated in three separate focus groups. Participants discussed their former teacher’s emotional intelligence skills, which influenced their motivation to learn or not. A focused review of the literature revealed that teachers are a major factor in a student’s motivation to learn. This research was guided by Bandura’s Social Cognitive Theory of Motivation and constructs related to learning and motivation from Carl Rogers’ Humanistic Views of Personality, and from Brain-Based Learning perspectives with a major focus on the area of Emotional Intelligence. Findings revealed that the majority of participants identified teachers who most motivated them to learn and demonstrated skills associated with emotional intelligence. An important and disturbing finding relates to the saliency of negative experiences. Further work is recommended to expand this line of study in Higher Education, perform a long-term study to better gain insight into long-term benefits attributable to experiencing positive teachers, study the negative impact teachers have on students’ motivation to learn, specifically focusing on student anxiety and acquired helplessness.Keywords: emotional intelligence, learning, motivation, pedagogy
Procedia PDF Downloads 1572025 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2512024 Evaluation of Robot Application in Hospitality
Authors: Lina Zhong, Sunny Sun, Rob Law
Abstract:
Artificial intelligence has been developing rapidly. Previous studies have evaluated hotel technology either from an employee or consumer perspective. However, impacts, which mainly include the social and economic impacts of hotel robots, are unknown as they are newly introduced. To bridge the aforementioned research gap, this study evaluates hotel robots from contextual, diagnostic, evaluative, and strategic aspects using framework analysis as a basis to assist hotel managers in real-time hotel marketing strategy management, adjustment and revenue achievement. Findings show that, from a consumer perspective, the overall acceptance of hotel robots is low. The main implication is that the cost of hotel robots should be carefully estimated, and the investment should be made based on phases.Keywords: application, evaluation, framework analysis, hotel robot
Procedia PDF Downloads 1702023 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5502022 Competitive Advantage on the Road Again: Exploring Nuances through a Conceptual Review and Future Research Avenues
Authors: Seyedabdolali Mortazavi Kamalabadi, Faegheh Taheran
Abstract:
By giving an overview of previous arguments and findings concerned with the concept of competitive advantage, first, we define the overall concept of competitive advantage and discuss nuances of understanding such an important and strategic idea. Finally, by considering the major concerns of marketing academia, including globalization, AI-based technologies, consumer well-being, and internal coopetition between a firm’s units, fruitful avenues to be explored by future studies are presented in the form of research propositions. In the end, relevant gaps mentioned by numerous studies that are worth investigating are demonstrated.Keywords: artificial intelligence, competitive advantage, consumer well-being, coopetition, globalization, literature review, temporary competitive advantage
Procedia PDF Downloads 1132021 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework
Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari
Abstract:
The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency
Procedia PDF Downloads 592020 Supervised Learning for Cyber Threat Intelligence
Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk
Abstract:
The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.Keywords: threat information sharing, supervised learning, data classification, performance evaluation
Procedia PDF Downloads 1482019 Overcoming Open Innovation Challenges with Technology Intelligence: Case of Medium-Sized Enterprises
Authors: Akhatjon Nasullaev, Raffaella Manzini, Vincent Frigant
Abstract:
The prior research largely discussed open innovation practices both in large and small and medium-sized enterprises (SMEs). Open Innovation compels firms to observe and analyze the external environment in order to tap new opportunities for inbound and/or outbound flows of knowledge, ideas, work in progress innovations. As SMEs are different from their larger counterparts, they face several limitations in utilizing open innovation activities, such as resource scarcity, unstructured innovation processes and underdeveloped innovation capabilities. Technology intelligence – the process of systematic acquisition, assessment and communication of information about technological trends, opportunities and threats can mitigate this limitation by enabling SMEs to identify technological and market opportunities in timely manner and undertake sound decisions, as well as to realize a ‘first mover advantage’. Several studies highlighted firm-level barriers to successful implementation of open innovation practices in SMEs, namely challenges in partner selection, intellectual property rights and trust, absorptive capacity. This paper aims to investigate the question how technology intelligence can be useful for SMEs to overcome the barriers to effective open innovation. For this, we conduct a case study in four Estonian life-sciences SMEs. Our findings revealed that technology intelligence can support SMEs not only in inbound open innovation (taking into account inclination of most firms toward technology exploration aspects of open innovation) but also outbound open innovation. Furthermore, the results of this study state that, although SMEs conduct technology intelligence in unsystematic and uncoordinated manner, it helped them to increase their innovative performance.Keywords: technology intelligence, open innovation, SMEs, life sciences
Procedia PDF Downloads 1672018 Artificial Neural Network Speed Controller for Excited DC Motor
Authors: Elabed Saud
Abstract:
This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller
Procedia PDF Downloads 7262017 Artificial Habitat Mapping in Adriatic Sea
Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi
Abstract:
The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder
Procedia PDF Downloads 2592016 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 972015 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1712014 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd
Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic
Abstract:
Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization
Procedia PDF Downloads 1082013 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 51